Properties

Label 90.4.c.a.19.2
Level $90$
Weight $4$
Character 90.19
Analytic conductor $5.310$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,4,Mod(19,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.19");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 90.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31017190052\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 90.19
Dual form 90.4.c.a.19.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} -4.00000 q^{4} +(-2.00000 + 11.0000i) q^{5} +2.00000i q^{7} -8.00000i q^{8} +O(q^{10})\) \(q+2.00000i q^{2} -4.00000 q^{4} +(-2.00000 + 11.0000i) q^{5} +2.00000i q^{7} -8.00000i q^{8} +(-22.0000 - 4.00000i) q^{10} -70.0000 q^{11} +54.0000i q^{13} -4.00000 q^{14} +16.0000 q^{16} -22.0000i q^{17} -24.0000 q^{19} +(8.00000 - 44.0000i) q^{20} -140.000i q^{22} +100.000i q^{23} +(-117.000 - 44.0000i) q^{25} -108.000 q^{26} -8.00000i q^{28} +216.000 q^{29} +208.000 q^{31} +32.0000i q^{32} +44.0000 q^{34} +(-22.0000 - 4.00000i) q^{35} +254.000i q^{37} -48.0000i q^{38} +(88.0000 + 16.0000i) q^{40} +206.000 q^{41} +292.000i q^{43} +280.000 q^{44} -200.000 q^{46} -320.000i q^{47} +339.000 q^{49} +(88.0000 - 234.000i) q^{50} -216.000i q^{52} +402.000i q^{53} +(140.000 - 770.000i) q^{55} +16.0000 q^{56} +432.000i q^{58} -370.000 q^{59} -550.000 q^{61} +416.000i q^{62} -64.0000 q^{64} +(-594.000 - 108.000i) q^{65} -728.000i q^{67} +88.0000i q^{68} +(8.00000 - 44.0000i) q^{70} +540.000 q^{71} +604.000i q^{73} -508.000 q^{74} +96.0000 q^{76} -140.000i q^{77} -792.000 q^{79} +(-32.0000 + 176.000i) q^{80} +412.000i q^{82} -404.000i q^{83} +(242.000 + 44.0000i) q^{85} -584.000 q^{86} +560.000i q^{88} -938.000 q^{89} -108.000 q^{91} -400.000i q^{92} +640.000 q^{94} +(48.0000 - 264.000i) q^{95} -56.0000i q^{97} +678.000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} - 4 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{4} - 4 q^{5} - 44 q^{10} - 140 q^{11} - 8 q^{14} + 32 q^{16} - 48 q^{19} + 16 q^{20} - 234 q^{25} - 216 q^{26} + 432 q^{29} + 416 q^{31} + 88 q^{34} - 44 q^{35} + 176 q^{40} + 412 q^{41} + 560 q^{44} - 400 q^{46} + 678 q^{49} + 176 q^{50} + 280 q^{55} + 32 q^{56} - 740 q^{59} - 1100 q^{61} - 128 q^{64} - 1188 q^{65} + 16 q^{70} + 1080 q^{71} - 1016 q^{74} + 192 q^{76} - 1584 q^{79} - 64 q^{80} + 484 q^{85} - 1168 q^{86} - 1876 q^{89} - 216 q^{91} + 1280 q^{94} + 96 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) −2.00000 + 11.0000i −0.178885 + 0.983870i
\(6\) 0 0
\(7\) 2.00000i 0.107990i 0.998541 + 0.0539949i \(0.0171955\pi\)
−0.998541 + 0.0539949i \(0.982805\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 0 0
\(10\) −22.0000 4.00000i −0.695701 0.126491i
\(11\) −70.0000 −1.91871 −0.959354 0.282204i \(-0.908934\pi\)
−0.959354 + 0.282204i \(0.908934\pi\)
\(12\) 0 0
\(13\) 54.0000i 1.15207i 0.817425 + 0.576035i \(0.195401\pi\)
−0.817425 + 0.576035i \(0.804599\pi\)
\(14\) −4.00000 −0.0763604
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 22.0000i 0.313870i −0.987609 0.156935i \(-0.949839\pi\)
0.987609 0.156935i \(-0.0501613\pi\)
\(18\) 0 0
\(19\) −24.0000 −0.289788 −0.144894 0.989447i \(-0.546284\pi\)
−0.144894 + 0.989447i \(0.546284\pi\)
\(20\) 8.00000 44.0000i 0.0894427 0.491935i
\(21\) 0 0
\(22\) 140.000i 1.35673i
\(23\) 100.000i 0.906584i 0.891362 + 0.453292i \(0.149751\pi\)
−0.891362 + 0.453292i \(0.850249\pi\)
\(24\) 0 0
\(25\) −117.000 44.0000i −0.936000 0.352000i
\(26\) −108.000 −0.814636
\(27\) 0 0
\(28\) 8.00000i 0.0539949i
\(29\) 216.000 1.38311 0.691555 0.722324i \(-0.256926\pi\)
0.691555 + 0.722324i \(0.256926\pi\)
\(30\) 0 0
\(31\) 208.000 1.20509 0.602547 0.798084i \(-0.294153\pi\)
0.602547 + 0.798084i \(0.294153\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 0 0
\(34\) 44.0000 0.221939
\(35\) −22.0000 4.00000i −0.106248 0.0193178i
\(36\) 0 0
\(37\) 254.000i 1.12858i 0.825578 + 0.564288i \(0.190849\pi\)
−0.825578 + 0.564288i \(0.809151\pi\)
\(38\) 48.0000i 0.204911i
\(39\) 0 0
\(40\) 88.0000 + 16.0000i 0.347851 + 0.0632456i
\(41\) 206.000 0.784678 0.392339 0.919821i \(-0.371666\pi\)
0.392339 + 0.919821i \(0.371666\pi\)
\(42\) 0 0
\(43\) 292.000i 1.03557i 0.855510 + 0.517786i \(0.173244\pi\)
−0.855510 + 0.517786i \(0.826756\pi\)
\(44\) 280.000 0.959354
\(45\) 0 0
\(46\) −200.000 −0.641052
\(47\) 320.000i 0.993123i −0.868001 0.496562i \(-0.834596\pi\)
0.868001 0.496562i \(-0.165404\pi\)
\(48\) 0 0
\(49\) 339.000 0.988338
\(50\) 88.0000 234.000i 0.248902 0.661852i
\(51\) 0 0
\(52\) 216.000i 0.576035i
\(53\) 402.000i 1.04187i 0.853597 + 0.520933i \(0.174416\pi\)
−0.853597 + 0.520933i \(0.825584\pi\)
\(54\) 0 0
\(55\) 140.000 770.000i 0.343229 1.88776i
\(56\) 16.0000 0.0381802
\(57\) 0 0
\(58\) 432.000i 0.978007i
\(59\) −370.000 −0.816439 −0.408219 0.912884i \(-0.633850\pi\)
−0.408219 + 0.912884i \(0.633850\pi\)
\(60\) 0 0
\(61\) −550.000 −1.15443 −0.577215 0.816592i \(-0.695861\pi\)
−0.577215 + 0.816592i \(0.695861\pi\)
\(62\) 416.000i 0.852130i
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) −594.000 108.000i −1.13349 0.206088i
\(66\) 0 0
\(67\) 728.000i 1.32745i −0.747975 0.663727i \(-0.768974\pi\)
0.747975 0.663727i \(-0.231026\pi\)
\(68\) 88.0000i 0.156935i
\(69\) 0 0
\(70\) 8.00000 44.0000i 0.0136598 0.0751287i
\(71\) 540.000 0.902623 0.451311 0.892367i \(-0.350956\pi\)
0.451311 + 0.892367i \(0.350956\pi\)
\(72\) 0 0
\(73\) 604.000i 0.968395i 0.874959 + 0.484198i \(0.160888\pi\)
−0.874959 + 0.484198i \(0.839112\pi\)
\(74\) −508.000 −0.798024
\(75\) 0 0
\(76\) 96.0000 0.144894
\(77\) 140.000i 0.207201i
\(78\) 0 0
\(79\) −792.000 −1.12794 −0.563968 0.825797i \(-0.690726\pi\)
−0.563968 + 0.825797i \(0.690726\pi\)
\(80\) −32.0000 + 176.000i −0.0447214 + 0.245967i
\(81\) 0 0
\(82\) 412.000i 0.554851i
\(83\) 404.000i 0.534274i −0.963659 0.267137i \(-0.913922\pi\)
0.963659 0.267137i \(-0.0860777\pi\)
\(84\) 0 0
\(85\) 242.000 + 44.0000i 0.308807 + 0.0561467i
\(86\) −584.000 −0.732260
\(87\) 0 0
\(88\) 560.000i 0.678366i
\(89\) −938.000 −1.11717 −0.558583 0.829449i \(-0.688655\pi\)
−0.558583 + 0.829449i \(0.688655\pi\)
\(90\) 0 0
\(91\) −108.000 −0.124412
\(92\) 400.000i 0.453292i
\(93\) 0 0
\(94\) 640.000 0.702244
\(95\) 48.0000 264.000i 0.0518389 0.285114i
\(96\) 0 0
\(97\) 56.0000i 0.0586179i −0.999570 0.0293090i \(-0.990669\pi\)
0.999570 0.0293090i \(-0.00933067\pi\)
\(98\) 678.000i 0.698861i
\(99\) 0 0
\(100\) 468.000 + 176.000i 0.468000 + 0.176000i
\(101\) 592.000 0.583230 0.291615 0.956536i \(-0.405807\pi\)
0.291615 + 0.956536i \(0.405807\pi\)
\(102\) 0 0
\(103\) 62.0000i 0.0593111i 0.999560 + 0.0296555i \(0.00944104\pi\)
−0.999560 + 0.0296555i \(0.990559\pi\)
\(104\) 432.000 0.407318
\(105\) 0 0
\(106\) −804.000 −0.736711
\(107\) 84.0000i 0.0758933i 0.999280 + 0.0379467i \(0.0120817\pi\)
−0.999280 + 0.0379467i \(0.987918\pi\)
\(108\) 0 0
\(109\) −370.000 −0.325134 −0.162567 0.986698i \(-0.551977\pi\)
−0.162567 + 0.986698i \(0.551977\pi\)
\(110\) 1540.00 + 280.000i 1.33485 + 0.242700i
\(111\) 0 0
\(112\) 32.0000i 0.0269975i
\(113\) 1746.00i 1.45354i 0.686882 + 0.726769i \(0.258979\pi\)
−0.686882 + 0.726769i \(0.741021\pi\)
\(114\) 0 0
\(115\) −1100.00 200.000i −0.891961 0.162175i
\(116\) −864.000 −0.691555
\(117\) 0 0
\(118\) 740.000i 0.577310i
\(119\) 44.0000 0.0338947
\(120\) 0 0
\(121\) 3569.00 2.68144
\(122\) 1100.00i 0.816306i
\(123\) 0 0
\(124\) −832.000 −0.602547
\(125\) 718.000 1199.00i 0.513759 0.857935i
\(126\) 0 0
\(127\) 1630.00i 1.13889i −0.822029 0.569445i \(-0.807158\pi\)
0.822029 0.569445i \(-0.192842\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 0 0
\(130\) 216.000 1188.00i 0.145727 0.801496i
\(131\) 870.000 0.580246 0.290123 0.956989i \(-0.406304\pi\)
0.290123 + 0.956989i \(0.406304\pi\)
\(132\) 0 0
\(133\) 48.0000i 0.0312942i
\(134\) 1456.00 0.938651
\(135\) 0 0
\(136\) −176.000 −0.110970
\(137\) 918.000i 0.572482i 0.958158 + 0.286241i \(0.0924058\pi\)
−0.958158 + 0.286241i \(0.907594\pi\)
\(138\) 0 0
\(139\) 596.000 0.363684 0.181842 0.983328i \(-0.441794\pi\)
0.181842 + 0.983328i \(0.441794\pi\)
\(140\) 88.0000 + 16.0000i 0.0531240 + 0.00965891i
\(141\) 0 0
\(142\) 1080.00i 0.638251i
\(143\) 3780.00i 2.21049i
\(144\) 0 0
\(145\) −432.000 + 2376.00i −0.247418 + 1.36080i
\(146\) −1208.00 −0.684759
\(147\) 0 0
\(148\) 1016.00i 0.564288i
\(149\) 1076.00 0.591606 0.295803 0.955249i \(-0.404413\pi\)
0.295803 + 0.955249i \(0.404413\pi\)
\(150\) 0 0
\(151\) −32.0000 −0.0172458 −0.00862292 0.999963i \(-0.502745\pi\)
−0.00862292 + 0.999963i \(0.502745\pi\)
\(152\) 192.000i 0.102456i
\(153\) 0 0
\(154\) 280.000 0.146513
\(155\) −416.000 + 2288.00i −0.215574 + 1.18566i
\(156\) 0 0
\(157\) 2554.00i 1.29829i 0.760665 + 0.649145i \(0.224873\pi\)
−0.760665 + 0.649145i \(0.775127\pi\)
\(158\) 1584.00i 0.797571i
\(159\) 0 0
\(160\) −352.000 64.0000i −0.173925 0.0316228i
\(161\) −200.000 −0.0979019
\(162\) 0 0
\(163\) 752.000i 0.361357i 0.983542 + 0.180678i \(0.0578293\pi\)
−0.983542 + 0.180678i \(0.942171\pi\)
\(164\) −824.000 −0.392339
\(165\) 0 0
\(166\) 808.000 0.377789
\(167\) 2700.00i 1.25109i 0.780188 + 0.625546i \(0.215124\pi\)
−0.780188 + 0.625546i \(0.784876\pi\)
\(168\) 0 0
\(169\) −719.000 −0.327264
\(170\) −88.0000 + 484.000i −0.0397017 + 0.218359i
\(171\) 0 0
\(172\) 1168.00i 0.517786i
\(173\) 1334.00i 0.586255i 0.956073 + 0.293128i \(0.0946961\pi\)
−0.956073 + 0.293128i \(0.905304\pi\)
\(174\) 0 0
\(175\) 88.0000 234.000i 0.0380124 0.101078i
\(176\) −1120.00 −0.479677
\(177\) 0 0
\(178\) 1876.00i 0.789956i
\(179\) −1714.00 −0.715700 −0.357850 0.933779i \(-0.616490\pi\)
−0.357850 + 0.933779i \(0.616490\pi\)
\(180\) 0 0
\(181\) −4006.00 −1.64510 −0.822551 0.568691i \(-0.807450\pi\)
−0.822551 + 0.568691i \(0.807450\pi\)
\(182\) 216.000i 0.0879724i
\(183\) 0 0
\(184\) 800.000 0.320526
\(185\) −2794.00 508.000i −1.11037 0.201886i
\(186\) 0 0
\(187\) 1540.00i 0.602224i
\(188\) 1280.00i 0.496562i
\(189\) 0 0
\(190\) 528.000 + 96.0000i 0.201606 + 0.0366556i
\(191\) 684.000 0.259123 0.129562 0.991571i \(-0.458643\pi\)
0.129562 + 0.991571i \(0.458643\pi\)
\(192\) 0 0
\(193\) 4484.00i 1.67236i −0.548455 0.836180i \(-0.684784\pi\)
0.548455 0.836180i \(-0.315216\pi\)
\(194\) 112.000 0.0414491
\(195\) 0 0
\(196\) −1356.00 −0.494169
\(197\) 1058.00i 0.382636i −0.981528 0.191318i \(-0.938724\pi\)
0.981528 0.191318i \(-0.0612762\pi\)
\(198\) 0 0
\(199\) 1128.00 0.401818 0.200909 0.979610i \(-0.435610\pi\)
0.200909 + 0.979610i \(0.435610\pi\)
\(200\) −352.000 + 936.000i −0.124451 + 0.330926i
\(201\) 0 0
\(202\) 1184.00i 0.412406i
\(203\) 432.000i 0.149362i
\(204\) 0 0
\(205\) −412.000 + 2266.00i −0.140367 + 0.772021i
\(206\) −124.000 −0.0419393
\(207\) 0 0
\(208\) 864.000i 0.288017i
\(209\) 1680.00 0.556019
\(210\) 0 0
\(211\) 780.000 0.254490 0.127245 0.991871i \(-0.459387\pi\)
0.127245 + 0.991871i \(0.459387\pi\)
\(212\) 1608.00i 0.520933i
\(213\) 0 0
\(214\) −168.000 −0.0536647
\(215\) −3212.00 584.000i −1.01887 0.185249i
\(216\) 0 0
\(217\) 416.000i 0.130138i
\(218\) 740.000i 0.229904i
\(219\) 0 0
\(220\) −560.000 + 3080.00i −0.171615 + 0.943880i
\(221\) 1188.00 0.361600
\(222\) 0 0
\(223\) 2570.00i 0.771749i −0.922551 0.385874i \(-0.873900\pi\)
0.922551 0.385874i \(-0.126100\pi\)
\(224\) −64.0000 −0.0190901
\(225\) 0 0
\(226\) −3492.00 −1.02781
\(227\) 2836.00i 0.829216i −0.910000 0.414608i \(-0.863919\pi\)
0.910000 0.414608i \(-0.136081\pi\)
\(228\) 0 0
\(229\) 610.000 0.176026 0.0880130 0.996119i \(-0.471948\pi\)
0.0880130 + 0.996119i \(0.471948\pi\)
\(230\) 400.000 2200.00i 0.114675 0.630712i
\(231\) 0 0
\(232\) 1728.00i 0.489003i
\(233\) 3514.00i 0.988025i −0.869455 0.494012i \(-0.835530\pi\)
0.869455 0.494012i \(-0.164470\pi\)
\(234\) 0 0
\(235\) 3520.00 + 640.000i 0.977104 + 0.177655i
\(236\) 1480.00 0.408219
\(237\) 0 0
\(238\) 88.0000i 0.0239672i
\(239\) −1844.00 −0.499073 −0.249536 0.968365i \(-0.580278\pi\)
−0.249536 + 0.968365i \(0.580278\pi\)
\(240\) 0 0
\(241\) 982.000 0.262474 0.131237 0.991351i \(-0.458105\pi\)
0.131237 + 0.991351i \(0.458105\pi\)
\(242\) 7138.00i 1.89607i
\(243\) 0 0
\(244\) 2200.00 0.577215
\(245\) −678.000 + 3729.00i −0.176799 + 0.972396i
\(246\) 0 0
\(247\) 1296.00i 0.333856i
\(248\) 1664.00i 0.426065i
\(249\) 0 0
\(250\) 2398.00 + 1436.00i 0.606651 + 0.363282i
\(251\) 3174.00 0.798172 0.399086 0.916914i \(-0.369328\pi\)
0.399086 + 0.916914i \(0.369328\pi\)
\(252\) 0 0
\(253\) 7000.00i 1.73947i
\(254\) 3260.00 0.805317
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 1194.00i 0.289804i −0.989446 0.144902i \(-0.953713\pi\)
0.989446 0.144902i \(-0.0462867\pi\)
\(258\) 0 0
\(259\) −508.000 −0.121875
\(260\) 2376.00 + 432.000i 0.566743 + 0.103044i
\(261\) 0 0
\(262\) 1740.00i 0.410296i
\(263\) 140.000i 0.0328242i −0.999865 0.0164121i \(-0.994776\pi\)
0.999865 0.0164121i \(-0.00522437\pi\)
\(264\) 0 0
\(265\) −4422.00 804.000i −1.02506 0.186375i
\(266\) 96.0000 0.0221283
\(267\) 0 0
\(268\) 2912.00i 0.663727i
\(269\) 5256.00 1.19132 0.595658 0.803238i \(-0.296891\pi\)
0.595658 + 0.803238i \(0.296891\pi\)
\(270\) 0 0
\(271\) 544.000 0.121940 0.0609698 0.998140i \(-0.480581\pi\)
0.0609698 + 0.998140i \(0.480581\pi\)
\(272\) 352.000i 0.0784674i
\(273\) 0 0
\(274\) −1836.00 −0.404806
\(275\) 8190.00 + 3080.00i 1.79591 + 0.675385i
\(276\) 0 0
\(277\) 946.000i 0.205197i −0.994723 0.102599i \(-0.967284\pi\)
0.994723 0.102599i \(-0.0327157\pi\)
\(278\) 1192.00i 0.257163i
\(279\) 0 0
\(280\) −32.0000 + 176.000i −0.00682988 + 0.0375643i
\(281\) −1278.00 −0.271313 −0.135657 0.990756i \(-0.543314\pi\)
−0.135657 + 0.990756i \(0.543314\pi\)
\(282\) 0 0
\(283\) 7424.00i 1.55940i 0.626152 + 0.779701i \(0.284629\pi\)
−0.626152 + 0.779701i \(0.715371\pi\)
\(284\) −2160.00 −0.451311
\(285\) 0 0
\(286\) 7560.00 1.56305
\(287\) 412.000i 0.0847373i
\(288\) 0 0
\(289\) 4429.00 0.901486
\(290\) −4752.00 864.000i −0.962231 0.174951i
\(291\) 0 0
\(292\) 2416.00i 0.484198i
\(293\) 1362.00i 0.271566i 0.990739 + 0.135783i \(0.0433550\pi\)
−0.990739 + 0.135783i \(0.956645\pi\)
\(294\) 0 0
\(295\) 740.000 4070.00i 0.146049 0.803270i
\(296\) 2032.00 0.399012
\(297\) 0 0
\(298\) 2152.00i 0.418329i
\(299\) −5400.00 −1.04445
\(300\) 0 0
\(301\) −584.000 −0.111831
\(302\) 64.0000i 0.0121947i
\(303\) 0 0
\(304\) −384.000 −0.0724471
\(305\) 1100.00 6050.00i 0.206511 1.13581i
\(306\) 0 0
\(307\) 7740.00i 1.43891i 0.694539 + 0.719455i \(0.255608\pi\)
−0.694539 + 0.719455i \(0.744392\pi\)
\(308\) 560.000i 0.103601i
\(309\) 0 0
\(310\) −4576.00 832.000i −0.838385 0.152434i
\(311\) −4980.00 −0.908006 −0.454003 0.891000i \(-0.650004\pi\)
−0.454003 + 0.891000i \(0.650004\pi\)
\(312\) 0 0
\(313\) 604.000i 0.109074i 0.998512 + 0.0545369i \(0.0173683\pi\)
−0.998512 + 0.0545369i \(0.982632\pi\)
\(314\) −5108.00 −0.918029
\(315\) 0 0
\(316\) 3168.00 0.563968
\(317\) 8566.00i 1.51771i −0.651259 0.758856i \(-0.725759\pi\)
0.651259 0.758856i \(-0.274241\pi\)
\(318\) 0 0
\(319\) −15120.0 −2.65379
\(320\) 128.000 704.000i 0.0223607 0.122984i
\(321\) 0 0
\(322\) 400.000i 0.0692271i
\(323\) 528.000i 0.0909557i
\(324\) 0 0
\(325\) 2376.00 6318.00i 0.405529 1.07834i
\(326\) −1504.00 −0.255518
\(327\) 0 0
\(328\) 1648.00i 0.277426i
\(329\) 640.000 0.107247
\(330\) 0 0
\(331\) 3472.00 0.576551 0.288275 0.957548i \(-0.406918\pi\)
0.288275 + 0.957548i \(0.406918\pi\)
\(332\) 1616.00i 0.267137i
\(333\) 0 0
\(334\) −5400.00 −0.884655
\(335\) 8008.00 + 1456.00i 1.30604 + 0.237462i
\(336\) 0 0
\(337\) 5668.00i 0.916189i −0.888904 0.458094i \(-0.848532\pi\)
0.888904 0.458094i \(-0.151468\pi\)
\(338\) 1438.00i 0.231411i
\(339\) 0 0
\(340\) −968.000 176.000i −0.154403 0.0280734i
\(341\) −14560.0 −2.31222
\(342\) 0 0
\(343\) 1364.00i 0.214720i
\(344\) 2336.00 0.366130
\(345\) 0 0
\(346\) −2668.00 −0.414545
\(347\) 10836.0i 1.67639i 0.545371 + 0.838194i \(0.316389\pi\)
−0.545371 + 0.838194i \(0.683611\pi\)
\(348\) 0 0
\(349\) 8990.00 1.37886 0.689432 0.724350i \(-0.257860\pi\)
0.689432 + 0.724350i \(0.257860\pi\)
\(350\) 468.000 + 176.000i 0.0714733 + 0.0268788i
\(351\) 0 0
\(352\) 2240.00i 0.339183i
\(353\) 5078.00i 0.765651i 0.923821 + 0.382825i \(0.125049\pi\)
−0.923821 + 0.382825i \(0.874951\pi\)
\(354\) 0 0
\(355\) −1080.00 + 5940.00i −0.161466 + 0.888063i
\(356\) 3752.00 0.558583
\(357\) 0 0
\(358\) 3428.00i 0.506077i
\(359\) −3696.00 −0.543363 −0.271682 0.962387i \(-0.587580\pi\)
−0.271682 + 0.962387i \(0.587580\pi\)
\(360\) 0 0
\(361\) −6283.00 −0.916023
\(362\) 8012.00i 1.16326i
\(363\) 0 0
\(364\) 432.000 0.0622059
\(365\) −6644.00 1208.00i −0.952775 0.173232i
\(366\) 0 0
\(367\) 286.000i 0.0406787i −0.999793 0.0203393i \(-0.993525\pi\)
0.999793 0.0203393i \(-0.00647466\pi\)
\(368\) 1600.00i 0.226646i
\(369\) 0 0
\(370\) 1016.00 5588.00i 0.142755 0.785152i
\(371\) −804.000 −0.112511
\(372\) 0 0
\(373\) 8262.00i 1.14689i 0.819244 + 0.573445i \(0.194393\pi\)
−0.819244 + 0.573445i \(0.805607\pi\)
\(374\) −3080.00 −0.425837
\(375\) 0 0
\(376\) −2560.00 −0.351122
\(377\) 11664.0i 1.59344i
\(378\) 0 0
\(379\) 2956.00 0.400632 0.200316 0.979731i \(-0.435803\pi\)
0.200316 + 0.979731i \(0.435803\pi\)
\(380\) −192.000 + 1056.00i −0.0259195 + 0.142557i
\(381\) 0 0
\(382\) 1368.00i 0.183228i
\(383\) 5240.00i 0.699090i 0.936920 + 0.349545i \(0.113664\pi\)
−0.936920 + 0.349545i \(0.886336\pi\)
\(384\) 0 0
\(385\) 1540.00 + 280.000i 0.203859 + 0.0370653i
\(386\) 8968.00 1.18254
\(387\) 0 0
\(388\) 224.000i 0.0293090i
\(389\) −884.000 −0.115220 −0.0576100 0.998339i \(-0.518348\pi\)
−0.0576100 + 0.998339i \(0.518348\pi\)
\(390\) 0 0
\(391\) 2200.00 0.284549
\(392\) 2712.00i 0.349430i
\(393\) 0 0
\(394\) 2116.00 0.270565
\(395\) 1584.00 8712.00i 0.201771 1.10974i
\(396\) 0 0
\(397\) 3394.00i 0.429068i −0.976717 0.214534i \(-0.931177\pi\)
0.976717 0.214534i \(-0.0688233\pi\)
\(398\) 2256.00i 0.284128i
\(399\) 0 0
\(400\) −1872.00 704.000i −0.234000 0.0880000i
\(401\) 6826.00 0.850060 0.425030 0.905179i \(-0.360263\pi\)
0.425030 + 0.905179i \(0.360263\pi\)
\(402\) 0 0
\(403\) 11232.0i 1.38835i
\(404\) −2368.00 −0.291615
\(405\) 0 0
\(406\) −864.000 −0.105615
\(407\) 17780.0i 2.16541i
\(408\) 0 0
\(409\) −7814.00 −0.944688 −0.472344 0.881414i \(-0.656592\pi\)
−0.472344 + 0.881414i \(0.656592\pi\)
\(410\) −4532.00 824.000i −0.545901 0.0992548i
\(411\) 0 0
\(412\) 248.000i 0.0296555i
\(413\) 740.000i 0.0881671i
\(414\) 0 0
\(415\) 4444.00 + 808.000i 0.525656 + 0.0955739i
\(416\) −1728.00 −0.203659
\(417\) 0 0
\(418\) 3360.00i 0.393165i
\(419\) 8290.00 0.966570 0.483285 0.875463i \(-0.339443\pi\)
0.483285 + 0.875463i \(0.339443\pi\)
\(420\) 0 0
\(421\) 2110.00 0.244264 0.122132 0.992514i \(-0.461027\pi\)
0.122132 + 0.992514i \(0.461027\pi\)
\(422\) 1560.00i 0.179952i
\(423\) 0 0
\(424\) 3216.00 0.368356
\(425\) −968.000 + 2574.00i −0.110482 + 0.293782i
\(426\) 0 0
\(427\) 1100.00i 0.124667i
\(428\) 336.000i 0.0379467i
\(429\) 0 0
\(430\) 1168.00 6424.00i 0.130991 0.720448i
\(431\) 12080.0 1.35005 0.675027 0.737793i \(-0.264132\pi\)
0.675027 + 0.737793i \(0.264132\pi\)
\(432\) 0 0
\(433\) 16492.0i 1.83038i 0.403022 + 0.915190i \(0.367960\pi\)
−0.403022 + 0.915190i \(0.632040\pi\)
\(434\) −832.000 −0.0920214
\(435\) 0 0
\(436\) 1480.00 0.162567
\(437\) 2400.00i 0.262718i
\(438\) 0 0
\(439\) 15048.0 1.63600 0.817998 0.575222i \(-0.195084\pi\)
0.817998 + 0.575222i \(0.195084\pi\)
\(440\) −6160.00 1120.00i −0.667424 0.121350i
\(441\) 0 0
\(442\) 2376.00i 0.255690i
\(443\) 9876.00i 1.05919i 0.848249 + 0.529597i \(0.177657\pi\)
−0.848249 + 0.529597i \(0.822343\pi\)
\(444\) 0 0
\(445\) 1876.00 10318.0i 0.199845 1.09915i
\(446\) 5140.00 0.545709
\(447\) 0 0
\(448\) 128.000i 0.0134987i
\(449\) 17166.0 1.80426 0.902131 0.431462i \(-0.142002\pi\)
0.902131 + 0.431462i \(0.142002\pi\)
\(450\) 0 0
\(451\) −14420.0 −1.50557
\(452\) 6984.00i 0.726769i
\(453\) 0 0
\(454\) 5672.00 0.586344
\(455\) 216.000 1188.00i 0.0222555 0.122405i
\(456\) 0 0
\(457\) 14848.0i 1.51983i −0.650025 0.759913i \(-0.725242\pi\)
0.650025 0.759913i \(-0.274758\pi\)
\(458\) 1220.00i 0.124469i
\(459\) 0 0
\(460\) 4400.00 + 800.000i 0.445981 + 0.0810874i
\(461\) 1260.00 0.127297 0.0636486 0.997972i \(-0.479726\pi\)
0.0636486 + 0.997972i \(0.479726\pi\)
\(462\) 0 0
\(463\) 11238.0i 1.12802i −0.825767 0.564011i \(-0.809258\pi\)
0.825767 0.564011i \(-0.190742\pi\)
\(464\) 3456.00 0.345778
\(465\) 0 0
\(466\) 7028.00 0.698639
\(467\) 14772.0i 1.46374i 0.681444 + 0.731870i \(0.261352\pi\)
−0.681444 + 0.731870i \(0.738648\pi\)
\(468\) 0 0
\(469\) 1456.00 0.143351
\(470\) −1280.00 + 7040.00i −0.125621 + 0.690917i
\(471\) 0 0
\(472\) 2960.00i 0.288655i
\(473\) 20440.0i 1.98696i
\(474\) 0 0
\(475\) 2808.00 + 1056.00i 0.271242 + 0.102005i
\(476\) −176.000 −0.0169474
\(477\) 0 0
\(478\) 3688.00i 0.352898i
\(479\) −6116.00 −0.583397 −0.291699 0.956510i \(-0.594220\pi\)
−0.291699 + 0.956510i \(0.594220\pi\)
\(480\) 0 0
\(481\) −13716.0 −1.30020
\(482\) 1964.00i 0.185597i
\(483\) 0 0
\(484\) −14276.0 −1.34072
\(485\) 616.000 + 112.000i 0.0576724 + 0.0104859i
\(486\) 0 0
\(487\) 15906.0i 1.48002i −0.672596 0.740010i \(-0.734821\pi\)
0.672596 0.740010i \(-0.265179\pi\)
\(488\) 4400.00i 0.408153i
\(489\) 0 0
\(490\) −7458.00 1356.00i −0.687588 0.125016i
\(491\) −18714.0 −1.72006 −0.860032 0.510241i \(-0.829556\pi\)
−0.860032 + 0.510241i \(0.829556\pi\)
\(492\) 0 0
\(493\) 4752.00i 0.434116i
\(494\) 2592.00 0.236072
\(495\) 0 0
\(496\) 3328.00 0.301273
\(497\) 1080.00i 0.0974741i
\(498\) 0 0
\(499\) 4056.00 0.363871 0.181935 0.983310i \(-0.441764\pi\)
0.181935 + 0.983310i \(0.441764\pi\)
\(500\) −2872.00 + 4796.00i −0.256879 + 0.428967i
\(501\) 0 0
\(502\) 6348.00i 0.564393i
\(503\) 6288.00i 0.557392i −0.960379 0.278696i \(-0.910098\pi\)
0.960379 0.278696i \(-0.0899021\pi\)
\(504\) 0 0
\(505\) −1184.00 + 6512.00i −0.104331 + 0.573822i
\(506\) 14000.0 1.22999
\(507\) 0 0
\(508\) 6520.00i 0.569445i
\(509\) 2856.00 0.248703 0.124352 0.992238i \(-0.460315\pi\)
0.124352 + 0.992238i \(0.460315\pi\)
\(510\) 0 0
\(511\) −1208.00 −0.104577
\(512\) 512.000i 0.0441942i
\(513\) 0 0
\(514\) 2388.00 0.204922
\(515\) −682.000 124.000i −0.0583544 0.0106099i
\(516\) 0 0
\(517\) 22400.0i 1.90551i
\(518\) 1016.00i 0.0861785i
\(519\) 0 0
\(520\) −864.000 + 4752.00i −0.0728633 + 0.400748i
\(521\) −17078.0 −1.43609 −0.718043 0.695999i \(-0.754962\pi\)
−0.718043 + 0.695999i \(0.754962\pi\)
\(522\) 0 0
\(523\) 8560.00i 0.715684i −0.933782 0.357842i \(-0.883513\pi\)
0.933782 0.357842i \(-0.116487\pi\)
\(524\) −3480.00 −0.290123
\(525\) 0 0
\(526\) 280.000 0.0232102
\(527\) 4576.00i 0.378242i
\(528\) 0 0
\(529\) 2167.00 0.178105
\(530\) 1608.00 8844.00i 0.131787 0.724828i
\(531\) 0 0
\(532\) 192.000i 0.0156471i
\(533\) 11124.0i 0.904004i
\(534\) 0 0
\(535\) −924.000 168.000i −0.0746692 0.0135762i
\(536\) −5824.00 −0.469326
\(537\) 0 0
\(538\) 10512.0i 0.842388i
\(539\) −23730.0 −1.89633
\(540\) 0 0
\(541\) 15970.0 1.26914 0.634569 0.772866i \(-0.281178\pi\)
0.634569 + 0.772866i \(0.281178\pi\)
\(542\) 1088.00i 0.0862244i
\(543\) 0 0
\(544\) 704.000 0.0554848
\(545\) 740.000 4070.00i 0.0581617 0.319889i
\(546\) 0 0
\(547\) 15524.0i 1.21345i 0.794911 + 0.606726i \(0.207518\pi\)
−0.794911 + 0.606726i \(0.792482\pi\)
\(548\) 3672.00i 0.286241i
\(549\) 0 0
\(550\) −6160.00 + 16380.0i −0.477570 + 1.26990i
\(551\) −5184.00 −0.400809
\(552\) 0 0
\(553\) 1584.00i 0.121806i
\(554\) 1892.00 0.145096
\(555\) 0 0
\(556\) −2384.00 −0.181842
\(557\) 6774.00i 0.515303i 0.966238 + 0.257651i \(0.0829486\pi\)
−0.966238 + 0.257651i \(0.917051\pi\)
\(558\) 0 0
\(559\) −15768.0 −1.19305
\(560\) −352.000 64.0000i −0.0265620 0.00482945i
\(561\) 0 0
\(562\) 2556.00i 0.191848i
\(563\) 10484.0i 0.784810i 0.919793 + 0.392405i \(0.128357\pi\)
−0.919793 + 0.392405i \(0.871643\pi\)
\(564\) 0 0
\(565\) −19206.0 3492.00i −1.43009 0.260017i
\(566\) −14848.0 −1.10266
\(567\) 0 0
\(568\) 4320.00i 0.319125i
\(569\) 23302.0 1.71682 0.858410 0.512964i \(-0.171453\pi\)
0.858410 + 0.512964i \(0.171453\pi\)
\(570\) 0 0
\(571\) 21520.0 1.57720 0.788602 0.614903i \(-0.210805\pi\)
0.788602 + 0.614903i \(0.210805\pi\)
\(572\) 15120.0i 1.10524i
\(573\) 0 0
\(574\) −824.000 −0.0599183
\(575\) 4400.00 11700.0i 0.319118 0.848563i
\(576\) 0 0
\(577\) 3856.00i 0.278210i −0.990278 0.139105i \(-0.955577\pi\)
0.990278 0.139105i \(-0.0444226\pi\)
\(578\) 8858.00i 0.637447i
\(579\) 0 0
\(580\) 1728.00 9504.00i 0.123709 0.680400i
\(581\) 808.000 0.0576962
\(582\) 0 0
\(583\) 28140.0i 1.99904i
\(584\) 4832.00 0.342379
\(585\) 0 0
\(586\) −2724.00 −0.192026
\(587\) 26796.0i 1.88414i −0.335418 0.942069i \(-0.608878\pi\)
0.335418 0.942069i \(-0.391122\pi\)
\(588\) 0 0
\(589\) −4992.00 −0.349222
\(590\) 8140.00 + 1480.00i 0.567997 + 0.103272i
\(591\) 0 0
\(592\) 4064.00i 0.282144i
\(593\) 9870.00i 0.683495i −0.939792 0.341747i \(-0.888981\pi\)
0.939792 0.341747i \(-0.111019\pi\)
\(594\) 0 0
\(595\) −88.0000 + 484.000i −0.00606327 + 0.0333480i
\(596\) −4304.00 −0.295803
\(597\) 0 0
\(598\) 10800.0i 0.738537i
\(599\) −13296.0 −0.906945 −0.453472 0.891270i \(-0.649815\pi\)
−0.453472 + 0.891270i \(0.649815\pi\)
\(600\) 0 0
\(601\) −9262.00 −0.628627 −0.314314 0.949319i \(-0.601774\pi\)
−0.314314 + 0.949319i \(0.601774\pi\)
\(602\) 1168.00i 0.0790766i
\(603\) 0 0
\(604\) 128.000 0.00862292
\(605\) −7138.00 + 39259.0i −0.479671 + 2.63819i
\(606\) 0 0
\(607\) 5498.00i 0.367639i −0.982960 0.183820i \(-0.941154\pi\)
0.982960 0.183820i \(-0.0588462\pi\)
\(608\) 768.000i 0.0512278i
\(609\) 0 0
\(610\) 12100.0 + 2200.00i 0.803139 + 0.146025i
\(611\) 17280.0 1.14415
\(612\) 0 0
\(613\) 394.000i 0.0259600i 0.999916 + 0.0129800i \(0.00413179\pi\)
−0.999916 + 0.0129800i \(0.995868\pi\)
\(614\) −15480.0 −1.01746
\(615\) 0 0
\(616\) −1120.00 −0.0732566
\(617\) 7370.00i 0.480883i 0.970664 + 0.240442i \(0.0772923\pi\)
−0.970664 + 0.240442i \(0.922708\pi\)
\(618\) 0 0
\(619\) −25316.0 −1.64384 −0.821919 0.569604i \(-0.807097\pi\)
−0.821919 + 0.569604i \(0.807097\pi\)
\(620\) 1664.00 9152.00i 0.107787 0.592828i
\(621\) 0 0
\(622\) 9960.00i 0.642057i
\(623\) 1876.00i 0.120643i
\(624\) 0 0
\(625\) 11753.0 + 10296.0i 0.752192 + 0.658944i
\(626\) −1208.00 −0.0771268
\(627\) 0 0
\(628\) 10216.0i 0.649145i
\(629\) 5588.00 0.354226
\(630\) 0 0
\(631\) 2552.00 0.161004 0.0805020 0.996754i \(-0.474348\pi\)
0.0805020 + 0.996754i \(0.474348\pi\)
\(632\) 6336.00i 0.398786i
\(633\) 0 0
\(634\) 17132.0 1.07318
\(635\) 17930.0 + 3260.00i 1.12052 + 0.203731i
\(636\) 0 0
\(637\) 18306.0i 1.13863i
\(638\) 30240.0i 1.87651i
\(639\) 0 0
\(640\) 1408.00 + 256.000i 0.0869626 + 0.0158114i
\(641\) −8050.00 −0.496031 −0.248016 0.968756i \(-0.579778\pi\)
−0.248016 + 0.968756i \(0.579778\pi\)
\(642\) 0 0
\(643\) 19368.0i 1.18787i −0.804514 0.593934i \(-0.797574\pi\)
0.804514 0.593934i \(-0.202426\pi\)
\(644\) 800.000 0.0489510
\(645\) 0 0
\(646\) −1056.00 −0.0643154
\(647\) 9912.00i 0.602289i 0.953579 + 0.301144i \(0.0973686\pi\)
−0.953579 + 0.301144i \(0.902631\pi\)
\(648\) 0 0
\(649\) 25900.0 1.56651
\(650\) 12636.0 + 4752.00i 0.762500 + 0.286752i
\(651\) 0 0
\(652\) 3008.00i 0.180678i
\(653\) 27986.0i 1.67715i −0.544789 0.838573i \(-0.683390\pi\)
0.544789 0.838573i \(-0.316610\pi\)
\(654\) 0 0
\(655\) −1740.00 + 9570.00i −0.103798 + 0.570887i
\(656\) 3296.00 0.196169
\(657\) 0 0
\(658\) 1280.00i 0.0758353i
\(659\) 7562.00 0.447001 0.223501 0.974704i \(-0.428252\pi\)
0.223501 + 0.974704i \(0.428252\pi\)
\(660\) 0 0
\(661\) 20234.0 1.19064 0.595319 0.803490i \(-0.297026\pi\)
0.595319 + 0.803490i \(0.297026\pi\)
\(662\) 6944.00i 0.407683i
\(663\) 0 0
\(664\) −3232.00 −0.188894
\(665\) 528.000 + 96.0000i 0.0307894 + 0.00559808i
\(666\) 0 0
\(667\) 21600.0i 1.25391i
\(668\) 10800.0i 0.625546i
\(669\) 0 0
\(670\) −2912.00 + 16016.0i −0.167911 + 0.923511i
\(671\) 38500.0 2.21502
\(672\) 0 0
\(673\) 25332.0i 1.45093i 0.688258 + 0.725466i \(0.258376\pi\)
−0.688258 + 0.725466i \(0.741624\pi\)
\(674\) 11336.0 0.647843
\(675\) 0 0
\(676\) 2876.00 0.163632
\(677\) 18358.0i 1.04218i −0.853502 0.521090i \(-0.825526\pi\)
0.853502 0.521090i \(-0.174474\pi\)
\(678\) 0 0
\(679\) 112.000 0.00633014
\(680\) 352.000 1936.00i 0.0198509 0.109180i
\(681\) 0 0
\(682\) 29120.0i 1.63499i
\(683\) 124.000i 0.00694689i 0.999994 + 0.00347345i \(0.00110563\pi\)
−0.999994 + 0.00347345i \(0.998894\pi\)
\(684\) 0 0
\(685\) −10098.0 1836.00i −0.563248 0.102409i
\(686\) −2728.00 −0.151830
\(687\) 0 0
\(688\) 4672.00i 0.258893i
\(689\) −21708.0 −1.20030
\(690\) 0 0
\(691\) −17456.0 −0.961009 −0.480505 0.876992i \(-0.659547\pi\)
−0.480505 + 0.876992i \(0.659547\pi\)
\(692\) 5336.00i 0.293128i
\(693\) 0 0
\(694\) −21672.0 −1.18539
\(695\) −1192.00 + 6556.00i −0.0650578 + 0.357818i
\(696\) 0 0
\(697\) 4532.00i 0.246287i
\(698\) 17980.0i 0.975004i
\(699\) 0 0
\(700\) −352.000 + 936.000i −0.0190062 + 0.0505392i
\(701\) 17816.0 0.959916 0.479958 0.877291i \(-0.340652\pi\)
0.479958 + 0.877291i \(0.340652\pi\)
\(702\) 0 0
\(703\) 6096.00i 0.327048i
\(704\) 4480.00 0.239839
\(705\) 0 0
\(706\) −10156.0 −0.541397
\(707\) 1184.00i 0.0629829i
\(708\) 0 0
\(709\) 14298.0 0.757366 0.378683 0.925526i \(-0.376377\pi\)
0.378683 + 0.925526i \(0.376377\pi\)
\(710\) −11880.0 2160.00i −0.627956 0.114174i
\(711\) 0 0
\(712\) 7504.00i 0.394978i
\(713\) 20800.0i 1.09252i
\(714\) 0 0
\(715\) 41580.0 + 7560.00i 2.17483 + 0.395424i
\(716\) 6856.00 0.357850
\(717\) 0 0
\(718\) 7392.00i 0.384216i
\(719\) −18440.0 −0.956462 −0.478231 0.878234i \(-0.658722\pi\)
−0.478231 + 0.878234i \(0.658722\pi\)
\(720\) 0 0
\(721\) −124.000 −0.00640499
\(722\) 12566.0i 0.647726i
\(723\) 0 0
\(724\) 16024.0 0.822551
\(725\) −25272.0 9504.00i −1.29459 0.486855i
\(726\) 0 0
\(727\) 9666.00i 0.493112i −0.969129 0.246556i \(-0.920701\pi\)
0.969129 0.246556i \(-0.0792989\pi\)
\(728\) 864.000i 0.0439862i
\(729\) 0 0
\(730\) 2416.00 13288.0i 0.122493 0.673714i
\(731\) 6424.00 0.325035
\(732\) 0 0
\(733\) 6094.00i 0.307076i −0.988143 0.153538i \(-0.950933\pi\)
0.988143 0.153538i \(-0.0490668\pi\)
\(734\) 572.000 0.0287642
\(735\) 0 0
\(736\) −3200.00 −0.160263
\(737\) 50960.0i 2.54700i
\(738\) 0 0
\(739\) −9952.00 −0.495386 −0.247693 0.968839i \(-0.579672\pi\)
−0.247693 + 0.968839i \(0.579672\pi\)
\(740\) 11176.0 + 2032.00i 0.555186 + 0.100943i
\(741\) 0 0
\(742\) 1608.00i 0.0795573i
\(743\) 2208.00i 0.109022i 0.998513 + 0.0545112i \(0.0173601\pi\)
−0.998513 + 0.0545112i \(0.982640\pi\)
\(744\) 0 0
\(745\) −2152.00 + 11836.0i −0.105830 + 0.582064i
\(746\) −16524.0 −0.810974
\(747\) 0 0
\(748\) 6160.00i 0.301112i
\(749\) −168.000 −0.00819571
\(750\) 0 0
\(751\) −9400.00 −0.456739 −0.228369 0.973575i \(-0.573339\pi\)
−0.228369 + 0.973575i \(0.573339\pi\)
\(752\) 5120.00i 0.248281i
\(753\) 0 0
\(754\) −23328.0 −1.12673
\(755\) 64.0000 352.000i 0.00308503 0.0169677i
\(756\) 0 0
\(757\) 22574.0i 1.08384i 0.840430 + 0.541919i \(0.182302\pi\)
−0.840430 + 0.541919i \(0.817698\pi\)
\(758\) 5912.00i 0.283290i
\(759\) 0 0
\(760\) −2112.00 384.000i −0.100803 0.0183278i
\(761\) −7278.00 −0.346685 −0.173343 0.984862i \(-0.555457\pi\)
−0.173343 + 0.984862i \(0.555457\pi\)
\(762\) 0 0
\(763\) 740.000i 0.0351111i
\(764\) −2736.00 −0.129562
\(765\) 0 0
\(766\) −10480.0 −0.494331
\(767\) 19980.0i 0.940595i
\(768\) 0 0
\(769\) 16542.0 0.775708 0.387854 0.921721i \(-0.373216\pi\)
0.387854 + 0.921721i \(0.373216\pi\)
\(770\) −560.000 + 3080.00i −0.0262091 + 0.144150i
\(771\) 0 0
\(772\) 17936.0i 0.836180i
\(773\) 28926.0i 1.34592i 0.739679 + 0.672960i \(0.234977\pi\)
−0.739679 + 0.672960i \(0.765023\pi\)
\(774\) 0 0
\(775\) −24336.0 9152.00i −1.12797 0.424193i
\(776\) −448.000 −0.0207246
\(777\) 0 0
\(778\) 1768.00i 0.0814728i
\(779\) −4944.00 −0.227390
\(780\) 0 0
\(781\) −37800.0 −1.73187
\(782\) 4400.00i 0.201207i
\(783\) 0 0
\(784\) 5424.00 0.247085
\(785\) −28094.0 5108.00i −1.27735 0.232245i
\(786\) 0 0
\(787\) 20608.0i