Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [90,3,Mod(7,90)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(90, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([8, 3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("90.7");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 90 = 2 \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 90.k (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.45232237924\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | 1.36603 | − | 0.366025i | −2.94504 | + | 0.571623i | 1.73205 | − | 1.00000i | 4.17929 | − | 2.74473i | −3.81377 | + | 1.85881i | 8.06163 | − | 2.16011i | 2.00000 | − | 2.00000i | 8.34650 | − | 3.36690i | 4.70437 | − | 5.27910i |
7.2 | 1.36603 | − | 0.366025i | −0.900794 | − | 2.86157i | 1.73205 | − | 1.00000i | −3.46748 | − | 3.60230i | −2.27791 | − | 3.57926i | 1.76879 | − | 0.473946i | 2.00000 | − | 2.00000i | −7.37714 | + | 5.15537i | −6.05520 | − | 3.65165i |
7.3 | 1.36603 | − | 0.366025i | −0.0929015 | + | 2.99856i | 1.73205 | − | 1.00000i | 3.41977 | + | 3.64763i | 0.970644 | + | 4.13012i | −6.01857 | + | 1.61267i | 2.00000 | − | 2.00000i | −8.98274 | − | 0.557142i | 6.00661 | + | 3.73103i |
7.4 | 1.36603 | − | 0.366025i | 1.64244 | − | 2.51046i | 1.73205 | − | 1.00000i | 1.90856 | + | 4.62141i | 1.32472 | − | 4.03052i | −0.850119 | + | 0.227789i | 2.00000 | − | 2.00000i | −3.60480 | − | 8.24654i | 4.29869 | + | 5.61438i |
7.5 | 1.36603 | − | 0.366025i | 2.04786 | + | 2.19232i | 1.73205 | − | 1.00000i | −4.80314 | + | 1.38918i | 3.59987 | + | 2.24520i | 11.2960 | − | 3.02677i | 2.00000 | − | 2.00000i | −0.612574 | + | 8.97913i | −6.05274 | + | 3.65572i |
7.6 | 1.36603 | − | 0.366025i | 2.98049 | + | 0.341569i | 1.73205 | − | 1.00000i | 1.36109 | − | 4.81118i | 4.19645 | − | 0.624344i | −10.1597 | + | 2.72228i | 2.00000 | − | 2.00000i | 8.76666 | + | 2.03609i | 0.0982721 | − | 7.07038i |
13.1 | 1.36603 | + | 0.366025i | −2.94504 | − | 0.571623i | 1.73205 | + | 1.00000i | 4.17929 | + | 2.74473i | −3.81377 | − | 1.85881i | 8.06163 | + | 2.16011i | 2.00000 | + | 2.00000i | 8.34650 | + | 3.36690i | 4.70437 | + | 5.27910i |
13.2 | 1.36603 | + | 0.366025i | −0.900794 | + | 2.86157i | 1.73205 | + | 1.00000i | −3.46748 | + | 3.60230i | −2.27791 | + | 3.57926i | 1.76879 | + | 0.473946i | 2.00000 | + | 2.00000i | −7.37714 | − | 5.15537i | −6.05520 | + | 3.65165i |
13.3 | 1.36603 | + | 0.366025i | −0.0929015 | − | 2.99856i | 1.73205 | + | 1.00000i | 3.41977 | − | 3.64763i | 0.970644 | − | 4.13012i | −6.01857 | − | 1.61267i | 2.00000 | + | 2.00000i | −8.98274 | + | 0.557142i | 6.00661 | − | 3.73103i |
13.4 | 1.36603 | + | 0.366025i | 1.64244 | + | 2.51046i | 1.73205 | + | 1.00000i | 1.90856 | − | 4.62141i | 1.32472 | + | 4.03052i | −0.850119 | − | 0.227789i | 2.00000 | + | 2.00000i | −3.60480 | + | 8.24654i | 4.29869 | − | 5.61438i |
13.5 | 1.36603 | + | 0.366025i | 2.04786 | − | 2.19232i | 1.73205 | + | 1.00000i | −4.80314 | − | 1.38918i | 3.59987 | − | 2.24520i | 11.2960 | + | 3.02677i | 2.00000 | + | 2.00000i | −0.612574 | − | 8.97913i | −6.05274 | − | 3.65572i |
13.6 | 1.36603 | + | 0.366025i | 2.98049 | − | 0.341569i | 1.73205 | + | 1.00000i | 1.36109 | + | 4.81118i | 4.19645 | + | 0.624344i | −10.1597 | − | 2.72228i | 2.00000 | + | 2.00000i | 8.76666 | − | 2.03609i | 0.0982721 | + | 7.07038i |
43.1 | −0.366025 | − | 1.36603i | −2.99856 | − | 0.0929015i | −1.73205 | + | 1.00000i | 1.44906 | + | 4.78542i | 0.970644 | + | 4.13012i | 1.61267 | + | 6.01857i | 2.00000 | + | 2.00000i | 8.98274 | + | 0.557142i | 6.00661 | − | 3.73103i |
43.2 | −0.366025 | − | 1.36603i | −2.19232 | + | 2.04786i | −1.73205 | + | 1.00000i | 3.60463 | − | 3.46506i | 3.59987 | + | 2.24520i | −3.02677 | − | 11.2960i | 2.00000 | + | 2.00000i | 0.612574 | − | 8.97913i | −6.05274 | − | 3.65572i |
43.3 | −0.366025 | − | 1.36603i | −0.571623 | − | 2.94504i | −1.73205 | + | 1.00000i | −4.46665 | + | 2.24700i | −3.81377 | + | 1.85881i | −2.16011 | − | 8.06163i | 2.00000 | + | 2.00000i | −8.34650 | + | 3.36690i | 4.70437 | + | 5.27910i |
43.4 | −0.366025 | − | 1.36603i | −0.341569 | + | 2.98049i | −1.73205 | + | 1.00000i | −4.84715 | − | 1.22685i | 4.19645 | − | 0.624344i | 2.72228 | + | 10.1597i | 2.00000 | + | 2.00000i | −8.76666 | − | 2.03609i | 0.0982721 | + | 7.07038i |
43.5 | −0.366025 | − | 1.36603i | 2.51046 | + | 1.64244i | −1.73205 | + | 1.00000i | 3.04798 | + | 3.96356i | 1.32472 | − | 4.03052i | 0.227789 | + | 0.850119i | 2.00000 | + | 2.00000i | 3.60480 | + | 8.24654i | 4.29869 | − | 5.61438i |
43.6 | −0.366025 | − | 1.36603i | 2.86157 | − | 0.900794i | −1.73205 | + | 1.00000i | −1.38594 | − | 4.80408i | −2.27791 | − | 3.57926i | −0.473946 | − | 1.76879i | 2.00000 | + | 2.00000i | 7.37714 | − | 5.15537i | −6.05520 | + | 3.65165i |
67.1 | −0.366025 | + | 1.36603i | −2.99856 | + | 0.0929015i | −1.73205 | − | 1.00000i | 1.44906 | − | 4.78542i | 0.970644 | − | 4.13012i | 1.61267 | − | 6.01857i | 2.00000 | − | 2.00000i | 8.98274 | − | 0.557142i | 6.00661 | + | 3.73103i |
67.2 | −0.366025 | + | 1.36603i | −2.19232 | − | 2.04786i | −1.73205 | − | 1.00000i | 3.60463 | + | 3.46506i | 3.59987 | − | 2.24520i | −3.02677 | + | 11.2960i | 2.00000 | − | 2.00000i | 0.612574 | + | 8.97913i | −6.05274 | + | 3.65572i |
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
9.c | even | 3 | 1 | inner |
45.k | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 90.3.k.b | ✓ | 24 |
3.b | odd | 2 | 1 | 270.3.l.a | 24 | ||
5.c | odd | 4 | 1 | inner | 90.3.k.b | ✓ | 24 |
9.c | even | 3 | 1 | inner | 90.3.k.b | ✓ | 24 |
9.c | even | 3 | 1 | 810.3.g.h | 12 | ||
9.d | odd | 6 | 1 | 270.3.l.a | 24 | ||
9.d | odd | 6 | 1 | 810.3.g.j | 12 | ||
15.e | even | 4 | 1 | 270.3.l.a | 24 | ||
45.k | odd | 12 | 1 | inner | 90.3.k.b | ✓ | 24 |
45.k | odd | 12 | 1 | 810.3.g.h | 12 | ||
45.l | even | 12 | 1 | 270.3.l.a | 24 | ||
45.l | even | 12 | 1 | 810.3.g.j | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
90.3.k.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
90.3.k.b | ✓ | 24 | 5.c | odd | 4 | 1 | inner |
90.3.k.b | ✓ | 24 | 9.c | even | 3 | 1 | inner |
90.3.k.b | ✓ | 24 | 45.k | odd | 12 | 1 | inner |
270.3.l.a | 24 | 3.b | odd | 2 | 1 | ||
270.3.l.a | 24 | 9.d | odd | 6 | 1 | ||
270.3.l.a | 24 | 15.e | even | 4 | 1 | ||
270.3.l.a | 24 | 45.l | even | 12 | 1 | ||
810.3.g.h | 12 | 9.c | even | 3 | 1 | ||
810.3.g.h | 12 | 45.k | odd | 12 | 1 | ||
810.3.g.j | 12 | 9.d | odd | 6 | 1 | ||
810.3.g.j | 12 | 45.l | even | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{24} - 6 T_{7}^{23} + 18 T_{7}^{22} - 772 T_{7}^{21} - 14187 T_{7}^{20} + 132888 T_{7}^{19} + \cdots + 11\!\cdots\!61 \)
acting on \(S_{3}^{\mathrm{new}}(90, [\chi])\).