Properties

Label 90.4
Level 90
Weight 4
Dimension 157
Nonzero newspaces 6
Newform subspaces 17
Sturm bound 1728
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 17 \)
Sturm bound: \(1728\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(90))\).

Total New Old
Modular forms 712 157 555
Cusp forms 584 157 427
Eisenstein series 128 0 128

Trace form

\( 157 q - 6 q^{2} - 6 q^{3} + 12 q^{4} - 17 q^{5} + 36 q^{6} + 4 q^{7} + 24 q^{8} + 82 q^{9} - 34 q^{10} - 34 q^{11} + 16 q^{12} + 298 q^{13} + 200 q^{14} + 246 q^{15} + 112 q^{16} + 354 q^{17} - 280 q^{18}+ \cdots + 2512 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(90))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
90.4.a \(\chi_{90}(1, \cdot)\) 90.4.a.a 1 1
90.4.a.b 1
90.4.a.c 1
90.4.a.d 1
90.4.a.e 1
90.4.c \(\chi_{90}(19, \cdot)\) 90.4.c.a 2 1
90.4.c.b 2
90.4.c.c 4
90.4.e \(\chi_{90}(31, \cdot)\) 90.4.e.a 2 2
90.4.e.b 4
90.4.e.c 4
90.4.e.d 6
90.4.e.e 8
90.4.f \(\chi_{90}(17, \cdot)\) 90.4.f.a 4 2
90.4.f.b 8
90.4.i \(\chi_{90}(49, \cdot)\) 90.4.i.a 36 2
90.4.l \(\chi_{90}(23, \cdot)\) 90.4.l.a 72 4

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(90))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(90)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 2}\)