Properties

Label 90.4.a.c.1.1
Level $90$
Weight $4$
Character 90.1
Self dual yes
Analytic conductor $5.310$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,4,Mod(1,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 90.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.31017190052\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 90.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +5.00000 q^{5} -4.00000 q^{7} -8.00000 q^{8} -10.0000 q^{10} +48.0000 q^{11} +2.00000 q^{13} +8.00000 q^{14} +16.0000 q^{16} +114.000 q^{17} +140.000 q^{19} +20.0000 q^{20} -96.0000 q^{22} -72.0000 q^{23} +25.0000 q^{25} -4.00000 q^{26} -16.0000 q^{28} -210.000 q^{29} +272.000 q^{31} -32.0000 q^{32} -228.000 q^{34} -20.0000 q^{35} -334.000 q^{37} -280.000 q^{38} -40.0000 q^{40} +198.000 q^{41} -268.000 q^{43} +192.000 q^{44} +144.000 q^{46} -216.000 q^{47} -327.000 q^{49} -50.0000 q^{50} +8.00000 q^{52} +78.0000 q^{53} +240.000 q^{55} +32.0000 q^{56} +420.000 q^{58} -240.000 q^{59} +302.000 q^{61} -544.000 q^{62} +64.0000 q^{64} +10.0000 q^{65} +596.000 q^{67} +456.000 q^{68} +40.0000 q^{70} +768.000 q^{71} -478.000 q^{73} +668.000 q^{74} +560.000 q^{76} -192.000 q^{77} -640.000 q^{79} +80.0000 q^{80} -396.000 q^{82} +348.000 q^{83} +570.000 q^{85} +536.000 q^{86} -384.000 q^{88} -210.000 q^{89} -8.00000 q^{91} -288.000 q^{92} +432.000 q^{94} +700.000 q^{95} -1534.00 q^{97} +654.000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −4.00000 −0.215980 −0.107990 0.994152i \(-0.534441\pi\)
−0.107990 + 0.994152i \(0.534441\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −10.0000 −0.316228
\(11\) 48.0000 1.31569 0.657843 0.753155i \(-0.271469\pi\)
0.657843 + 0.753155i \(0.271469\pi\)
\(12\) 0 0
\(13\) 2.00000 0.0426692 0.0213346 0.999772i \(-0.493208\pi\)
0.0213346 + 0.999772i \(0.493208\pi\)
\(14\) 8.00000 0.152721
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 114.000 1.62642 0.813208 0.581974i \(-0.197719\pi\)
0.813208 + 0.581974i \(0.197719\pi\)
\(18\) 0 0
\(19\) 140.000 1.69043 0.845216 0.534425i \(-0.179472\pi\)
0.845216 + 0.534425i \(0.179472\pi\)
\(20\) 20.0000 0.223607
\(21\) 0 0
\(22\) −96.0000 −0.930330
\(23\) −72.0000 −0.652741 −0.326370 0.945242i \(-0.605826\pi\)
−0.326370 + 0.945242i \(0.605826\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −4.00000 −0.0301717
\(27\) 0 0
\(28\) −16.0000 −0.107990
\(29\) −210.000 −1.34469 −0.672345 0.740238i \(-0.734713\pi\)
−0.672345 + 0.740238i \(0.734713\pi\)
\(30\) 0 0
\(31\) 272.000 1.57589 0.787946 0.615745i \(-0.211145\pi\)
0.787946 + 0.615745i \(0.211145\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) −228.000 −1.15005
\(35\) −20.0000 −0.0965891
\(36\) 0 0
\(37\) −334.000 −1.48403 −0.742017 0.670381i \(-0.766131\pi\)
−0.742017 + 0.670381i \(0.766131\pi\)
\(38\) −280.000 −1.19532
\(39\) 0 0
\(40\) −40.0000 −0.158114
\(41\) 198.000 0.754205 0.377102 0.926172i \(-0.376920\pi\)
0.377102 + 0.926172i \(0.376920\pi\)
\(42\) 0 0
\(43\) −268.000 −0.950456 −0.475228 0.879863i \(-0.657634\pi\)
−0.475228 + 0.879863i \(0.657634\pi\)
\(44\) 192.000 0.657843
\(45\) 0 0
\(46\) 144.000 0.461557
\(47\) −216.000 −0.670358 −0.335179 0.942154i \(-0.608797\pi\)
−0.335179 + 0.942154i \(0.608797\pi\)
\(48\) 0 0
\(49\) −327.000 −0.953353
\(50\) −50.0000 −0.141421
\(51\) 0 0
\(52\) 8.00000 0.0213346
\(53\) 78.0000 0.202153 0.101077 0.994879i \(-0.467771\pi\)
0.101077 + 0.994879i \(0.467771\pi\)
\(54\) 0 0
\(55\) 240.000 0.588393
\(56\) 32.0000 0.0763604
\(57\) 0 0
\(58\) 420.000 0.950840
\(59\) −240.000 −0.529582 −0.264791 0.964306i \(-0.585303\pi\)
−0.264791 + 0.964306i \(0.585303\pi\)
\(60\) 0 0
\(61\) 302.000 0.633888 0.316944 0.948444i \(-0.397343\pi\)
0.316944 + 0.948444i \(0.397343\pi\)
\(62\) −544.000 −1.11432
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 10.0000 0.0190823
\(66\) 0 0
\(67\) 596.000 1.08676 0.543381 0.839487i \(-0.317144\pi\)
0.543381 + 0.839487i \(0.317144\pi\)
\(68\) 456.000 0.813208
\(69\) 0 0
\(70\) 40.0000 0.0682988
\(71\) 768.000 1.28373 0.641865 0.766818i \(-0.278161\pi\)
0.641865 + 0.766818i \(0.278161\pi\)
\(72\) 0 0
\(73\) −478.000 −0.766379 −0.383190 0.923670i \(-0.625174\pi\)
−0.383190 + 0.923670i \(0.625174\pi\)
\(74\) 668.000 1.04937
\(75\) 0 0
\(76\) 560.000 0.845216
\(77\) −192.000 −0.284161
\(78\) 0 0
\(79\) −640.000 −0.911464 −0.455732 0.890117i \(-0.650622\pi\)
−0.455732 + 0.890117i \(0.650622\pi\)
\(80\) 80.0000 0.111803
\(81\) 0 0
\(82\) −396.000 −0.533303
\(83\) 348.000 0.460216 0.230108 0.973165i \(-0.426092\pi\)
0.230108 + 0.973165i \(0.426092\pi\)
\(84\) 0 0
\(85\) 570.000 0.727355
\(86\) 536.000 0.672074
\(87\) 0 0
\(88\) −384.000 −0.465165
\(89\) −210.000 −0.250112 −0.125056 0.992150i \(-0.539911\pi\)
−0.125056 + 0.992150i \(0.539911\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.00921569
\(92\) −288.000 −0.326370
\(93\) 0 0
\(94\) 432.000 0.474015
\(95\) 700.000 0.755984
\(96\) 0 0
\(97\) −1534.00 −1.60571 −0.802856 0.596173i \(-0.796687\pi\)
−0.802856 + 0.596173i \(0.796687\pi\)
\(98\) 654.000 0.674122
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) −1722.00 −1.69649 −0.848245 0.529605i \(-0.822340\pi\)
−0.848245 + 0.529605i \(0.822340\pi\)
\(102\) 0 0
\(103\) 1052.00 1.00638 0.503188 0.864177i \(-0.332160\pi\)
0.503188 + 0.864177i \(0.332160\pi\)
\(104\) −16.0000 −0.0150859
\(105\) 0 0
\(106\) −156.000 −0.142944
\(107\) 564.000 0.509570 0.254785 0.966998i \(-0.417995\pi\)
0.254785 + 0.966998i \(0.417995\pi\)
\(108\) 0 0
\(109\) −610.000 −0.536031 −0.268016 0.963415i \(-0.586368\pi\)
−0.268016 + 0.963415i \(0.586368\pi\)
\(110\) −480.000 −0.416056
\(111\) 0 0
\(112\) −64.0000 −0.0539949
\(113\) −1302.00 −1.08391 −0.541955 0.840407i \(-0.682316\pi\)
−0.541955 + 0.840407i \(0.682316\pi\)
\(114\) 0 0
\(115\) −360.000 −0.291915
\(116\) −840.000 −0.672345
\(117\) 0 0
\(118\) 480.000 0.374471
\(119\) −456.000 −0.351273
\(120\) 0 0
\(121\) 973.000 0.731029
\(122\) −604.000 −0.448226
\(123\) 0 0
\(124\) 1088.00 0.787946
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −124.000 −0.0866395 −0.0433198 0.999061i \(-0.513793\pi\)
−0.0433198 + 0.999061i \(0.513793\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) −20.0000 −0.0134932
\(131\) −192.000 −0.128054 −0.0640272 0.997948i \(-0.520394\pi\)
−0.0640272 + 0.997948i \(0.520394\pi\)
\(132\) 0 0
\(133\) −560.000 −0.365099
\(134\) −1192.00 −0.768456
\(135\) 0 0
\(136\) −912.000 −0.575025
\(137\) 2514.00 1.56778 0.783889 0.620901i \(-0.213233\pi\)
0.783889 + 0.620901i \(0.213233\pi\)
\(138\) 0 0
\(139\) 1340.00 0.817679 0.408839 0.912606i \(-0.365934\pi\)
0.408839 + 0.912606i \(0.365934\pi\)
\(140\) −80.0000 −0.0482945
\(141\) 0 0
\(142\) −1536.00 −0.907734
\(143\) 96.0000 0.0561393
\(144\) 0 0
\(145\) −1050.00 −0.601364
\(146\) 956.000 0.541912
\(147\) 0 0
\(148\) −1336.00 −0.742017
\(149\) −1410.00 −0.775246 −0.387623 0.921818i \(-0.626704\pi\)
−0.387623 + 0.921818i \(0.626704\pi\)
\(150\) 0 0
\(151\) −2128.00 −1.14685 −0.573424 0.819258i \(-0.694385\pi\)
−0.573424 + 0.819258i \(0.694385\pi\)
\(152\) −1120.00 −0.597658
\(153\) 0 0
\(154\) 384.000 0.200932
\(155\) 1360.00 0.704760
\(156\) 0 0
\(157\) 3026.00 1.53822 0.769112 0.639114i \(-0.220699\pi\)
0.769112 + 0.639114i \(0.220699\pi\)
\(158\) 1280.00 0.644502
\(159\) 0 0
\(160\) −160.000 −0.0790569
\(161\) 288.000 0.140979
\(162\) 0 0
\(163\) 2612.00 1.25514 0.627569 0.778561i \(-0.284050\pi\)
0.627569 + 0.778561i \(0.284050\pi\)
\(164\) 792.000 0.377102
\(165\) 0 0
\(166\) −696.000 −0.325422
\(167\) 24.0000 0.0111208 0.00556041 0.999985i \(-0.498230\pi\)
0.00556041 + 0.999985i \(0.498230\pi\)
\(168\) 0 0
\(169\) −2193.00 −0.998179
\(170\) −1140.00 −0.514318
\(171\) 0 0
\(172\) −1072.00 −0.475228
\(173\) −1962.00 −0.862243 −0.431122 0.902294i \(-0.641882\pi\)
−0.431122 + 0.902294i \(0.641882\pi\)
\(174\) 0 0
\(175\) −100.000 −0.0431959
\(176\) 768.000 0.328921
\(177\) 0 0
\(178\) 420.000 0.176856
\(179\) 120.000 0.0501074 0.0250537 0.999686i \(-0.492024\pi\)
0.0250537 + 0.999686i \(0.492024\pi\)
\(180\) 0 0
\(181\) 902.000 0.370415 0.185208 0.982699i \(-0.440704\pi\)
0.185208 + 0.982699i \(0.440704\pi\)
\(182\) 16.0000 0.00651648
\(183\) 0 0
\(184\) 576.000 0.230779
\(185\) −1670.00 −0.663680
\(186\) 0 0
\(187\) 5472.00 2.13985
\(188\) −864.000 −0.335179
\(189\) 0 0
\(190\) −1400.00 −0.534561
\(191\) 168.000 0.0636443 0.0318221 0.999494i \(-0.489869\pi\)
0.0318221 + 0.999494i \(0.489869\pi\)
\(192\) 0 0
\(193\) −1318.00 −0.491563 −0.245782 0.969325i \(-0.579045\pi\)
−0.245782 + 0.969325i \(0.579045\pi\)
\(194\) 3068.00 1.13541
\(195\) 0 0
\(196\) −1308.00 −0.476676
\(197\) 4014.00 1.45170 0.725852 0.687851i \(-0.241446\pi\)
0.725852 + 0.687851i \(0.241446\pi\)
\(198\) 0 0
\(199\) 2000.00 0.712443 0.356222 0.934401i \(-0.384065\pi\)
0.356222 + 0.934401i \(0.384065\pi\)
\(200\) −200.000 −0.0707107
\(201\) 0 0
\(202\) 3444.00 1.19960
\(203\) 840.000 0.290426
\(204\) 0 0
\(205\) 990.000 0.337291
\(206\) −2104.00 −0.711615
\(207\) 0 0
\(208\) 32.0000 0.0106673
\(209\) 6720.00 2.22408
\(210\) 0 0
\(211\) −3868.00 −1.26201 −0.631005 0.775779i \(-0.717357\pi\)
−0.631005 + 0.775779i \(0.717357\pi\)
\(212\) 312.000 0.101077
\(213\) 0 0
\(214\) −1128.00 −0.360320
\(215\) −1340.00 −0.425057
\(216\) 0 0
\(217\) −1088.00 −0.340361
\(218\) 1220.00 0.379031
\(219\) 0 0
\(220\) 960.000 0.294196
\(221\) 228.000 0.0693979
\(222\) 0 0
\(223\) −3148.00 −0.945317 −0.472658 0.881246i \(-0.656706\pi\)
−0.472658 + 0.881246i \(0.656706\pi\)
\(224\) 128.000 0.0381802
\(225\) 0 0
\(226\) 2604.00 0.766440
\(227\) −2556.00 −0.747347 −0.373673 0.927560i \(-0.621902\pi\)
−0.373673 + 0.927560i \(0.621902\pi\)
\(228\) 0 0
\(229\) −610.000 −0.176026 −0.0880130 0.996119i \(-0.528052\pi\)
−0.0880130 + 0.996119i \(0.528052\pi\)
\(230\) 720.000 0.206415
\(231\) 0 0
\(232\) 1680.00 0.475420
\(233\) 2058.00 0.578644 0.289322 0.957232i \(-0.406570\pi\)
0.289322 + 0.957232i \(0.406570\pi\)
\(234\) 0 0
\(235\) −1080.00 −0.299793
\(236\) −960.000 −0.264791
\(237\) 0 0
\(238\) 912.000 0.248387
\(239\) −4920.00 −1.33158 −0.665792 0.746138i \(-0.731906\pi\)
−0.665792 + 0.746138i \(0.731906\pi\)
\(240\) 0 0
\(241\) −1438.00 −0.384356 −0.192178 0.981360i \(-0.561555\pi\)
−0.192178 + 0.981360i \(0.561555\pi\)
\(242\) −1946.00 −0.516916
\(243\) 0 0
\(244\) 1208.00 0.316944
\(245\) −1635.00 −0.426352
\(246\) 0 0
\(247\) 280.000 0.0721294
\(248\) −2176.00 −0.557162
\(249\) 0 0
\(250\) −250.000 −0.0632456
\(251\) −792.000 −0.199166 −0.0995829 0.995029i \(-0.531751\pi\)
−0.0995829 + 0.995029i \(0.531751\pi\)
\(252\) 0 0
\(253\) −3456.00 −0.858802
\(254\) 248.000 0.0612634
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −2166.00 −0.525725 −0.262863 0.964833i \(-0.584667\pi\)
−0.262863 + 0.964833i \(0.584667\pi\)
\(258\) 0 0
\(259\) 1336.00 0.320521
\(260\) 40.0000 0.00954113
\(261\) 0 0
\(262\) 384.000 0.0905481
\(263\) −3192.00 −0.748392 −0.374196 0.927350i \(-0.622081\pi\)
−0.374196 + 0.927350i \(0.622081\pi\)
\(264\) 0 0
\(265\) 390.000 0.0904057
\(266\) 1120.00 0.258164
\(267\) 0 0
\(268\) 2384.00 0.543381
\(269\) −5490.00 −1.24435 −0.622177 0.782877i \(-0.713752\pi\)
−0.622177 + 0.782877i \(0.713752\pi\)
\(270\) 0 0
\(271\) −6328.00 −1.41845 −0.709223 0.704985i \(-0.750954\pi\)
−0.709223 + 0.704985i \(0.750954\pi\)
\(272\) 1824.00 0.406604
\(273\) 0 0
\(274\) −5028.00 −1.10859
\(275\) 1200.00 0.263137
\(276\) 0 0
\(277\) −574.000 −0.124507 −0.0622533 0.998060i \(-0.519829\pi\)
−0.0622533 + 0.998060i \(0.519829\pi\)
\(278\) −2680.00 −0.578186
\(279\) 0 0
\(280\) 160.000 0.0341494
\(281\) −4242.00 −0.900557 −0.450278 0.892888i \(-0.648675\pi\)
−0.450278 + 0.892888i \(0.648675\pi\)
\(282\) 0 0
\(283\) −628.000 −0.131911 −0.0659553 0.997823i \(-0.521009\pi\)
−0.0659553 + 0.997823i \(0.521009\pi\)
\(284\) 3072.00 0.641865
\(285\) 0 0
\(286\) −192.000 −0.0396965
\(287\) −792.000 −0.162893
\(288\) 0 0
\(289\) 8083.00 1.64523
\(290\) 2100.00 0.425228
\(291\) 0 0
\(292\) −1912.00 −0.383190
\(293\) 558.000 0.111258 0.0556292 0.998451i \(-0.482284\pi\)
0.0556292 + 0.998451i \(0.482284\pi\)
\(294\) 0 0
\(295\) −1200.00 −0.236836
\(296\) 2672.00 0.524685
\(297\) 0 0
\(298\) 2820.00 0.548182
\(299\) −144.000 −0.0278520
\(300\) 0 0
\(301\) 1072.00 0.205279
\(302\) 4256.00 0.810945
\(303\) 0 0
\(304\) 2240.00 0.422608
\(305\) 1510.00 0.283483
\(306\) 0 0
\(307\) −6964.00 −1.29465 −0.647323 0.762216i \(-0.724112\pi\)
−0.647323 + 0.762216i \(0.724112\pi\)
\(308\) −768.000 −0.142081
\(309\) 0 0
\(310\) −2720.00 −0.498341
\(311\) −2832.00 −0.516360 −0.258180 0.966097i \(-0.583123\pi\)
−0.258180 + 0.966097i \(0.583123\pi\)
\(312\) 0 0
\(313\) 8642.00 1.56062 0.780311 0.625392i \(-0.215061\pi\)
0.780311 + 0.625392i \(0.215061\pi\)
\(314\) −6052.00 −1.08769
\(315\) 0 0
\(316\) −2560.00 −0.455732
\(317\) 2214.00 0.392273 0.196137 0.980577i \(-0.437160\pi\)
0.196137 + 0.980577i \(0.437160\pi\)
\(318\) 0 0
\(319\) −10080.0 −1.76919
\(320\) 320.000 0.0559017
\(321\) 0 0
\(322\) −576.000 −0.0996870
\(323\) 15960.0 2.74934
\(324\) 0 0
\(325\) 50.0000 0.00853385
\(326\) −5224.00 −0.887517
\(327\) 0 0
\(328\) −1584.00 −0.266652
\(329\) 864.000 0.144784
\(330\) 0 0
\(331\) 10772.0 1.78877 0.894385 0.447299i \(-0.147614\pi\)
0.894385 + 0.447299i \(0.147614\pi\)
\(332\) 1392.00 0.230108
\(333\) 0 0
\(334\) −48.0000 −0.00786360
\(335\) 2980.00 0.486014
\(336\) 0 0
\(337\) −1654.00 −0.267356 −0.133678 0.991025i \(-0.542679\pi\)
−0.133678 + 0.991025i \(0.542679\pi\)
\(338\) 4386.00 0.705819
\(339\) 0 0
\(340\) 2280.00 0.363678
\(341\) 13056.0 2.07338
\(342\) 0 0
\(343\) 2680.00 0.421885
\(344\) 2144.00 0.336037
\(345\) 0 0
\(346\) 3924.00 0.609698
\(347\) −2196.00 −0.339733 −0.169867 0.985467i \(-0.554334\pi\)
−0.169867 + 0.985467i \(0.554334\pi\)
\(348\) 0 0
\(349\) 8270.00 1.26843 0.634216 0.773156i \(-0.281323\pi\)
0.634216 + 0.773156i \(0.281323\pi\)
\(350\) 200.000 0.0305441
\(351\) 0 0
\(352\) −1536.00 −0.232583
\(353\) −10302.0 −1.55331 −0.776657 0.629923i \(-0.783086\pi\)
−0.776657 + 0.629923i \(0.783086\pi\)
\(354\) 0 0
\(355\) 3840.00 0.574102
\(356\) −840.000 −0.125056
\(357\) 0 0
\(358\) −240.000 −0.0354313
\(359\) 2280.00 0.335192 0.167596 0.985856i \(-0.446400\pi\)
0.167596 + 0.985856i \(0.446400\pi\)
\(360\) 0 0
\(361\) 12741.0 1.85756
\(362\) −1804.00 −0.261923
\(363\) 0 0
\(364\) −32.0000 −0.00460785
\(365\) −2390.00 −0.342735
\(366\) 0 0
\(367\) −8764.00 −1.24653 −0.623266 0.782010i \(-0.714195\pi\)
−0.623266 + 0.782010i \(0.714195\pi\)
\(368\) −1152.00 −0.163185
\(369\) 0 0
\(370\) 3340.00 0.469293
\(371\) −312.000 −0.0436610
\(372\) 0 0
\(373\) −1318.00 −0.182958 −0.0914792 0.995807i \(-0.529159\pi\)
−0.0914792 + 0.995807i \(0.529159\pi\)
\(374\) −10944.0 −1.51310
\(375\) 0 0
\(376\) 1728.00 0.237007
\(377\) −420.000 −0.0573769
\(378\) 0 0
\(379\) 1100.00 0.149085 0.0745425 0.997218i \(-0.476250\pi\)
0.0745425 + 0.997218i \(0.476250\pi\)
\(380\) 2800.00 0.377992
\(381\) 0 0
\(382\) −336.000 −0.0450033
\(383\) 3528.00 0.470685 0.235343 0.971912i \(-0.424379\pi\)
0.235343 + 0.971912i \(0.424379\pi\)
\(384\) 0 0
\(385\) −960.000 −0.127081
\(386\) 2636.00 0.347588
\(387\) 0 0
\(388\) −6136.00 −0.802856
\(389\) 9630.00 1.25517 0.627584 0.778549i \(-0.284044\pi\)
0.627584 + 0.778549i \(0.284044\pi\)
\(390\) 0 0
\(391\) −8208.00 −1.06163
\(392\) 2616.00 0.337061
\(393\) 0 0
\(394\) −8028.00 −1.02651
\(395\) −3200.00 −0.407619
\(396\) 0 0
\(397\) −3094.00 −0.391142 −0.195571 0.980690i \(-0.562656\pi\)
−0.195571 + 0.980690i \(0.562656\pi\)
\(398\) −4000.00 −0.503774
\(399\) 0 0
\(400\) 400.000 0.0500000
\(401\) 1638.00 0.203985 0.101992 0.994785i \(-0.467478\pi\)
0.101992 + 0.994785i \(0.467478\pi\)
\(402\) 0 0
\(403\) 544.000 0.0672421
\(404\) −6888.00 −0.848245
\(405\) 0 0
\(406\) −1680.00 −0.205362
\(407\) −16032.0 −1.95252
\(408\) 0 0
\(409\) −13750.0 −1.66233 −0.831166 0.556024i \(-0.812326\pi\)
−0.831166 + 0.556024i \(0.812326\pi\)
\(410\) −1980.00 −0.238501
\(411\) 0 0
\(412\) 4208.00 0.503188
\(413\) 960.000 0.114379
\(414\) 0 0
\(415\) 1740.00 0.205815
\(416\) −64.0000 −0.00754293
\(417\) 0 0
\(418\) −13440.0 −1.57266
\(419\) 12480.0 1.45510 0.727551 0.686053i \(-0.240658\pi\)
0.727551 + 0.686053i \(0.240658\pi\)
\(420\) 0 0
\(421\) 7262.00 0.840685 0.420342 0.907366i \(-0.361910\pi\)
0.420342 + 0.907366i \(0.361910\pi\)
\(422\) 7736.00 0.892376
\(423\) 0 0
\(424\) −624.000 −0.0714720
\(425\) 2850.00 0.325283
\(426\) 0 0
\(427\) −1208.00 −0.136907
\(428\) 2256.00 0.254785
\(429\) 0 0
\(430\) 2680.00 0.300561
\(431\) −9792.00 −1.09435 −0.547174 0.837019i \(-0.684296\pi\)
−0.547174 + 0.837019i \(0.684296\pi\)
\(432\) 0 0
\(433\) 1802.00 0.199997 0.0999984 0.994988i \(-0.468116\pi\)
0.0999984 + 0.994988i \(0.468116\pi\)
\(434\) 2176.00 0.240671
\(435\) 0 0
\(436\) −2440.00 −0.268016
\(437\) −10080.0 −1.10341
\(438\) 0 0
\(439\) −2320.00 −0.252227 −0.126113 0.992016i \(-0.540250\pi\)
−0.126113 + 0.992016i \(0.540250\pi\)
\(440\) −1920.00 −0.208028
\(441\) 0 0
\(442\) −456.000 −0.0490717
\(443\) −11172.0 −1.19819 −0.599095 0.800678i \(-0.704473\pi\)
−0.599095 + 0.800678i \(0.704473\pi\)
\(444\) 0 0
\(445\) −1050.00 −0.111853
\(446\) 6296.00 0.668440
\(447\) 0 0
\(448\) −256.000 −0.0269975
\(449\) −6810.00 −0.715777 −0.357888 0.933764i \(-0.616503\pi\)
−0.357888 + 0.933764i \(0.616503\pi\)
\(450\) 0 0
\(451\) 9504.00 0.992297
\(452\) −5208.00 −0.541955
\(453\) 0 0
\(454\) 5112.00 0.528454
\(455\) −40.0000 −0.00412138
\(456\) 0 0
\(457\) 17066.0 1.74686 0.873429 0.486952i \(-0.161891\pi\)
0.873429 + 0.486952i \(0.161891\pi\)
\(458\) 1220.00 0.124469
\(459\) 0 0
\(460\) −1440.00 −0.145957
\(461\) 18918.0 1.91128 0.955639 0.294541i \(-0.0951667\pi\)
0.955639 + 0.294541i \(0.0951667\pi\)
\(462\) 0 0
\(463\) 1052.00 0.105595 0.0527976 0.998605i \(-0.483186\pi\)
0.0527976 + 0.998605i \(0.483186\pi\)
\(464\) −3360.00 −0.336173
\(465\) 0 0
\(466\) −4116.00 −0.409163
\(467\) −11076.0 −1.09751 −0.548754 0.835984i \(-0.684898\pi\)
−0.548754 + 0.835984i \(0.684898\pi\)
\(468\) 0 0
\(469\) −2384.00 −0.234718
\(470\) 2160.00 0.211986
\(471\) 0 0
\(472\) 1920.00 0.187236
\(473\) −12864.0 −1.25050
\(474\) 0 0
\(475\) 3500.00 0.338086
\(476\) −1824.00 −0.175636
\(477\) 0 0
\(478\) 9840.00 0.941571
\(479\) 9000.00 0.858498 0.429249 0.903186i \(-0.358778\pi\)
0.429249 + 0.903186i \(0.358778\pi\)
\(480\) 0 0
\(481\) −668.000 −0.0633226
\(482\) 2876.00 0.271781
\(483\) 0 0
\(484\) 3892.00 0.365515
\(485\) −7670.00 −0.718096
\(486\) 0 0
\(487\) −8764.00 −0.815472 −0.407736 0.913100i \(-0.633682\pi\)
−0.407736 + 0.913100i \(0.633682\pi\)
\(488\) −2416.00 −0.224113
\(489\) 0 0
\(490\) 3270.00 0.301477
\(491\) −5592.00 −0.513978 −0.256989 0.966414i \(-0.582730\pi\)
−0.256989 + 0.966414i \(0.582730\pi\)
\(492\) 0 0
\(493\) −23940.0 −2.18703
\(494\) −560.000 −0.0510032
\(495\) 0 0
\(496\) 4352.00 0.393973
\(497\) −3072.00 −0.277260
\(498\) 0 0
\(499\) 4700.00 0.421645 0.210823 0.977524i \(-0.432386\pi\)
0.210823 + 0.977524i \(0.432386\pi\)
\(500\) 500.000 0.0447214
\(501\) 0 0
\(502\) 1584.00 0.140831
\(503\) 11808.0 1.04671 0.523353 0.852116i \(-0.324681\pi\)
0.523353 + 0.852116i \(0.324681\pi\)
\(504\) 0 0
\(505\) −8610.00 −0.758693
\(506\) 6912.00 0.607265
\(507\) 0 0
\(508\) −496.000 −0.0433198
\(509\) −1170.00 −0.101885 −0.0509424 0.998702i \(-0.516222\pi\)
−0.0509424 + 0.998702i \(0.516222\pi\)
\(510\) 0 0
\(511\) 1912.00 0.165522
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 4332.00 0.371744
\(515\) 5260.00 0.450065
\(516\) 0 0
\(517\) −10368.0 −0.881981
\(518\) −2672.00 −0.226643
\(519\) 0 0
\(520\) −80.0000 −0.00674660
\(521\) 16638.0 1.39909 0.699543 0.714590i \(-0.253387\pi\)
0.699543 + 0.714590i \(0.253387\pi\)
\(522\) 0 0
\(523\) 15692.0 1.31198 0.655988 0.754771i \(-0.272252\pi\)
0.655988 + 0.754771i \(0.272252\pi\)
\(524\) −768.000 −0.0640272
\(525\) 0 0
\(526\) 6384.00 0.529193
\(527\) 31008.0 2.56305
\(528\) 0 0
\(529\) −6983.00 −0.573929
\(530\) −780.000 −0.0639265
\(531\) 0 0
\(532\) −2240.00 −0.182549
\(533\) 396.000 0.0321814
\(534\) 0 0
\(535\) 2820.00 0.227886
\(536\) −4768.00 −0.384228
\(537\) 0 0
\(538\) 10980.0 0.879891
\(539\) −15696.0 −1.25431
\(540\) 0 0
\(541\) −22018.0 −1.74977 −0.874887 0.484327i \(-0.839064\pi\)
−0.874887 + 0.484327i \(0.839064\pi\)
\(542\) 12656.0 1.00299
\(543\) 0 0
\(544\) −3648.00 −0.287512
\(545\) −3050.00 −0.239720
\(546\) 0 0
\(547\) −4564.00 −0.356751 −0.178375 0.983963i \(-0.557084\pi\)
−0.178375 + 0.983963i \(0.557084\pi\)
\(548\) 10056.0 0.783889
\(549\) 0 0
\(550\) −2400.00 −0.186066
\(551\) −29400.0 −2.27311
\(552\) 0 0
\(553\) 2560.00 0.196858
\(554\) 1148.00 0.0880394
\(555\) 0 0
\(556\) 5360.00 0.408839
\(557\) 7734.00 0.588331 0.294165 0.955755i \(-0.404958\pi\)
0.294165 + 0.955755i \(0.404958\pi\)
\(558\) 0 0
\(559\) −536.000 −0.0405552
\(560\) −320.000 −0.0241473
\(561\) 0 0
\(562\) 8484.00 0.636790
\(563\) 20148.0 1.50824 0.754118 0.656739i \(-0.228065\pi\)
0.754118 + 0.656739i \(0.228065\pi\)
\(564\) 0 0
\(565\) −6510.00 −0.484739
\(566\) 1256.00 0.0932749
\(567\) 0 0
\(568\) −6144.00 −0.453867
\(569\) 24030.0 1.77046 0.885228 0.465156i \(-0.154002\pi\)
0.885228 + 0.465156i \(0.154002\pi\)
\(570\) 0 0
\(571\) 2372.00 0.173844 0.0869222 0.996215i \(-0.472297\pi\)
0.0869222 + 0.996215i \(0.472297\pi\)
\(572\) 384.000 0.0280697
\(573\) 0 0
\(574\) 1584.00 0.115183
\(575\) −1800.00 −0.130548
\(576\) 0 0
\(577\) 8546.00 0.616594 0.308297 0.951290i \(-0.400241\pi\)
0.308297 + 0.951290i \(0.400241\pi\)
\(578\) −16166.0 −1.16335
\(579\) 0 0
\(580\) −4200.00 −0.300682
\(581\) −1392.00 −0.0993974
\(582\) 0 0
\(583\) 3744.00 0.265970
\(584\) 3824.00 0.270956
\(585\) 0 0
\(586\) −1116.00 −0.0786716
\(587\) 15444.0 1.08593 0.542966 0.839755i \(-0.317301\pi\)
0.542966 + 0.839755i \(0.317301\pi\)
\(588\) 0 0
\(589\) 38080.0 2.66394
\(590\) 2400.00 0.167469
\(591\) 0 0
\(592\) −5344.00 −0.371009
\(593\) −18342.0 −1.27018 −0.635089 0.772439i \(-0.719037\pi\)
−0.635089 + 0.772439i \(0.719037\pi\)
\(594\) 0 0
\(595\) −2280.00 −0.157094
\(596\) −5640.00 −0.387623
\(597\) 0 0
\(598\) 288.000 0.0196943
\(599\) −24600.0 −1.67801 −0.839006 0.544123i \(-0.816863\pi\)
−0.839006 + 0.544123i \(0.816863\pi\)
\(600\) 0 0
\(601\) −8998.00 −0.610709 −0.305354 0.952239i \(-0.598775\pi\)
−0.305354 + 0.952239i \(0.598775\pi\)
\(602\) −2144.00 −0.145154
\(603\) 0 0
\(604\) −8512.00 −0.573424
\(605\) 4865.00 0.326926
\(606\) 0 0
\(607\) 4076.00 0.272553 0.136277 0.990671i \(-0.456486\pi\)
0.136277 + 0.990671i \(0.456486\pi\)
\(608\) −4480.00 −0.298829
\(609\) 0 0
\(610\) −3020.00 −0.200453
\(611\) −432.000 −0.0286037
\(612\) 0 0
\(613\) −4078.00 −0.268693 −0.134347 0.990934i \(-0.542894\pi\)
−0.134347 + 0.990934i \(0.542894\pi\)
\(614\) 13928.0 0.915453
\(615\) 0 0
\(616\) 1536.00 0.100466
\(617\) −10086.0 −0.658099 −0.329049 0.944313i \(-0.606728\pi\)
−0.329049 + 0.944313i \(0.606728\pi\)
\(618\) 0 0
\(619\) 8780.00 0.570110 0.285055 0.958511i \(-0.407988\pi\)
0.285055 + 0.958511i \(0.407988\pi\)
\(620\) 5440.00 0.352380
\(621\) 0 0
\(622\) 5664.00 0.365122
\(623\) 840.000 0.0540191
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −17284.0 −1.10353
\(627\) 0 0
\(628\) 12104.0 0.769112
\(629\) −38076.0 −2.41366
\(630\) 0 0
\(631\) 2792.00 0.176145 0.0880727 0.996114i \(-0.471929\pi\)
0.0880727 + 0.996114i \(0.471929\pi\)
\(632\) 5120.00 0.322251
\(633\) 0 0
\(634\) −4428.00 −0.277379
\(635\) −620.000 −0.0387464
\(636\) 0 0
\(637\) −654.000 −0.0406788
\(638\) 20160.0 1.25101
\(639\) 0 0
\(640\) −640.000 −0.0395285
\(641\) −7602.00 −0.468426 −0.234213 0.972185i \(-0.575251\pi\)
−0.234213 + 0.972185i \(0.575251\pi\)
\(642\) 0 0
\(643\) 24212.0 1.48496 0.742479 0.669869i \(-0.233650\pi\)
0.742479 + 0.669869i \(0.233650\pi\)
\(644\) 1152.00 0.0704894
\(645\) 0 0
\(646\) −31920.0 −1.94408
\(647\) −9456.00 −0.574581 −0.287290 0.957844i \(-0.592754\pi\)
−0.287290 + 0.957844i \(0.592754\pi\)
\(648\) 0 0
\(649\) −11520.0 −0.696764
\(650\) −100.000 −0.00603434
\(651\) 0 0
\(652\) 10448.0 0.627569
\(653\) 9558.00 0.572792 0.286396 0.958111i \(-0.407543\pi\)
0.286396 + 0.958111i \(0.407543\pi\)
\(654\) 0 0
\(655\) −960.000 −0.0572676
\(656\) 3168.00 0.188551
\(657\) 0 0
\(658\) −1728.00 −0.102378
\(659\) 29280.0 1.73078 0.865392 0.501095i \(-0.167069\pi\)
0.865392 + 0.501095i \(0.167069\pi\)
\(660\) 0 0
\(661\) −29098.0 −1.71223 −0.856113 0.516789i \(-0.827127\pi\)
−0.856113 + 0.516789i \(0.827127\pi\)
\(662\) −21544.0 −1.26485
\(663\) 0 0
\(664\) −2784.00 −0.162711
\(665\) −2800.00 −0.163277
\(666\) 0 0
\(667\) 15120.0 0.877734
\(668\) 96.0000 0.00556041
\(669\) 0 0
\(670\) −5960.00 −0.343664
\(671\) 14496.0 0.833997
\(672\) 0 0
\(673\) −11638.0 −0.666585 −0.333293 0.942823i \(-0.608160\pi\)
−0.333293 + 0.942823i \(0.608160\pi\)
\(674\) 3308.00 0.189050
\(675\) 0 0
\(676\) −8772.00 −0.499090
\(677\) −3426.00 −0.194493 −0.0972466 0.995260i \(-0.531004\pi\)
−0.0972466 + 0.995260i \(0.531004\pi\)
\(678\) 0 0
\(679\) 6136.00 0.346801
\(680\) −4560.00 −0.257159
\(681\) 0 0
\(682\) −26112.0 −1.46610
\(683\) 20148.0 1.12876 0.564379 0.825516i \(-0.309116\pi\)
0.564379 + 0.825516i \(0.309116\pi\)
\(684\) 0 0
\(685\) 12570.0 0.701131
\(686\) −5360.00 −0.298317
\(687\) 0 0
\(688\) −4288.00 −0.237614
\(689\) 156.000 0.00862573
\(690\) 0 0
\(691\) −29428.0 −1.62011 −0.810053 0.586356i \(-0.800562\pi\)
−0.810053 + 0.586356i \(0.800562\pi\)
\(692\) −7848.00 −0.431122
\(693\) 0 0
\(694\) 4392.00 0.240228
\(695\) 6700.00 0.365677
\(696\) 0 0
\(697\) 22572.0 1.22665
\(698\) −16540.0 −0.896917
\(699\) 0 0
\(700\) −400.000 −0.0215980
\(701\) −16242.0 −0.875110 −0.437555 0.899192i \(-0.644155\pi\)
−0.437555 + 0.899192i \(0.644155\pi\)
\(702\) 0 0
\(703\) −46760.0 −2.50866
\(704\) 3072.00 0.164461
\(705\) 0 0
\(706\) 20604.0 1.09836
\(707\) 6888.00 0.366407
\(708\) 0 0
\(709\) 2030.00 0.107529 0.0537646 0.998554i \(-0.482878\pi\)
0.0537646 + 0.998554i \(0.482878\pi\)
\(710\) −7680.00 −0.405951
\(711\) 0 0
\(712\) 1680.00 0.0884279
\(713\) −19584.0 −1.02865
\(714\) 0 0
\(715\) 480.000 0.0251063
\(716\) 480.000 0.0250537
\(717\) 0 0
\(718\) −4560.00 −0.237016
\(719\) −6960.00 −0.361007 −0.180504 0.983574i \(-0.557773\pi\)
−0.180504 + 0.983574i \(0.557773\pi\)
\(720\) 0 0
\(721\) −4208.00 −0.217357
\(722\) −25482.0 −1.31349
\(723\) 0 0
\(724\) 3608.00 0.185208
\(725\) −5250.00 −0.268938
\(726\) 0 0
\(727\) 18596.0 0.948676 0.474338 0.880343i \(-0.342687\pi\)
0.474338 + 0.880343i \(0.342687\pi\)
\(728\) 64.0000 0.00325824
\(729\) 0 0
\(730\) 4780.00 0.242350
\(731\) −30552.0 −1.54584
\(732\) 0 0
\(733\) 21242.0 1.07038 0.535192 0.844731i \(-0.320239\pi\)
0.535192 + 0.844731i \(0.320239\pi\)
\(734\) 17528.0 0.881431
\(735\) 0 0
\(736\) 2304.00 0.115389
\(737\) 28608.0 1.42984
\(738\) 0 0
\(739\) −340.000 −0.0169244 −0.00846218 0.999964i \(-0.502694\pi\)
−0.00846218 + 0.999964i \(0.502694\pi\)
\(740\) −6680.00 −0.331840
\(741\) 0 0
\(742\) 624.000 0.0308730
\(743\) 21888.0 1.08074 0.540372 0.841426i \(-0.318284\pi\)
0.540372 + 0.841426i \(0.318284\pi\)
\(744\) 0 0
\(745\) −7050.00 −0.346701
\(746\) 2636.00 0.129371
\(747\) 0 0
\(748\) 21888.0 1.06993
\(749\) −2256.00 −0.110057
\(750\) 0 0
\(751\) 17792.0 0.864500 0.432250 0.901754i \(-0.357720\pi\)
0.432250 + 0.901754i \(0.357720\pi\)
\(752\) −3456.00 −0.167590
\(753\) 0 0
\(754\) 840.000 0.0405716
\(755\) −10640.0 −0.512886
\(756\) 0 0
\(757\) 37346.0 1.79308 0.896541 0.442960i \(-0.146072\pi\)
0.896541 + 0.442960i \(0.146072\pi\)
\(758\) −2200.00 −0.105419
\(759\) 0 0
\(760\) −5600.00 −0.267281
\(761\) 11358.0 0.541034 0.270517 0.962715i \(-0.412805\pi\)
0.270517 + 0.962715i \(0.412805\pi\)
\(762\) 0 0
\(763\) 2440.00 0.115772
\(764\) 672.000 0.0318221
\(765\) 0 0
\(766\) −7056.00 −0.332825
\(767\) −480.000 −0.0225969
\(768\) 0 0
\(769\) −34270.0 −1.60703 −0.803516 0.595283i \(-0.797040\pi\)
−0.803516 + 0.595283i \(0.797040\pi\)
\(770\) 1920.00 0.0898597
\(771\) 0 0
\(772\) −5272.00 −0.245782
\(773\) 13278.0 0.617822 0.308911 0.951091i \(-0.400035\pi\)
0.308911 + 0.951091i \(0.400035\pi\)
\(774\) 0 0
\(775\) 6800.00 0.315178
\(776\) 12272.0 0.567705
\(777\) 0 0
\(778\) −19260.0 −0.887538
\(779\) 27720.0 1.27493
\(780\) 0 0
\(781\) 36864.0 1.68899
\(782\) 16416.0 0.750684
\(783\) 0 0
\(784\) −5232.00 −0.238338
\(785\) 15130.0 0.687914
\(786\) 0 0
\(787\) −11164.0 −0.505659 −0.252829 0.967511i \(-0.581361\pi\)
−0.252829 + 0.967511i \(0.581361\pi\)
\(788\) 16056.0 0.725852
\(789\) 0 0
\(790\) 6400.00 0.288230
\(791\) 5208.00 0.234103
\(792\) 0 0
\(793\) 604.000 0.0270475
\(794\) 6188.00 0.276579
\(795\) 0 0
\(796\) 8000.00 0.356222
\(797\) 5094.00 0.226397 0.113199 0.993572i \(-0.463890\pi\)
0.113199 + 0.993572i \(0.463890\pi\)
\(798\) 0 0
\(799\) −24624.0 −1.09028
\(800\) −800.000 −0.0353553
\(801\) 0 0
\(802\) −3276.00 −0.144239
\(803\) −22944.0 −1.00831
\(804\) 0 0
\(805\) 1440.00 0.0630476
\(806\) −1088.00 −0.0475474
\(807\) 0 0
\(808\) 13776.0 0.599799
\(809\) 8790.00 0.382002 0.191001 0.981590i \(-0.438827\pi\)
0.191001 + 0.981590i \(0.438827\pi\)
\(810\) 0 0
\(811\) 5852.00 0.253380 0.126690 0.991942i \(-0.459565\pi\)
0.126690 + 0.991942i \(0.459565\pi\)
\(812\) 3360.00 0.145213
\(813\) 0 0
\(814\) 32064.0 1.38064
\(815\) 13060.0 0.561315
\(816\) 0 0
\(817\) −37520.0 −1.60668
\(818\) 27500.0 1.17545
\(819\) 0 0
\(820\) 3960.00 0.168645
\(821\) 29478.0 1.25309 0.626546 0.779384i \(-0.284468\pi\)
0.626546 + 0.779384i \(0.284468\pi\)
\(822\) 0 0
\(823\) 39332.0 1.66589 0.832945 0.553356i \(-0.186653\pi\)
0.832945 + 0.553356i \(0.186653\pi\)
\(824\) −8416.00 −0.355807
\(825\) 0 0
\(826\) −1920.00 −0.0808781
\(827\) −6756.00 −0.284074 −0.142037 0.989861i \(-0.545365\pi\)
−0.142037 + 0.989861i \(0.545365\pi\)
\(828\) 0 0
\(829\) 3950.00 0.165488 0.0827438 0.996571i \(-0.473632\pi\)
0.0827438 + 0.996571i \(0.473632\pi\)
\(830\) −3480.00 −0.145533
\(831\) 0 0
\(832\) 128.000 0.00533366
\(833\) −37278.0 −1.55055
\(834\) 0 0
\(835\) 120.000 0.00497338
\(836\) 26880.0 1.11204
\(837\) 0 0
\(838\) −24960.0 −1.02891
\(839\) −12360.0 −0.508599 −0.254300 0.967126i \(-0.581845\pi\)
−0.254300 + 0.967126i \(0.581845\pi\)
\(840\) 0 0
\(841\) 19711.0 0.808192
\(842\) −14524.0 −0.594454
\(843\) 0 0
\(844\) −15472.0 −0.631005
\(845\) −10965.0 −0.446399
\(846\) 0 0
\(847\) −3892.00 −0.157887
\(848\) 1248.00 0.0505383
\(849\) 0 0
\(850\) −5700.00 −0.230010
\(851\) 24048.0 0.968690
\(852\) 0 0
\(853\) −35998.0 −1.44496 −0.722478 0.691394i \(-0.756997\pi\)
−0.722478 + 0.691394i \(0.756997\pi\)
\(854\) 2416.00 0.0968077
\(855\) 0 0
\(856\) −4512.00 −0.180160
\(857\) 21594.0 0.860720 0.430360 0.902657i \(-0.358387\pi\)
0.430360 + 0.902657i \(0.358387\pi\)
\(858\) 0 0
\(859\) 9260.00 0.367808 0.183904 0.982944i \(-0.441126\pi\)
0.183904 + 0.982944i \(0.441126\pi\)
\(860\) −5360.00 −0.212528
\(861\) 0 0
\(862\) 19584.0 0.773821
\(863\) −31632.0 −1.24770 −0.623850 0.781544i \(-0.714433\pi\)
−0.623850 + 0.781544i \(0.714433\pi\)
\(864\) 0 0
\(865\) −9810.00 −0.385607
\(866\) −3604.00 −0.141419
\(867\) 0 0
\(868\) −4352.00 −0.170180
\(869\) −30720.0 −1.19920
\(870\) 0 0
\(871\) 1192.00 0.0463713
\(872\) 4880.00 0.189516
\(873\) 0 0
\(874\) 20160.0 0.780231
\(875\) −500.000 −0.0193178
\(876\) 0 0
\(877\) −39694.0 −1.52836 −0.764180 0.645003i \(-0.776856\pi\)
−0.764180 + 0.645003i \(0.776856\pi\)
\(878\) 4640.00 0.178351
\(879\) 0 0
\(880\) 3840.00 0.147098
\(881\) −1242.00 −0.0474961 −0.0237480 0.999718i \(-0.507560\pi\)
−0.0237480 + 0.999718i \(0.507560\pi\)
\(882\) 0 0
\(883\) −2668.00 −0.101682 −0.0508411 0.998707i \(-0.516190\pi\)
−0.0508411 + 0.998707i \(0.516190\pi\)
\(884\) 912.000 0.0346990
\(885\) 0 0
\(886\) 22344.0 0.847248
\(887\) 4344.00 0.164439 0.0822194 0.996614i \(-0.473799\pi\)
0.0822194 + 0.996614i \(0.473799\pi\)
\(888\) 0 0
\(889\) 496.000 0.0187124
\(890\) 2100.00 0.0790923
\(891\) 0 0
\(892\) −12592.0 −0.472658
\(893\) −30240.0 −1.13319
\(894\) 0 0
\(895\) 600.000 0.0224087
\(896\) 512.000 0.0190901
\(897\) 0 0
\(898\) 13620.0 0.506131
\(899\) −57120.0 −2.11909
\(900\) 0 0
\(901\) 8892.00 0.328785
\(902\) −19008.0 −0.701660
\(903\) 0 0
\(904\) 10416.0 0.383220
\(905\) 4510.00 0.165655
\(906\) 0 0
\(907\) 4436.00 0.162398 0.0811990 0.996698i \(-0.474125\pi\)
0.0811990 + 0.996698i \(0.474125\pi\)
\(908\) −10224.0 −0.373673
\(909\) 0 0
\(910\) 80.0000 0.00291426
\(911\) −22752.0 −0.827450 −0.413725 0.910402i \(-0.635773\pi\)
−0.413725 + 0.910402i \(0.635773\pi\)
\(912\) 0 0
\(913\) 16704.0 0.605500
\(914\) −34132.0 −1.23521
\(915\) 0 0
\(916\) −2440.00 −0.0880130
\(917\) 768.000 0.0276571
\(918\) 0 0
\(919\) −27160.0 −0.974892 −0.487446 0.873153i \(-0.662071\pi\)
−0.487446 + 0.873153i \(0.662071\pi\)
\(920\) 2880.00 0.103207
\(921\) 0 0
\(922\) −37836.0 −1.35148
\(923\) 1536.00 0.0547758
\(924\) 0 0
\(925\) −8350.00 −0.296807
\(926\) −2104.00 −0.0746671
\(927\) 0 0
\(928\) 6720.00 0.237710
\(929\) 33030.0 1.16650 0.583250 0.812292i \(-0.301781\pi\)
0.583250 + 0.812292i \(0.301781\pi\)
\(930\) 0 0
\(931\) −45780.0 −1.61158
\(932\) 8232.00 0.289322
\(933\) 0 0
\(934\) 22152.0 0.776055
\(935\) 27360.0 0.956971
\(936\) 0 0
\(937\) −29974.0 −1.04505 −0.522523 0.852625i \(-0.675009\pi\)
−0.522523 + 0.852625i \(0.675009\pi\)
\(938\) 4768.00 0.165971
\(939\) 0 0
\(940\) −4320.00 −0.149897
\(941\) −13962.0 −0.483686 −0.241843 0.970315i \(-0.577752\pi\)
−0.241843 + 0.970315i \(0.577752\pi\)
\(942\) 0 0
\(943\) −14256.0 −0.492300
\(944\) −3840.00 −0.132396
\(945\) 0 0
\(946\) 25728.0 0.884238
\(947\) −35196.0 −1.20773 −0.603863 0.797088i \(-0.706373\pi\)
−0.603863 + 0.797088i \(0.706373\pi\)
\(948\) 0 0
\(949\) −956.000 −0.0327008
\(950\) −7000.00 −0.239063
\(951\) 0 0
\(952\) 3648.00 0.124194
\(953\) 28338.0 0.963230 0.481615 0.876383i \(-0.340050\pi\)
0.481615 + 0.876383i \(0.340050\pi\)
\(954\) 0 0
\(955\) 840.000 0.0284626
\(956\) −19680.0 −0.665792
\(957\) 0 0
\(958\) −18000.0 −0.607050
\(959\) −10056.0 −0.338608
\(960\) 0 0
\(961\) 44193.0 1.48343
\(962\) 1336.00 0.0447759
\(963\) 0 0
\(964\) −5752.00 −0.192178
\(965\) −6590.00 −0.219834
\(966\) 0 0
\(967\) −17524.0 −0.582765 −0.291383 0.956607i \(-0.594115\pi\)
−0.291383 + 0.956607i \(0.594115\pi\)
\(968\) −7784.00 −0.258458
\(969\) 0 0
\(970\) 15340.0 0.507771
\(971\) 26808.0 0.886004 0.443002 0.896521i \(-0.353913\pi\)
0.443002 + 0.896521i \(0.353913\pi\)
\(972\) 0 0
\(973\) −5360.00 −0.176602
\(974\) 17528.0 0.576626
\(975\) 0 0
\(976\) 4832.00 0.158472
\(977\) 10914.0 0.357390 0.178695 0.983905i \(-0.442813\pi\)
0.178695 + 0.983905i \(0.442813\pi\)
\(978\) 0 0
\(979\) −10080.0 −0.329069
\(980\) −6540.00 −0.213176
\(981\) 0 0
\(982\) 11184.0 0.363438
\(983\) −22272.0 −0.722652 −0.361326 0.932440i \(-0.617676\pi\)
−0.361326 + 0.932440i \(0.617676\pi\)
\(984\) 0 0
\(985\) 20070.0 0.649222
\(986\) 47880.0 1.54646
\(987\) 0 0
\(988\) 1120.00 0.0360647
\(989\) 19296.0 0.620402
\(990\) 0 0
\(991\) 14072.0 0.451071 0.225536 0.974235i \(-0.427587\pi\)
0.225536 + 0.974235i \(0.427587\pi\)
\(992\) −8704.00 −0.278581
\(993\) 0 0
\(994\) 6144.00 0.196052
\(995\) 10000.0 0.318614
\(996\) 0 0
\(997\) 4826.00 0.153301 0.0766504 0.997058i \(-0.475577\pi\)
0.0766504 + 0.997058i \(0.475577\pi\)
\(998\) −9400.00 −0.298148
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.4.a.c.1.1 1
3.2 odd 2 30.4.a.b.1.1 1
4.3 odd 2 720.4.a.y.1.1 1
5.2 odd 4 450.4.c.j.199.1 2
5.3 odd 4 450.4.c.j.199.2 2
5.4 even 2 450.4.a.r.1.1 1
9.2 odd 6 810.4.e.i.271.1 2
9.4 even 3 810.4.e.p.541.1 2
9.5 odd 6 810.4.e.i.541.1 2
9.7 even 3 810.4.e.p.271.1 2
12.11 even 2 240.4.a.b.1.1 1
15.2 even 4 150.4.c.c.49.2 2
15.8 even 4 150.4.c.c.49.1 2
15.14 odd 2 150.4.a.b.1.1 1
21.20 even 2 1470.4.a.r.1.1 1
24.5 odd 2 960.4.a.n.1.1 1
24.11 even 2 960.4.a.bg.1.1 1
60.23 odd 4 1200.4.f.r.49.1 2
60.47 odd 4 1200.4.f.r.49.2 2
60.59 even 2 1200.4.a.ba.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.4.a.b.1.1 1 3.2 odd 2
90.4.a.c.1.1 1 1.1 even 1 trivial
150.4.a.b.1.1 1 15.14 odd 2
150.4.c.c.49.1 2 15.8 even 4
150.4.c.c.49.2 2 15.2 even 4
240.4.a.b.1.1 1 12.11 even 2
450.4.a.r.1.1 1 5.4 even 2
450.4.c.j.199.1 2 5.2 odd 4
450.4.c.j.199.2 2 5.3 odd 4
720.4.a.y.1.1 1 4.3 odd 2
810.4.e.i.271.1 2 9.2 odd 6
810.4.e.i.541.1 2 9.5 odd 6
810.4.e.p.271.1 2 9.7 even 3
810.4.e.p.541.1 2 9.4 even 3
960.4.a.n.1.1 1 24.5 odd 2
960.4.a.bg.1.1 1 24.11 even 2
1200.4.a.ba.1.1 1 60.59 even 2
1200.4.f.r.49.1 2 60.23 odd 4
1200.4.f.r.49.2 2 60.47 odd 4
1470.4.a.r.1.1 1 21.20 even 2