Defining parameters
Level: | \( N \) | \(=\) | \( 90 = 2 \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 90.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(54\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(90, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 4 | 40 |
Cusp forms | 28 | 4 | 24 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(90, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
90.3.b.a | $4$ | $2.452$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\zeta_{8}-\zeta_{8}^{3})q^{2}+2q^{4}+5\zeta_{8}q^{5}-4\zeta_{8}^{2}q^{7}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(90, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(90, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)