Properties

 Label 90.3.g.a Level $90$ Weight $3$ Character orbit 90.g Analytic conductor $2.452$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [90,3,Mod(37,90)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(90, base_ring=CyclotomicField(4))

chi = DirichletCharacter(H, H._module([0, 1]))

N = Newforms(chi, 3, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("90.37");

S:= CuspForms(chi, 3);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$90 = 2 \cdot 3^{2} \cdot 5$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 90.g (of order $$4$$, degree $$2$$, minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$2.45232237924$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( - i - 1) q^{2} + 2 i q^{4} + (4 i - 3) q^{5} + (8 i + 8) q^{7} + ( - 2 i + 2) q^{8}+O(q^{10})$$ q + (-i - 1) * q^2 + 2*i * q^4 + (4*i - 3) * q^5 + (8*i + 8) * q^7 + (-2*i + 2) * q^8 $$q + ( - i - 1) q^{2} + 2 i q^{4} + (4 i - 3) q^{5} + (8 i + 8) q^{7} + ( - 2 i + 2) q^{8} + ( - i + 7) q^{10} + 4 q^{11} + (3 i - 3) q^{13} - 16 i q^{14} - 4 q^{16} + (19 i + 19) q^{17} - 8 i q^{19} + ( - 6 i - 8) q^{20} + ( - 4 i - 4) q^{22} + (20 i - 20) q^{23} + ( - 24 i - 7) q^{25} + 6 q^{26} + (16 i - 16) q^{28} - 38 i q^{29} - 44 q^{31} + (4 i + 4) q^{32} - 38 i q^{34} + (8 i - 56) q^{35} + ( - 3 i - 3) q^{37} + (8 i - 8) q^{38} + (14 i + 2) q^{40} + 70 q^{41} + ( - 36 i + 36) q^{43} + 8 i q^{44} + 40 q^{46} + 79 i q^{49} + (31 i - 17) q^{50} + ( - 6 i - 6) q^{52} + ( - 17 i + 17) q^{53} + (16 i - 12) q^{55} + 32 q^{56} + (38 i - 38) q^{58} - 92 i q^{59} + 72 q^{61} + (44 i + 44) q^{62} - 8 i q^{64} + ( - 21 i - 3) q^{65} + (44 i + 44) q^{67} + (38 i - 38) q^{68} + (48 i + 64) q^{70} - 88 q^{71} + ( - 55 i + 55) q^{73} + 6 i q^{74} + 16 q^{76} + (32 i + 32) q^{77} + 12 i q^{79} + ( - 16 i + 12) q^{80} + ( - 70 i - 70) q^{82} + (24 i - 24) q^{83} + (19 i - 133) q^{85} - 72 q^{86} + ( - 8 i + 8) q^{88} + 26 i q^{89} - 48 q^{91} + ( - 40 i - 40) q^{92} + (24 i + 32) q^{95} + ( - 57 i - 57) q^{97} + ( - 79 i + 79) q^{98} +O(q^{100})$$ q + (-i - 1) * q^2 + 2*i * q^4 + (4*i - 3) * q^5 + (8*i + 8) * q^7 + (-2*i + 2) * q^8 + (-i + 7) * q^10 + 4 * q^11 + (3*i - 3) * q^13 - 16*i * q^14 - 4 * q^16 + (19*i + 19) * q^17 - 8*i * q^19 + (-6*i - 8) * q^20 + (-4*i - 4) * q^22 + (20*i - 20) * q^23 + (-24*i - 7) * q^25 + 6 * q^26 + (16*i - 16) * q^28 - 38*i * q^29 - 44 * q^31 + (4*i + 4) * q^32 - 38*i * q^34 + (8*i - 56) * q^35 + (-3*i - 3) * q^37 + (8*i - 8) * q^38 + (14*i + 2) * q^40 + 70 * q^41 + (-36*i + 36) * q^43 + 8*i * q^44 + 40 * q^46 + 79*i * q^49 + (31*i - 17) * q^50 + (-6*i - 6) * q^52 + (-17*i + 17) * q^53 + (16*i - 12) * q^55 + 32 * q^56 + (38*i - 38) * q^58 - 92*i * q^59 + 72 * q^61 + (44*i + 44) * q^62 - 8*i * q^64 + (-21*i - 3) * q^65 + (44*i + 44) * q^67 + (38*i - 38) * q^68 + (48*i + 64) * q^70 - 88 * q^71 + (-55*i + 55) * q^73 + 6*i * q^74 + 16 * q^76 + (32*i + 32) * q^77 + 12*i * q^79 + (-16*i + 12) * q^80 + (-70*i - 70) * q^82 + (24*i - 24) * q^83 + (19*i - 133) * q^85 - 72 * q^86 + (-8*i + 8) * q^88 + 26*i * q^89 - 48 * q^91 + (-40*i - 40) * q^92 + (24*i + 32) * q^95 + (-57*i - 57) * q^97 + (-79*i + 79) * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{2} - 6 q^{5} + 16 q^{7} + 4 q^{8}+O(q^{10})$$ 2 * q - 2 * q^2 - 6 * q^5 + 16 * q^7 + 4 * q^8 $$2 q - 2 q^{2} - 6 q^{5} + 16 q^{7} + 4 q^{8} + 14 q^{10} + 8 q^{11} - 6 q^{13} - 8 q^{16} + 38 q^{17} - 16 q^{20} - 8 q^{22} - 40 q^{23} - 14 q^{25} + 12 q^{26} - 32 q^{28} - 88 q^{31} + 8 q^{32} - 112 q^{35} - 6 q^{37} - 16 q^{38} + 4 q^{40} + 140 q^{41} + 72 q^{43} + 80 q^{46} - 34 q^{50} - 12 q^{52} + 34 q^{53} - 24 q^{55} + 64 q^{56} - 76 q^{58} + 144 q^{61} + 88 q^{62} - 6 q^{65} + 88 q^{67} - 76 q^{68} + 128 q^{70} - 176 q^{71} + 110 q^{73} + 32 q^{76} + 64 q^{77} + 24 q^{80} - 140 q^{82} - 48 q^{83} - 266 q^{85} - 144 q^{86} + 16 q^{88} - 96 q^{91} - 80 q^{92} + 64 q^{95} - 114 q^{97} + 158 q^{98}+O(q^{100})$$ 2 * q - 2 * q^2 - 6 * q^5 + 16 * q^7 + 4 * q^8 + 14 * q^10 + 8 * q^11 - 6 * q^13 - 8 * q^16 + 38 * q^17 - 16 * q^20 - 8 * q^22 - 40 * q^23 - 14 * q^25 + 12 * q^26 - 32 * q^28 - 88 * q^31 + 8 * q^32 - 112 * q^35 - 6 * q^37 - 16 * q^38 + 4 * q^40 + 140 * q^41 + 72 * q^43 + 80 * q^46 - 34 * q^50 - 12 * q^52 + 34 * q^53 - 24 * q^55 + 64 * q^56 - 76 * q^58 + 144 * q^61 + 88 * q^62 - 6 * q^65 + 88 * q^67 - 76 * q^68 + 128 * q^70 - 176 * q^71 + 110 * q^73 + 32 * q^76 + 64 * q^77 + 24 * q^80 - 140 * q^82 - 48 * q^83 - 266 * q^85 - 144 * q^86 + 16 * q^88 - 96 * q^91 - 80 * q^92 + 64 * q^95 - 114 * q^97 + 158 * q^98

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/90\mathbb{Z}\right)^\times$$.

 $$n$$ $$11$$ $$37$$ $$\chi(n)$$ $$1$$ $$i$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
37.1
 1.00000i − 1.00000i
−1.00000 1.00000i 0 2.00000i −3.00000 + 4.00000i 0 8.00000 + 8.00000i 2.00000 2.00000i 0 7.00000 1.00000i
73.1 −1.00000 + 1.00000i 0 2.00000i −3.00000 4.00000i 0 8.00000 8.00000i 2.00000 + 2.00000i 0 7.00000 + 1.00000i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 90.3.g.a 2
3.b odd 2 1 90.3.g.c yes 2
4.b odd 2 1 720.3.bh.b 2
5.b even 2 1 450.3.g.d 2
5.c odd 4 1 inner 90.3.g.a 2
5.c odd 4 1 450.3.g.d 2
12.b even 2 1 720.3.bh.d 2
15.d odd 2 1 450.3.g.a 2
15.e even 4 1 90.3.g.c yes 2
15.e even 4 1 450.3.g.a 2
20.e even 4 1 720.3.bh.b 2
60.l odd 4 1 720.3.bh.d 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
90.3.g.a 2 1.a even 1 1 trivial
90.3.g.a 2 5.c odd 4 1 inner
90.3.g.c yes 2 3.b odd 2 1
90.3.g.c yes 2 15.e even 4 1
450.3.g.a 2 15.d odd 2 1
450.3.g.a 2 15.e even 4 1
450.3.g.d 2 5.b even 2 1
450.3.g.d 2 5.c odd 4 1
720.3.bh.b 2 4.b odd 2 1
720.3.bh.b 2 20.e even 4 1
720.3.bh.d 2 12.b even 2 1
720.3.bh.d 2 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{3}^{\mathrm{new}}(90, [\chi])$$:

 $$T_{7}^{2} - 16T_{7} + 128$$ T7^2 - 16*T7 + 128 $$T_{11} - 4$$ T11 - 4

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + 2T + 2$$
$3$ $$T^{2}$$
$5$ $$T^{2} + 6T + 25$$
$7$ $$T^{2} - 16T + 128$$
$11$ $$(T - 4)^{2}$$
$13$ $$T^{2} + 6T + 18$$
$17$ $$T^{2} - 38T + 722$$
$19$ $$T^{2} + 64$$
$23$ $$T^{2} + 40T + 800$$
$29$ $$T^{2} + 1444$$
$31$ $$(T + 44)^{2}$$
$37$ $$T^{2} + 6T + 18$$
$41$ $$(T - 70)^{2}$$
$43$ $$T^{2} - 72T + 2592$$
$47$ $$T^{2}$$
$53$ $$T^{2} - 34T + 578$$
$59$ $$T^{2} + 8464$$
$61$ $$(T - 72)^{2}$$
$67$ $$T^{2} - 88T + 3872$$
$71$ $$(T + 88)^{2}$$
$73$ $$T^{2} - 110T + 6050$$
$79$ $$T^{2} + 144$$
$83$ $$T^{2} + 48T + 1152$$
$89$ $$T^{2} + 676$$
$97$ $$T^{2} + 114T + 6498$$