Properties

Label 90.4.a.d
Level $90$
Weight $4$
Character orbit 90.a
Self dual yes
Analytic conductor $5.310$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,4,Mod(1,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 90.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.31017190052\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} + 4 q^{4} - 5 q^{5} + 32 q^{7} + 8 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{2} + 4 q^{4} - 5 q^{5} + 32 q^{7} + 8 q^{8} - 10 q^{10} + 60 q^{11} - 34 q^{13} + 64 q^{14} + 16 q^{16} - 42 q^{17} - 76 q^{19} - 20 q^{20} + 120 q^{22} + 25 q^{25} - 68 q^{26} + 128 q^{28} - 6 q^{29} - 232 q^{31} + 32 q^{32} - 84 q^{34} - 160 q^{35} + 134 q^{37} - 152 q^{38} - 40 q^{40} - 234 q^{41} - 412 q^{43} + 240 q^{44} + 360 q^{47} + 681 q^{49} + 50 q^{50} - 136 q^{52} - 222 q^{53} - 300 q^{55} + 256 q^{56} - 12 q^{58} - 660 q^{59} - 490 q^{61} - 464 q^{62} + 64 q^{64} + 170 q^{65} + 812 q^{67} - 168 q^{68} - 320 q^{70} - 120 q^{71} + 746 q^{73} + 268 q^{74} - 304 q^{76} + 1920 q^{77} + 152 q^{79} - 80 q^{80} - 468 q^{82} + 804 q^{83} + 210 q^{85} - 824 q^{86} + 480 q^{88} + 678 q^{89} - 1088 q^{91} + 720 q^{94} + 380 q^{95} + 194 q^{97} + 1362 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 0 4.00000 −5.00000 0 32.0000 8.00000 0 −10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 90.4.a.d 1
3.b odd 2 1 30.4.a.a 1
4.b odd 2 1 720.4.a.b 1
5.b even 2 1 450.4.a.b 1
5.c odd 4 2 450.4.c.k 2
9.c even 3 2 810.4.e.e 2
9.d odd 6 2 810.4.e.m 2
12.b even 2 1 240.4.a.c 1
15.d odd 2 1 150.4.a.e 1
15.e even 4 2 150.4.c.a 2
21.c even 2 1 1470.4.a.a 1
24.f even 2 1 960.4.a.s 1
24.h odd 2 1 960.4.a.j 1
60.h even 2 1 1200.4.a.bk 1
60.l odd 4 2 1200.4.f.u 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.4.a.a 1 3.b odd 2 1
90.4.a.d 1 1.a even 1 1 trivial
150.4.a.e 1 15.d odd 2 1
150.4.c.a 2 15.e even 4 2
240.4.a.c 1 12.b even 2 1
450.4.a.b 1 5.b even 2 1
450.4.c.k 2 5.c odd 4 2
720.4.a.b 1 4.b odd 2 1
810.4.e.e 2 9.c even 3 2
810.4.e.m 2 9.d odd 6 2
960.4.a.j 1 24.h odd 2 1
960.4.a.s 1 24.f even 2 1
1200.4.a.bk 1 60.h even 2 1
1200.4.f.u 2 60.l odd 4 2
1470.4.a.a 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(90))\):

\( T_{7} - 32 \) Copy content Toggle raw display
\( T_{11} - 60 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T - 32 \) Copy content Toggle raw display
$11$ \( T - 60 \) Copy content Toggle raw display
$13$ \( T + 34 \) Copy content Toggle raw display
$17$ \( T + 42 \) Copy content Toggle raw display
$19$ \( T + 76 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T + 232 \) Copy content Toggle raw display
$37$ \( T - 134 \) Copy content Toggle raw display
$41$ \( T + 234 \) Copy content Toggle raw display
$43$ \( T + 412 \) Copy content Toggle raw display
$47$ \( T - 360 \) Copy content Toggle raw display
$53$ \( T + 222 \) Copy content Toggle raw display
$59$ \( T + 660 \) Copy content Toggle raw display
$61$ \( T + 490 \) Copy content Toggle raw display
$67$ \( T - 812 \) Copy content Toggle raw display
$71$ \( T + 120 \) Copy content Toggle raw display
$73$ \( T - 746 \) Copy content Toggle raw display
$79$ \( T - 152 \) Copy content Toggle raw display
$83$ \( T - 804 \) Copy content Toggle raw display
$89$ \( T - 678 \) Copy content Toggle raw display
$97$ \( T - 194 \) Copy content Toggle raw display
show more
show less