Properties

Label 90.4.a.d.1.1
Level $90$
Weight $4$
Character 90.1
Self dual yes
Analytic conductor $5.310$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,4,Mod(1,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 90.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.31017190052\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 90.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +4.00000 q^{4} -5.00000 q^{5} +32.0000 q^{7} +8.00000 q^{8} -10.0000 q^{10} +60.0000 q^{11} -34.0000 q^{13} +64.0000 q^{14} +16.0000 q^{16} -42.0000 q^{17} -76.0000 q^{19} -20.0000 q^{20} +120.000 q^{22} +25.0000 q^{25} -68.0000 q^{26} +128.000 q^{28} -6.00000 q^{29} -232.000 q^{31} +32.0000 q^{32} -84.0000 q^{34} -160.000 q^{35} +134.000 q^{37} -152.000 q^{38} -40.0000 q^{40} -234.000 q^{41} -412.000 q^{43} +240.000 q^{44} +360.000 q^{47} +681.000 q^{49} +50.0000 q^{50} -136.000 q^{52} -222.000 q^{53} -300.000 q^{55} +256.000 q^{56} -12.0000 q^{58} -660.000 q^{59} -490.000 q^{61} -464.000 q^{62} +64.0000 q^{64} +170.000 q^{65} +812.000 q^{67} -168.000 q^{68} -320.000 q^{70} -120.000 q^{71} +746.000 q^{73} +268.000 q^{74} -304.000 q^{76} +1920.00 q^{77} +152.000 q^{79} -80.0000 q^{80} -468.000 q^{82} +804.000 q^{83} +210.000 q^{85} -824.000 q^{86} +480.000 q^{88} +678.000 q^{89} -1088.00 q^{91} +720.000 q^{94} +380.000 q^{95} +194.000 q^{97} +1362.00 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 32.0000 1.72784 0.863919 0.503631i \(-0.168003\pi\)
0.863919 + 0.503631i \(0.168003\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) −10.0000 −0.316228
\(11\) 60.0000 1.64461 0.822304 0.569049i \(-0.192689\pi\)
0.822304 + 0.569049i \(0.192689\pi\)
\(12\) 0 0
\(13\) −34.0000 −0.725377 −0.362689 0.931910i \(-0.618141\pi\)
−0.362689 + 0.931910i \(0.618141\pi\)
\(14\) 64.0000 1.22177
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −42.0000 −0.599206 −0.299603 0.954064i \(-0.596854\pi\)
−0.299603 + 0.954064i \(0.596854\pi\)
\(18\) 0 0
\(19\) −76.0000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) −20.0000 −0.223607
\(21\) 0 0
\(22\) 120.000 1.16291
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −68.0000 −0.512919
\(27\) 0 0
\(28\) 128.000 0.863919
\(29\) −6.00000 −0.0384197 −0.0192099 0.999815i \(-0.506115\pi\)
−0.0192099 + 0.999815i \(0.506115\pi\)
\(30\) 0 0
\(31\) −232.000 −1.34414 −0.672071 0.740486i \(-0.734595\pi\)
−0.672071 + 0.740486i \(0.734595\pi\)
\(32\) 32.0000 0.176777
\(33\) 0 0
\(34\) −84.0000 −0.423702
\(35\) −160.000 −0.772712
\(36\) 0 0
\(37\) 134.000 0.595391 0.297695 0.954661i \(-0.403782\pi\)
0.297695 + 0.954661i \(0.403782\pi\)
\(38\) −152.000 −0.648886
\(39\) 0 0
\(40\) −40.0000 −0.158114
\(41\) −234.000 −0.891333 −0.445667 0.895199i \(-0.647033\pi\)
−0.445667 + 0.895199i \(0.647033\pi\)
\(42\) 0 0
\(43\) −412.000 −1.46115 −0.730575 0.682833i \(-0.760748\pi\)
−0.730575 + 0.682833i \(0.760748\pi\)
\(44\) 240.000 0.822304
\(45\) 0 0
\(46\) 0 0
\(47\) 360.000 1.11726 0.558632 0.829416i \(-0.311326\pi\)
0.558632 + 0.829416i \(0.311326\pi\)
\(48\) 0 0
\(49\) 681.000 1.98542
\(50\) 50.0000 0.141421
\(51\) 0 0
\(52\) −136.000 −0.362689
\(53\) −222.000 −0.575359 −0.287680 0.957727i \(-0.592884\pi\)
−0.287680 + 0.957727i \(0.592884\pi\)
\(54\) 0 0
\(55\) −300.000 −0.735491
\(56\) 256.000 0.610883
\(57\) 0 0
\(58\) −12.0000 −0.0271668
\(59\) −660.000 −1.45635 −0.728175 0.685391i \(-0.759631\pi\)
−0.728175 + 0.685391i \(0.759631\pi\)
\(60\) 0 0
\(61\) −490.000 −1.02849 −0.514246 0.857642i \(-0.671928\pi\)
−0.514246 + 0.857642i \(0.671928\pi\)
\(62\) −464.000 −0.950453
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 170.000 0.324399
\(66\) 0 0
\(67\) 812.000 1.48062 0.740310 0.672265i \(-0.234679\pi\)
0.740310 + 0.672265i \(0.234679\pi\)
\(68\) −168.000 −0.299603
\(69\) 0 0
\(70\) −320.000 −0.546390
\(71\) −120.000 −0.200583 −0.100291 0.994958i \(-0.531978\pi\)
−0.100291 + 0.994958i \(0.531978\pi\)
\(72\) 0 0
\(73\) 746.000 1.19606 0.598032 0.801472i \(-0.295949\pi\)
0.598032 + 0.801472i \(0.295949\pi\)
\(74\) 268.000 0.421005
\(75\) 0 0
\(76\) −304.000 −0.458831
\(77\) 1920.00 2.84161
\(78\) 0 0
\(79\) 152.000 0.216473 0.108236 0.994125i \(-0.465480\pi\)
0.108236 + 0.994125i \(0.465480\pi\)
\(80\) −80.0000 −0.111803
\(81\) 0 0
\(82\) −468.000 −0.630268
\(83\) 804.000 1.06326 0.531629 0.846977i \(-0.321580\pi\)
0.531629 + 0.846977i \(0.321580\pi\)
\(84\) 0 0
\(85\) 210.000 0.267973
\(86\) −824.000 −1.03319
\(87\) 0 0
\(88\) 480.000 0.581456
\(89\) 678.000 0.807504 0.403752 0.914868i \(-0.367706\pi\)
0.403752 + 0.914868i \(0.367706\pi\)
\(90\) 0 0
\(91\) −1088.00 −1.25333
\(92\) 0 0
\(93\) 0 0
\(94\) 720.000 0.790025
\(95\) 380.000 0.410391
\(96\) 0 0
\(97\) 194.000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 1362.00 1.40391
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) −798.000 −0.786178 −0.393089 0.919500i \(-0.628594\pi\)
−0.393089 + 0.919500i \(0.628594\pi\)
\(102\) 0 0
\(103\) 1088.00 1.04081 0.520407 0.853918i \(-0.325780\pi\)
0.520407 + 0.853918i \(0.325780\pi\)
\(104\) −272.000 −0.256460
\(105\) 0 0
\(106\) −444.000 −0.406840
\(107\) −1716.00 −1.55039 −0.775196 0.631721i \(-0.782349\pi\)
−0.775196 + 0.631721i \(0.782349\pi\)
\(108\) 0 0
\(109\) −970.000 −0.852378 −0.426189 0.904634i \(-0.640144\pi\)
−0.426189 + 0.904634i \(0.640144\pi\)
\(110\) −600.000 −0.520071
\(111\) 0 0
\(112\) 512.000 0.431959
\(113\) −426.000 −0.354643 −0.177322 0.984153i \(-0.556743\pi\)
−0.177322 + 0.984153i \(0.556743\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −24.0000 −0.0192099
\(117\) 0 0
\(118\) −1320.00 −1.02980
\(119\) −1344.00 −1.03533
\(120\) 0 0
\(121\) 2269.00 1.70473
\(122\) −980.000 −0.727254
\(123\) 0 0
\(124\) −928.000 −0.672071
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 200.000 0.139741 0.0698706 0.997556i \(-0.477741\pi\)
0.0698706 + 0.997556i \(0.477741\pi\)
\(128\) 128.000 0.0883883
\(129\) 0 0
\(130\) 340.000 0.229384
\(131\) −60.0000 −0.0400170 −0.0200085 0.999800i \(-0.506369\pi\)
−0.0200085 + 0.999800i \(0.506369\pi\)
\(132\) 0 0
\(133\) −2432.00 −1.58557
\(134\) 1624.00 1.04696
\(135\) 0 0
\(136\) −336.000 −0.211851
\(137\) −642.000 −0.400363 −0.200182 0.979759i \(-0.564153\pi\)
−0.200182 + 0.979759i \(0.564153\pi\)
\(138\) 0 0
\(139\) −2836.00 −1.73055 −0.865275 0.501298i \(-0.832856\pi\)
−0.865275 + 0.501298i \(0.832856\pi\)
\(140\) −640.000 −0.386356
\(141\) 0 0
\(142\) −240.000 −0.141833
\(143\) −2040.00 −1.19296
\(144\) 0 0
\(145\) 30.0000 0.0171818
\(146\) 1492.00 0.845745
\(147\) 0 0
\(148\) 536.000 0.297695
\(149\) 1554.00 0.854420 0.427210 0.904152i \(-0.359496\pi\)
0.427210 + 0.904152i \(0.359496\pi\)
\(150\) 0 0
\(151\) −2272.00 −1.22446 −0.612228 0.790682i \(-0.709726\pi\)
−0.612228 + 0.790682i \(0.709726\pi\)
\(152\) −608.000 −0.324443
\(153\) 0 0
\(154\) 3840.00 2.00932
\(155\) 1160.00 0.601119
\(156\) 0 0
\(157\) 1694.00 0.861120 0.430560 0.902562i \(-0.358316\pi\)
0.430560 + 0.902562i \(0.358316\pi\)
\(158\) 304.000 0.153069
\(159\) 0 0
\(160\) −160.000 −0.0790569
\(161\) 0 0
\(162\) 0 0
\(163\) −52.0000 −0.0249874 −0.0124937 0.999922i \(-0.503977\pi\)
−0.0124937 + 0.999922i \(0.503977\pi\)
\(164\) −936.000 −0.445667
\(165\) 0 0
\(166\) 1608.00 0.751837
\(167\) 1200.00 0.556041 0.278020 0.960575i \(-0.410322\pi\)
0.278020 + 0.960575i \(0.410322\pi\)
\(168\) 0 0
\(169\) −1041.00 −0.473828
\(170\) 420.000 0.189485
\(171\) 0 0
\(172\) −1648.00 −0.730575
\(173\) −54.0000 −0.0237315 −0.0118657 0.999930i \(-0.503777\pi\)
−0.0118657 + 0.999930i \(0.503777\pi\)
\(174\) 0 0
\(175\) 800.000 0.345568
\(176\) 960.000 0.411152
\(177\) 0 0
\(178\) 1356.00 0.570992
\(179\) −876.000 −0.365784 −0.182892 0.983133i \(-0.558546\pi\)
−0.182892 + 0.983133i \(0.558546\pi\)
\(180\) 0 0
\(181\) 3854.00 1.58268 0.791341 0.611375i \(-0.209383\pi\)
0.791341 + 0.611375i \(0.209383\pi\)
\(182\) −2176.00 −0.886241
\(183\) 0 0
\(184\) 0 0
\(185\) −670.000 −0.266267
\(186\) 0 0
\(187\) −2520.00 −0.985458
\(188\) 1440.00 0.558632
\(189\) 0 0
\(190\) 760.000 0.290191
\(191\) 2784.00 1.05468 0.527338 0.849656i \(-0.323190\pi\)
0.527338 + 0.849656i \(0.323190\pi\)
\(192\) 0 0
\(193\) 914.000 0.340887 0.170443 0.985367i \(-0.445480\pi\)
0.170443 + 0.985367i \(0.445480\pi\)
\(194\) 388.000 0.143592
\(195\) 0 0
\(196\) 2724.00 0.992711
\(197\) 5202.00 1.88136 0.940678 0.339300i \(-0.110190\pi\)
0.940678 + 0.339300i \(0.110190\pi\)
\(198\) 0 0
\(199\) 3152.00 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(200\) 200.000 0.0707107
\(201\) 0 0
\(202\) −1596.00 −0.555912
\(203\) −192.000 −0.0663830
\(204\) 0 0
\(205\) 1170.00 0.398616
\(206\) 2176.00 0.735967
\(207\) 0 0
\(208\) −544.000 −0.181344
\(209\) −4560.00 −1.50920
\(210\) 0 0
\(211\) 740.000 0.241439 0.120720 0.992687i \(-0.461480\pi\)
0.120720 + 0.992687i \(0.461480\pi\)
\(212\) −888.000 −0.287680
\(213\) 0 0
\(214\) −3432.00 −1.09629
\(215\) 2060.00 0.653446
\(216\) 0 0
\(217\) −7424.00 −2.32246
\(218\) −1940.00 −0.602722
\(219\) 0 0
\(220\) −1200.00 −0.367745
\(221\) 1428.00 0.434650
\(222\) 0 0
\(223\) −520.000 −0.156151 −0.0780757 0.996947i \(-0.524878\pi\)
−0.0780757 + 0.996947i \(0.524878\pi\)
\(224\) 1024.00 0.305441
\(225\) 0 0
\(226\) −852.000 −0.250771
\(227\) −396.000 −0.115786 −0.0578930 0.998323i \(-0.518438\pi\)
−0.0578930 + 0.998323i \(0.518438\pi\)
\(228\) 0 0
\(229\) −1330.00 −0.383794 −0.191897 0.981415i \(-0.561464\pi\)
−0.191897 + 0.981415i \(0.561464\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −48.0000 −0.0135834
\(233\) −4866.00 −1.36816 −0.684082 0.729405i \(-0.739797\pi\)
−0.684082 + 0.729405i \(0.739797\pi\)
\(234\) 0 0
\(235\) −1800.00 −0.499656
\(236\) −2640.00 −0.728175
\(237\) 0 0
\(238\) −2688.00 −0.732089
\(239\) 1824.00 0.493660 0.246830 0.969059i \(-0.420611\pi\)
0.246830 + 0.969059i \(0.420611\pi\)
\(240\) 0 0
\(241\) 6482.00 1.73254 0.866270 0.499575i \(-0.166511\pi\)
0.866270 + 0.499575i \(0.166511\pi\)
\(242\) 4538.00 1.20543
\(243\) 0 0
\(244\) −1960.00 −0.514246
\(245\) −3405.00 −0.887908
\(246\) 0 0
\(247\) 2584.00 0.665652
\(248\) −1856.00 −0.475226
\(249\) 0 0
\(250\) −250.000 −0.0632456
\(251\) −1476.00 −0.371172 −0.185586 0.982628i \(-0.559418\pi\)
−0.185586 + 0.982628i \(0.559418\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 400.000 0.0988119
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −4314.00 −1.04708 −0.523541 0.852001i \(-0.675389\pi\)
−0.523541 + 0.852001i \(0.675389\pi\)
\(258\) 0 0
\(259\) 4288.00 1.02874
\(260\) 680.000 0.162199
\(261\) 0 0
\(262\) −120.000 −0.0282963
\(263\) 5280.00 1.23794 0.618971 0.785414i \(-0.287550\pi\)
0.618971 + 0.785414i \(0.287550\pi\)
\(264\) 0 0
\(265\) 1110.00 0.257309
\(266\) −4864.00 −1.12117
\(267\) 0 0
\(268\) 3248.00 0.740310
\(269\) −5526.00 −1.25251 −0.626257 0.779617i \(-0.715414\pi\)
−0.626257 + 0.779617i \(0.715414\pi\)
\(270\) 0 0
\(271\) 2024.00 0.453687 0.226844 0.973931i \(-0.427159\pi\)
0.226844 + 0.973931i \(0.427159\pi\)
\(272\) −672.000 −0.149801
\(273\) 0 0
\(274\) −1284.00 −0.283100
\(275\) 1500.00 0.328921
\(276\) 0 0
\(277\) 2054.00 0.445534 0.222767 0.974872i \(-0.428491\pi\)
0.222767 + 0.974872i \(0.428491\pi\)
\(278\) −5672.00 −1.22368
\(279\) 0 0
\(280\) −1280.00 −0.273195
\(281\) 7302.00 1.55018 0.775090 0.631850i \(-0.217704\pi\)
0.775090 + 0.631850i \(0.217704\pi\)
\(282\) 0 0
\(283\) −3724.00 −0.782222 −0.391111 0.920344i \(-0.627909\pi\)
−0.391111 + 0.920344i \(0.627909\pi\)
\(284\) −480.000 −0.100291
\(285\) 0 0
\(286\) −4080.00 −0.843551
\(287\) −7488.00 −1.54008
\(288\) 0 0
\(289\) −3149.00 −0.640953
\(290\) 60.0000 0.0121494
\(291\) 0 0
\(292\) 2984.00 0.598032
\(293\) 7218.00 1.43918 0.719591 0.694399i \(-0.244330\pi\)
0.719591 + 0.694399i \(0.244330\pi\)
\(294\) 0 0
\(295\) 3300.00 0.651300
\(296\) 1072.00 0.210502
\(297\) 0 0
\(298\) 3108.00 0.604166
\(299\) 0 0
\(300\) 0 0
\(301\) −13184.0 −2.52463
\(302\) −4544.00 −0.865821
\(303\) 0 0
\(304\) −1216.00 −0.229416
\(305\) 2450.00 0.459956
\(306\) 0 0
\(307\) 2540.00 0.472200 0.236100 0.971729i \(-0.424131\pi\)
0.236100 + 0.971729i \(0.424131\pi\)
\(308\) 7680.00 1.42081
\(309\) 0 0
\(310\) 2320.00 0.425055
\(311\) −1560.00 −0.284436 −0.142218 0.989835i \(-0.545423\pi\)
−0.142218 + 0.989835i \(0.545423\pi\)
\(312\) 0 0
\(313\) −934.000 −0.168667 −0.0843335 0.996438i \(-0.526876\pi\)
−0.0843335 + 0.996438i \(0.526876\pi\)
\(314\) 3388.00 0.608904
\(315\) 0 0
\(316\) 608.000 0.108236
\(317\) 1674.00 0.296597 0.148298 0.988943i \(-0.452620\pi\)
0.148298 + 0.988943i \(0.452620\pi\)
\(318\) 0 0
\(319\) −360.000 −0.0631854
\(320\) −320.000 −0.0559017
\(321\) 0 0
\(322\) 0 0
\(323\) 3192.00 0.549869
\(324\) 0 0
\(325\) −850.000 −0.145075
\(326\) −104.000 −0.0176688
\(327\) 0 0
\(328\) −1872.00 −0.315134
\(329\) 11520.0 1.93045
\(330\) 0 0
\(331\) −3988.00 −0.662237 −0.331118 0.943589i \(-0.607426\pi\)
−0.331118 + 0.943589i \(0.607426\pi\)
\(332\) 3216.00 0.531629
\(333\) 0 0
\(334\) 2400.00 0.393180
\(335\) −4060.00 −0.662154
\(336\) 0 0
\(337\) 2.00000 0.000323285 0 0.000161642 1.00000i \(-0.499949\pi\)
0.000161642 1.00000i \(0.499949\pi\)
\(338\) −2082.00 −0.335047
\(339\) 0 0
\(340\) 840.000 0.133986
\(341\) −13920.0 −2.21059
\(342\) 0 0
\(343\) 10816.0 1.70265
\(344\) −3296.00 −0.516594
\(345\) 0 0
\(346\) −108.000 −0.0167807
\(347\) −1764.00 −0.272901 −0.136450 0.990647i \(-0.543569\pi\)
−0.136450 + 0.990647i \(0.543569\pi\)
\(348\) 0 0
\(349\) 4310.00 0.661057 0.330529 0.943796i \(-0.392773\pi\)
0.330529 + 0.943796i \(0.392773\pi\)
\(350\) 1600.00 0.244353
\(351\) 0 0
\(352\) 1920.00 0.290728
\(353\) −138.000 −0.0208074 −0.0104037 0.999946i \(-0.503312\pi\)
−0.0104037 + 0.999946i \(0.503312\pi\)
\(354\) 0 0
\(355\) 600.000 0.0897034
\(356\) 2712.00 0.403752
\(357\) 0 0
\(358\) −1752.00 −0.258648
\(359\) 11976.0 1.76064 0.880319 0.474382i \(-0.157328\pi\)
0.880319 + 0.474382i \(0.157328\pi\)
\(360\) 0 0
\(361\) −1083.00 −0.157895
\(362\) 7708.00 1.11913
\(363\) 0 0
\(364\) −4352.00 −0.626667
\(365\) −3730.00 −0.534896
\(366\) 0 0
\(367\) 9704.00 1.38023 0.690115 0.723699i \(-0.257560\pi\)
0.690115 + 0.723699i \(0.257560\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −1340.00 −0.188279
\(371\) −7104.00 −0.994128
\(372\) 0 0
\(373\) −8122.00 −1.12746 −0.563728 0.825960i \(-0.690633\pi\)
−0.563728 + 0.825960i \(0.690633\pi\)
\(374\) −5040.00 −0.696824
\(375\) 0 0
\(376\) 2880.00 0.395012
\(377\) 204.000 0.0278688
\(378\) 0 0
\(379\) 3404.00 0.461350 0.230675 0.973031i \(-0.425907\pi\)
0.230675 + 0.973031i \(0.425907\pi\)
\(380\) 1520.00 0.205196
\(381\) 0 0
\(382\) 5568.00 0.745769
\(383\) 2520.00 0.336204 0.168102 0.985770i \(-0.446236\pi\)
0.168102 + 0.985770i \(0.446236\pi\)
\(384\) 0 0
\(385\) −9600.00 −1.27081
\(386\) 1828.00 0.241043
\(387\) 0 0
\(388\) 776.000 0.101535
\(389\) −1566.00 −0.204111 −0.102056 0.994779i \(-0.532542\pi\)
−0.102056 + 0.994779i \(0.532542\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 5448.00 0.701953
\(393\) 0 0
\(394\) 10404.0 1.33032
\(395\) −760.000 −0.0968095
\(396\) 0 0
\(397\) −4354.00 −0.550431 −0.275215 0.961383i \(-0.588749\pi\)
−0.275215 + 0.961383i \(0.588749\pi\)
\(398\) 6304.00 0.793947
\(399\) 0 0
\(400\) 400.000 0.0500000
\(401\) 8046.00 1.00199 0.500995 0.865450i \(-0.332967\pi\)
0.500995 + 0.865450i \(0.332967\pi\)
\(402\) 0 0
\(403\) 7888.00 0.975011
\(404\) −3192.00 −0.393089
\(405\) 0 0
\(406\) −384.000 −0.0469399
\(407\) 8040.00 0.979184
\(408\) 0 0
\(409\) −2806.00 −0.339237 −0.169618 0.985510i \(-0.554253\pi\)
−0.169618 + 0.985510i \(0.554253\pi\)
\(410\) 2340.00 0.281864
\(411\) 0 0
\(412\) 4352.00 0.520407
\(413\) −21120.0 −2.51634
\(414\) 0 0
\(415\) −4020.00 −0.475504
\(416\) −1088.00 −0.128230
\(417\) 0 0
\(418\) −9120.00 −1.06716
\(419\) −11580.0 −1.35017 −0.675084 0.737741i \(-0.735892\pi\)
−0.675084 + 0.737741i \(0.735892\pi\)
\(420\) 0 0
\(421\) −370.000 −0.0428330 −0.0214165 0.999771i \(-0.506818\pi\)
−0.0214165 + 0.999771i \(0.506818\pi\)
\(422\) 1480.00 0.170723
\(423\) 0 0
\(424\) −1776.00 −0.203420
\(425\) −1050.00 −0.119841
\(426\) 0 0
\(427\) −15680.0 −1.77707
\(428\) −6864.00 −0.775196
\(429\) 0 0
\(430\) 4120.00 0.462056
\(431\) −5040.00 −0.563267 −0.281634 0.959522i \(-0.590876\pi\)
−0.281634 + 0.959522i \(0.590876\pi\)
\(432\) 0 0
\(433\) −3742.00 −0.415310 −0.207655 0.978202i \(-0.566583\pi\)
−0.207655 + 0.978202i \(0.566583\pi\)
\(434\) −14848.0 −1.64223
\(435\) 0 0
\(436\) −3880.00 −0.426189
\(437\) 0 0
\(438\) 0 0
\(439\) −6208.00 −0.674924 −0.337462 0.941339i \(-0.609568\pi\)
−0.337462 + 0.941339i \(0.609568\pi\)
\(440\) −2400.00 −0.260035
\(441\) 0 0
\(442\) 2856.00 0.307344
\(443\) 15564.0 1.66923 0.834614 0.550835i \(-0.185691\pi\)
0.834614 + 0.550835i \(0.185691\pi\)
\(444\) 0 0
\(445\) −3390.00 −0.361127
\(446\) −1040.00 −0.110416
\(447\) 0 0
\(448\) 2048.00 0.215980
\(449\) 15774.0 1.65795 0.828977 0.559283i \(-0.188924\pi\)
0.828977 + 0.559283i \(0.188924\pi\)
\(450\) 0 0
\(451\) −14040.0 −1.46589
\(452\) −1704.00 −0.177322
\(453\) 0 0
\(454\) −792.000 −0.0818731
\(455\) 5440.00 0.560508
\(456\) 0 0
\(457\) 9722.00 0.995133 0.497567 0.867426i \(-0.334227\pi\)
0.497567 + 0.867426i \(0.334227\pi\)
\(458\) −2660.00 −0.271383
\(459\) 0 0
\(460\) 0 0
\(461\) 10890.0 1.10021 0.550106 0.835095i \(-0.314587\pi\)
0.550106 + 0.835095i \(0.314587\pi\)
\(462\) 0 0
\(463\) 15128.0 1.51848 0.759242 0.650809i \(-0.225570\pi\)
0.759242 + 0.650809i \(0.225570\pi\)
\(464\) −96.0000 −0.00960493
\(465\) 0 0
\(466\) −9732.00 −0.967438
\(467\) −10668.0 −1.05708 −0.528540 0.848909i \(-0.677260\pi\)
−0.528540 + 0.848909i \(0.677260\pi\)
\(468\) 0 0
\(469\) 25984.0 2.55827
\(470\) −3600.00 −0.353310
\(471\) 0 0
\(472\) −5280.00 −0.514898
\(473\) −24720.0 −2.40302
\(474\) 0 0
\(475\) −1900.00 −0.183533
\(476\) −5376.00 −0.517665
\(477\) 0 0
\(478\) 3648.00 0.349070
\(479\) −15264.0 −1.45601 −0.728006 0.685571i \(-0.759553\pi\)
−0.728006 + 0.685571i \(0.759553\pi\)
\(480\) 0 0
\(481\) −4556.00 −0.431883
\(482\) 12964.0 1.22509
\(483\) 0 0
\(484\) 9076.00 0.852367
\(485\) −970.000 −0.0908153
\(486\) 0 0
\(487\) −5776.00 −0.537445 −0.268722 0.963218i \(-0.586601\pi\)
−0.268722 + 0.963218i \(0.586601\pi\)
\(488\) −3920.00 −0.363627
\(489\) 0 0
\(490\) −6810.00 −0.627846
\(491\) −14244.0 −1.30921 −0.654606 0.755971i \(-0.727165\pi\)
−0.654606 + 0.755971i \(0.727165\pi\)
\(492\) 0 0
\(493\) 252.000 0.0230213
\(494\) 5168.00 0.470687
\(495\) 0 0
\(496\) −3712.00 −0.336036
\(497\) −3840.00 −0.346575
\(498\) 0 0
\(499\) −17116.0 −1.53551 −0.767753 0.640746i \(-0.778625\pi\)
−0.767753 + 0.640746i \(0.778625\pi\)
\(500\) −500.000 −0.0447214
\(501\) 0 0
\(502\) −2952.00 −0.262459
\(503\) 16848.0 1.49347 0.746735 0.665122i \(-0.231620\pi\)
0.746735 + 0.665122i \(0.231620\pi\)
\(504\) 0 0
\(505\) 3990.00 0.351589
\(506\) 0 0
\(507\) 0 0
\(508\) 800.000 0.0698706
\(509\) 3834.00 0.333868 0.166934 0.985968i \(-0.446613\pi\)
0.166934 + 0.985968i \(0.446613\pi\)
\(510\) 0 0
\(511\) 23872.0 2.06660
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −8628.00 −0.740398
\(515\) −5440.00 −0.465466
\(516\) 0 0
\(517\) 21600.0 1.83746
\(518\) 8576.00 0.727428
\(519\) 0 0
\(520\) 1360.00 0.114692
\(521\) 18822.0 1.58274 0.791369 0.611338i \(-0.209369\pi\)
0.791369 + 0.611338i \(0.209369\pi\)
\(522\) 0 0
\(523\) −15340.0 −1.28255 −0.641273 0.767313i \(-0.721593\pi\)
−0.641273 + 0.767313i \(0.721593\pi\)
\(524\) −240.000 −0.0200085
\(525\) 0 0
\(526\) 10560.0 0.875357
\(527\) 9744.00 0.805418
\(528\) 0 0
\(529\) −12167.0 −1.00000
\(530\) 2220.00 0.181945
\(531\) 0 0
\(532\) −9728.00 −0.792786
\(533\) 7956.00 0.646553
\(534\) 0 0
\(535\) 8580.00 0.693357
\(536\) 6496.00 0.523478
\(537\) 0 0
\(538\) −11052.0 −0.885661
\(539\) 40860.0 3.26524
\(540\) 0 0
\(541\) 18950.0 1.50596 0.752980 0.658044i \(-0.228616\pi\)
0.752980 + 0.658044i \(0.228616\pi\)
\(542\) 4048.00 0.320805
\(543\) 0 0
\(544\) −1344.00 −0.105926
\(545\) 4850.00 0.381195
\(546\) 0 0
\(547\) −10036.0 −0.784476 −0.392238 0.919864i \(-0.628299\pi\)
−0.392238 + 0.919864i \(0.628299\pi\)
\(548\) −2568.00 −0.200182
\(549\) 0 0
\(550\) 3000.00 0.232583
\(551\) 456.000 0.0352564
\(552\) 0 0
\(553\) 4864.00 0.374030
\(554\) 4108.00 0.315040
\(555\) 0 0
\(556\) −11344.0 −0.865275
\(557\) −10326.0 −0.785506 −0.392753 0.919644i \(-0.628477\pi\)
−0.392753 + 0.919644i \(0.628477\pi\)
\(558\) 0 0
\(559\) 14008.0 1.05988
\(560\) −2560.00 −0.193178
\(561\) 0 0
\(562\) 14604.0 1.09614
\(563\) −4524.00 −0.338657 −0.169328 0.985560i \(-0.554160\pi\)
−0.169328 + 0.985560i \(0.554160\pi\)
\(564\) 0 0
\(565\) 2130.00 0.158601
\(566\) −7448.00 −0.553114
\(567\) 0 0
\(568\) −960.000 −0.0709167
\(569\) −16362.0 −1.20550 −0.602751 0.797929i \(-0.705929\pi\)
−0.602751 + 0.797929i \(0.705929\pi\)
\(570\) 0 0
\(571\) 6620.00 0.485181 0.242591 0.970129i \(-0.422003\pi\)
0.242591 + 0.970129i \(0.422003\pi\)
\(572\) −8160.00 −0.596480
\(573\) 0 0
\(574\) −14976.0 −1.08900
\(575\) 0 0
\(576\) 0 0
\(577\) 8834.00 0.637373 0.318687 0.947860i \(-0.396758\pi\)
0.318687 + 0.947860i \(0.396758\pi\)
\(578\) −6298.00 −0.453222
\(579\) 0 0
\(580\) 120.000 0.00859091
\(581\) 25728.0 1.83714
\(582\) 0 0
\(583\) −13320.0 −0.946240
\(584\) 5968.00 0.422873
\(585\) 0 0
\(586\) 14436.0 1.01765
\(587\) −3636.00 −0.255662 −0.127831 0.991796i \(-0.540802\pi\)
−0.127831 + 0.991796i \(0.540802\pi\)
\(588\) 0 0
\(589\) 17632.0 1.23347
\(590\) 6600.00 0.460538
\(591\) 0 0
\(592\) 2144.00 0.148848
\(593\) −6570.00 −0.454971 −0.227485 0.973782i \(-0.573050\pi\)
−0.227485 + 0.973782i \(0.573050\pi\)
\(594\) 0 0
\(595\) 6720.00 0.463014
\(596\) 6216.00 0.427210
\(597\) 0 0
\(598\) 0 0
\(599\) −16584.0 −1.13123 −0.565613 0.824671i \(-0.691360\pi\)
−0.565613 + 0.824671i \(0.691360\pi\)
\(600\) 0 0
\(601\) −502.000 −0.0340716 −0.0170358 0.999855i \(-0.505423\pi\)
−0.0170358 + 0.999855i \(0.505423\pi\)
\(602\) −26368.0 −1.78518
\(603\) 0 0
\(604\) −9088.00 −0.612228
\(605\) −11345.0 −0.762380
\(606\) 0 0
\(607\) −18568.0 −1.24160 −0.620801 0.783969i \(-0.713192\pi\)
−0.620801 + 0.783969i \(0.713192\pi\)
\(608\) −2432.00 −0.162221
\(609\) 0 0
\(610\) 4900.00 0.325238
\(611\) −12240.0 −0.810438
\(612\) 0 0
\(613\) −13114.0 −0.864061 −0.432031 0.901859i \(-0.642203\pi\)
−0.432031 + 0.901859i \(0.642203\pi\)
\(614\) 5080.00 0.333896
\(615\) 0 0
\(616\) 15360.0 1.00466
\(617\) −5250.00 −0.342556 −0.171278 0.985223i \(-0.554790\pi\)
−0.171278 + 0.985223i \(0.554790\pi\)
\(618\) 0 0
\(619\) −10804.0 −0.701534 −0.350767 0.936463i \(-0.614079\pi\)
−0.350767 + 0.936463i \(0.614079\pi\)
\(620\) 4640.00 0.300559
\(621\) 0 0
\(622\) −3120.00 −0.201126
\(623\) 21696.0 1.39524
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −1868.00 −0.119266
\(627\) 0 0
\(628\) 6776.00 0.430560
\(629\) −5628.00 −0.356762
\(630\) 0 0
\(631\) −27088.0 −1.70896 −0.854482 0.519481i \(-0.826125\pi\)
−0.854482 + 0.519481i \(0.826125\pi\)
\(632\) 1216.00 0.0765346
\(633\) 0 0
\(634\) 3348.00 0.209726
\(635\) −1000.00 −0.0624942
\(636\) 0 0
\(637\) −23154.0 −1.44018
\(638\) −720.000 −0.0446788
\(639\) 0 0
\(640\) −640.000 −0.0395285
\(641\) −18930.0 −1.16644 −0.583222 0.812313i \(-0.698208\pi\)
−0.583222 + 0.812313i \(0.698208\pi\)
\(642\) 0 0
\(643\) 20108.0 1.23325 0.616627 0.787256i \(-0.288499\pi\)
0.616627 + 0.787256i \(0.288499\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 6384.00 0.388816
\(647\) 7152.00 0.434581 0.217291 0.976107i \(-0.430278\pi\)
0.217291 + 0.976107i \(0.430278\pi\)
\(648\) 0 0
\(649\) −39600.0 −2.39512
\(650\) −1700.00 −0.102584
\(651\) 0 0
\(652\) −208.000 −0.0124937
\(653\) 31626.0 1.89528 0.947642 0.319333i \(-0.103459\pi\)
0.947642 + 0.319333i \(0.103459\pi\)
\(654\) 0 0
\(655\) 300.000 0.0178961
\(656\) −3744.00 −0.222833
\(657\) 0 0
\(658\) 23040.0 1.36503
\(659\) −28092.0 −1.66056 −0.830280 0.557347i \(-0.811819\pi\)
−0.830280 + 0.557347i \(0.811819\pi\)
\(660\) 0 0
\(661\) −13186.0 −0.775909 −0.387955 0.921678i \(-0.626818\pi\)
−0.387955 + 0.921678i \(0.626818\pi\)
\(662\) −7976.00 −0.468272
\(663\) 0 0
\(664\) 6432.00 0.375919
\(665\) 12160.0 0.709090
\(666\) 0 0
\(667\) 0 0
\(668\) 4800.00 0.278020
\(669\) 0 0
\(670\) −8120.00 −0.468213
\(671\) −29400.0 −1.69147
\(672\) 0 0
\(673\) 5138.00 0.294287 0.147144 0.989115i \(-0.452992\pi\)
0.147144 + 0.989115i \(0.452992\pi\)
\(674\) 4.00000 0.000228597 0
\(675\) 0 0
\(676\) −4164.00 −0.236914
\(677\) −6078.00 −0.345047 −0.172523 0.985005i \(-0.555192\pi\)
−0.172523 + 0.985005i \(0.555192\pi\)
\(678\) 0 0
\(679\) 6208.00 0.350871
\(680\) 1680.00 0.0947427
\(681\) 0 0
\(682\) −27840.0 −1.56312
\(683\) −32244.0 −1.80642 −0.903208 0.429203i \(-0.858795\pi\)
−0.903208 + 0.429203i \(0.858795\pi\)
\(684\) 0 0
\(685\) 3210.00 0.179048
\(686\) 21632.0 1.20396
\(687\) 0 0
\(688\) −6592.00 −0.365287
\(689\) 7548.00 0.417353
\(690\) 0 0
\(691\) 4484.00 0.246859 0.123429 0.992353i \(-0.460611\pi\)
0.123429 + 0.992353i \(0.460611\pi\)
\(692\) −216.000 −0.0118657
\(693\) 0 0
\(694\) −3528.00 −0.192970
\(695\) 14180.0 0.773925
\(696\) 0 0
\(697\) 9828.00 0.534092
\(698\) 8620.00 0.467438
\(699\) 0 0
\(700\) 3200.00 0.172784
\(701\) 30426.0 1.63934 0.819668 0.572839i \(-0.194158\pi\)
0.819668 + 0.572839i \(0.194158\pi\)
\(702\) 0 0
\(703\) −10184.0 −0.546368
\(704\) 3840.00 0.205576
\(705\) 0 0
\(706\) −276.000 −0.0147130
\(707\) −25536.0 −1.35839
\(708\) 0 0
\(709\) 13262.0 0.702489 0.351245 0.936284i \(-0.385759\pi\)
0.351245 + 0.936284i \(0.385759\pi\)
\(710\) 1200.00 0.0634299
\(711\) 0 0
\(712\) 5424.00 0.285496
\(713\) 0 0
\(714\) 0 0
\(715\) 10200.0 0.533508
\(716\) −3504.00 −0.182892
\(717\) 0 0
\(718\) 23952.0 1.24496
\(719\) −13920.0 −0.722014 −0.361007 0.932563i \(-0.617567\pi\)
−0.361007 + 0.932563i \(0.617567\pi\)
\(720\) 0 0
\(721\) 34816.0 1.79836
\(722\) −2166.00 −0.111648
\(723\) 0 0
\(724\) 15416.0 0.791341
\(725\) −150.000 −0.00768395
\(726\) 0 0
\(727\) −9376.00 −0.478317 −0.239159 0.970981i \(-0.576872\pi\)
−0.239159 + 0.970981i \(0.576872\pi\)
\(728\) −8704.00 −0.443120
\(729\) 0 0
\(730\) −7460.00 −0.378229
\(731\) 17304.0 0.875529
\(732\) 0 0
\(733\) 6014.00 0.303045 0.151523 0.988454i \(-0.451582\pi\)
0.151523 + 0.988454i \(0.451582\pi\)
\(734\) 19408.0 0.975971
\(735\) 0 0
\(736\) 0 0
\(737\) 48720.0 2.43504
\(738\) 0 0
\(739\) −7468.00 −0.371739 −0.185869 0.982574i \(-0.559510\pi\)
−0.185869 + 0.982574i \(0.559510\pi\)
\(740\) −2680.00 −0.133133
\(741\) 0 0
\(742\) −14208.0 −0.702954
\(743\) −31248.0 −1.54290 −0.771452 0.636287i \(-0.780469\pi\)
−0.771452 + 0.636287i \(0.780469\pi\)
\(744\) 0 0
\(745\) −7770.00 −0.382108
\(746\) −16244.0 −0.797232
\(747\) 0 0
\(748\) −10080.0 −0.492729
\(749\) −54912.0 −2.67883
\(750\) 0 0
\(751\) 32840.0 1.59567 0.797835 0.602875i \(-0.205978\pi\)
0.797835 + 0.602875i \(0.205978\pi\)
\(752\) 5760.00 0.279316
\(753\) 0 0
\(754\) 408.000 0.0197062
\(755\) 11360.0 0.547593
\(756\) 0 0
\(757\) −19066.0 −0.915410 −0.457705 0.889104i \(-0.651328\pi\)
−0.457705 + 0.889104i \(0.651328\pi\)
\(758\) 6808.00 0.326224
\(759\) 0 0
\(760\) 3040.00 0.145095
\(761\) −6858.00 −0.326678 −0.163339 0.986570i \(-0.552227\pi\)
−0.163339 + 0.986570i \(0.552227\pi\)
\(762\) 0 0
\(763\) −31040.0 −1.47277
\(764\) 11136.0 0.527338
\(765\) 0 0
\(766\) 5040.00 0.237732
\(767\) 22440.0 1.05640
\(768\) 0 0
\(769\) 22178.0 1.04000 0.519999 0.854167i \(-0.325932\pi\)
0.519999 + 0.854167i \(0.325932\pi\)
\(770\) −19200.0 −0.898597
\(771\) 0 0
\(772\) 3656.00 0.170443
\(773\) −14286.0 −0.664724 −0.332362 0.943152i \(-0.607846\pi\)
−0.332362 + 0.943152i \(0.607846\pi\)
\(774\) 0 0
\(775\) −5800.00 −0.268829
\(776\) 1552.00 0.0717958
\(777\) 0 0
\(778\) −3132.00 −0.144329
\(779\) 17784.0 0.817943
\(780\) 0 0
\(781\) −7200.00 −0.329880
\(782\) 0 0
\(783\) 0 0
\(784\) 10896.0 0.496356
\(785\) −8470.00 −0.385105
\(786\) 0 0
\(787\) −18868.0 −0.854602 −0.427301 0.904109i \(-0.640535\pi\)
−0.427301 + 0.904109i \(0.640535\pi\)
\(788\) 20808.0 0.940678
\(789\) 0 0
\(790\) −1520.00 −0.0684546
\(791\) −13632.0 −0.612766
\(792\) 0 0
\(793\) 16660.0 0.746045
\(794\) −8708.00 −0.389213
\(795\) 0 0
\(796\) 12608.0 0.561405
\(797\) 21690.0 0.963989 0.481994 0.876174i \(-0.339913\pi\)
0.481994 + 0.876174i \(0.339913\pi\)
\(798\) 0 0
\(799\) −15120.0 −0.669471
\(800\) 800.000 0.0353553
\(801\) 0 0
\(802\) 16092.0 0.708514
\(803\) 44760.0 1.96706
\(804\) 0 0
\(805\) 0 0
\(806\) 15776.0 0.689437
\(807\) 0 0
\(808\) −6384.00 −0.277956
\(809\) 24726.0 1.07456 0.537281 0.843404i \(-0.319452\pi\)
0.537281 + 0.843404i \(0.319452\pi\)
\(810\) 0 0
\(811\) −2644.00 −0.114480 −0.0572401 0.998360i \(-0.518230\pi\)
−0.0572401 + 0.998360i \(0.518230\pi\)
\(812\) −768.000 −0.0331915
\(813\) 0 0
\(814\) 16080.0 0.692388
\(815\) 260.000 0.0111747
\(816\) 0 0
\(817\) 31312.0 1.34084
\(818\) −5612.00 −0.239877
\(819\) 0 0
\(820\) 4680.00 0.199308
\(821\) 37842.0 1.60864 0.804321 0.594195i \(-0.202529\pi\)
0.804321 + 0.594195i \(0.202529\pi\)
\(822\) 0 0
\(823\) −880.000 −0.0372720 −0.0186360 0.999826i \(-0.505932\pi\)
−0.0186360 + 0.999826i \(0.505932\pi\)
\(824\) 8704.00 0.367983
\(825\) 0 0
\(826\) −42240.0 −1.77932
\(827\) 12876.0 0.541406 0.270703 0.962663i \(-0.412744\pi\)
0.270703 + 0.962663i \(0.412744\pi\)
\(828\) 0 0
\(829\) −25498.0 −1.06825 −0.534127 0.845404i \(-0.679359\pi\)
−0.534127 + 0.845404i \(0.679359\pi\)
\(830\) −8040.00 −0.336232
\(831\) 0 0
\(832\) −2176.00 −0.0906721
\(833\) −28602.0 −1.18968
\(834\) 0 0
\(835\) −6000.00 −0.248669
\(836\) −18240.0 −0.754598
\(837\) 0 0
\(838\) −23160.0 −0.954712
\(839\) 40584.0 1.66998 0.834991 0.550263i \(-0.185473\pi\)
0.834991 + 0.550263i \(0.185473\pi\)
\(840\) 0 0
\(841\) −24353.0 −0.998524
\(842\) −740.000 −0.0302875
\(843\) 0 0
\(844\) 2960.00 0.120720
\(845\) 5205.00 0.211902
\(846\) 0 0
\(847\) 72608.0 2.94550
\(848\) −3552.00 −0.143840
\(849\) 0 0
\(850\) −2100.00 −0.0847405
\(851\) 0 0
\(852\) 0 0
\(853\) −25738.0 −1.03312 −0.516561 0.856251i \(-0.672788\pi\)
−0.516561 + 0.856251i \(0.672788\pi\)
\(854\) −31360.0 −1.25658
\(855\) 0 0
\(856\) −13728.0 −0.548146
\(857\) −13314.0 −0.530686 −0.265343 0.964154i \(-0.585485\pi\)
−0.265343 + 0.964154i \(0.585485\pi\)
\(858\) 0 0
\(859\) 24524.0 0.974096 0.487048 0.873375i \(-0.338074\pi\)
0.487048 + 0.873375i \(0.338074\pi\)
\(860\) 8240.00 0.326723
\(861\) 0 0
\(862\) −10080.0 −0.398290
\(863\) −5592.00 −0.220572 −0.110286 0.993900i \(-0.535177\pi\)
−0.110286 + 0.993900i \(0.535177\pi\)
\(864\) 0 0
\(865\) 270.000 0.0106130
\(866\) −7484.00 −0.293668
\(867\) 0 0
\(868\) −29696.0 −1.16123
\(869\) 9120.00 0.356012
\(870\) 0 0
\(871\) −27608.0 −1.07401
\(872\) −7760.00 −0.301361
\(873\) 0 0
\(874\) 0 0
\(875\) −4000.00 −0.154542
\(876\) 0 0
\(877\) −14386.0 −0.553912 −0.276956 0.960883i \(-0.589326\pi\)
−0.276956 + 0.960883i \(0.589326\pi\)
\(878\) −12416.0 −0.477243
\(879\) 0 0
\(880\) −4800.00 −0.183873
\(881\) −47106.0 −1.80141 −0.900705 0.434432i \(-0.856949\pi\)
−0.900705 + 0.434432i \(0.856949\pi\)
\(882\) 0 0
\(883\) 51548.0 1.96458 0.982292 0.187354i \(-0.0599913\pi\)
0.982292 + 0.187354i \(0.0599913\pi\)
\(884\) 5712.00 0.217325
\(885\) 0 0
\(886\) 31128.0 1.18032
\(887\) −34080.0 −1.29007 −0.645036 0.764152i \(-0.723158\pi\)
−0.645036 + 0.764152i \(0.723158\pi\)
\(888\) 0 0
\(889\) 6400.00 0.241450
\(890\) −6780.00 −0.255355
\(891\) 0 0
\(892\) −2080.00 −0.0780757
\(893\) −27360.0 −1.02527
\(894\) 0 0
\(895\) 4380.00 0.163584
\(896\) 4096.00 0.152721
\(897\) 0 0
\(898\) 31548.0 1.17235
\(899\) 1392.00 0.0516416
\(900\) 0 0
\(901\) 9324.00 0.344759
\(902\) −28080.0 −1.03654
\(903\) 0 0
\(904\) −3408.00 −0.125385
\(905\) −19270.0 −0.707797
\(906\) 0 0
\(907\) 25748.0 0.942611 0.471306 0.881970i \(-0.343783\pi\)
0.471306 + 0.881970i \(0.343783\pi\)
\(908\) −1584.00 −0.0578930
\(909\) 0 0
\(910\) 10880.0 0.396339
\(911\) 24768.0 0.900769 0.450384 0.892835i \(-0.351287\pi\)
0.450384 + 0.892835i \(0.351287\pi\)
\(912\) 0 0
\(913\) 48240.0 1.74864
\(914\) 19444.0 0.703666
\(915\) 0 0
\(916\) −5320.00 −0.191897
\(917\) −1920.00 −0.0691428
\(918\) 0 0
\(919\) −31264.0 −1.12220 −0.561101 0.827747i \(-0.689622\pi\)
−0.561101 + 0.827747i \(0.689622\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 21780.0 0.777968
\(923\) 4080.00 0.145498
\(924\) 0 0
\(925\) 3350.00 0.119078
\(926\) 30256.0 1.07373
\(927\) 0 0
\(928\) −192.000 −0.00679171
\(929\) 6174.00 0.218043 0.109022 0.994039i \(-0.465228\pi\)
0.109022 + 0.994039i \(0.465228\pi\)
\(930\) 0 0
\(931\) −51756.0 −1.82195
\(932\) −19464.0 −0.684082
\(933\) 0 0
\(934\) −21336.0 −0.747468
\(935\) 12600.0 0.440710
\(936\) 0 0
\(937\) 28922.0 1.00837 0.504184 0.863596i \(-0.331793\pi\)
0.504184 + 0.863596i \(0.331793\pi\)
\(938\) 51968.0 1.80897
\(939\) 0 0
\(940\) −7200.00 −0.249828
\(941\) −29238.0 −1.01289 −0.506446 0.862272i \(-0.669041\pi\)
−0.506446 + 0.862272i \(0.669041\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −10560.0 −0.364088
\(945\) 0 0
\(946\) −49440.0 −1.69919
\(947\) 2868.00 0.0984134 0.0492067 0.998789i \(-0.484331\pi\)
0.0492067 + 0.998789i \(0.484331\pi\)
\(948\) 0 0
\(949\) −25364.0 −0.867598
\(950\) −3800.00 −0.129777
\(951\) 0 0
\(952\) −10752.0 −0.366044
\(953\) −24018.0 −0.816390 −0.408195 0.912895i \(-0.633842\pi\)
−0.408195 + 0.912895i \(0.633842\pi\)
\(954\) 0 0
\(955\) −13920.0 −0.471666
\(956\) 7296.00 0.246830
\(957\) 0 0
\(958\) −30528.0 −1.02956
\(959\) −20544.0 −0.691763
\(960\) 0 0
\(961\) 24033.0 0.806720
\(962\) −9112.00 −0.305387
\(963\) 0 0
\(964\) 25928.0 0.866270
\(965\) −4570.00 −0.152449
\(966\) 0 0
\(967\) 25712.0 0.855059 0.427530 0.904001i \(-0.359384\pi\)
0.427530 + 0.904001i \(0.359384\pi\)
\(968\) 18152.0 0.602714
\(969\) 0 0
\(970\) −1940.00 −0.0642161
\(971\) 12396.0 0.409688 0.204844 0.978795i \(-0.434331\pi\)
0.204844 + 0.978795i \(0.434331\pi\)
\(972\) 0 0
\(973\) −90752.0 −2.99011
\(974\) −11552.0 −0.380031
\(975\) 0 0
\(976\) −7840.00 −0.257123
\(977\) 46614.0 1.52642 0.763211 0.646150i \(-0.223622\pi\)
0.763211 + 0.646150i \(0.223622\pi\)
\(978\) 0 0
\(979\) 40680.0 1.32803
\(980\) −13620.0 −0.443954
\(981\) 0 0
\(982\) −28488.0 −0.925752
\(983\) 672.000 0.0218041 0.0109021 0.999941i \(-0.496530\pi\)
0.0109021 + 0.999941i \(0.496530\pi\)
\(984\) 0 0
\(985\) −26010.0 −0.841368
\(986\) 504.000 0.0162785
\(987\) 0 0
\(988\) 10336.0 0.332826
\(989\) 0 0
\(990\) 0 0
\(991\) −38776.0 −1.24295 −0.621473 0.783435i \(-0.713466\pi\)
−0.621473 + 0.783435i \(0.713466\pi\)
\(992\) −7424.00 −0.237613
\(993\) 0 0
\(994\) −7680.00 −0.245065
\(995\) −15760.0 −0.502136
\(996\) 0 0
\(997\) 30422.0 0.966374 0.483187 0.875517i \(-0.339479\pi\)
0.483187 + 0.875517i \(0.339479\pi\)
\(998\) −34232.0 −1.08577
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.4.a.d.1.1 1
3.2 odd 2 30.4.a.a.1.1 1
4.3 odd 2 720.4.a.b.1.1 1
5.2 odd 4 450.4.c.k.199.2 2
5.3 odd 4 450.4.c.k.199.1 2
5.4 even 2 450.4.a.b.1.1 1
9.2 odd 6 810.4.e.m.271.1 2
9.4 even 3 810.4.e.e.541.1 2
9.5 odd 6 810.4.e.m.541.1 2
9.7 even 3 810.4.e.e.271.1 2
12.11 even 2 240.4.a.c.1.1 1
15.2 even 4 150.4.c.a.49.1 2
15.8 even 4 150.4.c.a.49.2 2
15.14 odd 2 150.4.a.e.1.1 1
21.20 even 2 1470.4.a.a.1.1 1
24.5 odd 2 960.4.a.j.1.1 1
24.11 even 2 960.4.a.s.1.1 1
60.23 odd 4 1200.4.f.u.49.1 2
60.47 odd 4 1200.4.f.u.49.2 2
60.59 even 2 1200.4.a.bk.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.4.a.a.1.1 1 3.2 odd 2
90.4.a.d.1.1 1 1.1 even 1 trivial
150.4.a.e.1.1 1 15.14 odd 2
150.4.c.a.49.1 2 15.2 even 4
150.4.c.a.49.2 2 15.8 even 4
240.4.a.c.1.1 1 12.11 even 2
450.4.a.b.1.1 1 5.4 even 2
450.4.c.k.199.1 2 5.3 odd 4
450.4.c.k.199.2 2 5.2 odd 4
720.4.a.b.1.1 1 4.3 odd 2
810.4.e.e.271.1 2 9.7 even 3
810.4.e.e.541.1 2 9.4 even 3
810.4.e.m.271.1 2 9.2 odd 6
810.4.e.m.541.1 2 9.5 odd 6
960.4.a.j.1.1 1 24.5 odd 2
960.4.a.s.1.1 1 24.11 even 2
1200.4.a.bk.1.1 1 60.59 even 2
1200.4.f.u.49.1 2 60.23 odd 4
1200.4.f.u.49.2 2 60.47 odd 4
1470.4.a.a.1.1 1 21.20 even 2