Properties

Label 90.2.i.a
Level $90$
Weight $2$
Character orbit 90.i
Analytic conductor $0.719$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,2,Mod(49,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 90.i (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.718653618192\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{12} q^{2} + ( - \zeta_{12}^{3} - \zeta_{12}) q^{3} + \zeta_{12}^{2} q^{4} + ( - 2 \zeta_{12}^{3} + \cdots + 2 \zeta_{12}) q^{5} + ( - 2 \zeta_{12}^{2} + 1) q^{6} - \zeta_{12} q^{7} + \zeta_{12}^{3} q^{8} + \cdots + 6 \zeta_{12}^{2} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 2 q^{5} - 6 q^{9} + 8 q^{10} + 4 q^{11} - 2 q^{14} - 12 q^{15} - 2 q^{16} - 24 q^{19} - 2 q^{20} + 6 q^{24} + 6 q^{25} - 24 q^{26} + 18 q^{29} + 6 q^{30} + 4 q^{31} - 4 q^{34} - 8 q^{35}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(-\zeta_{12}^{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i 0.866025 1.50000i 0.500000 0.866025i −1.23205 1.86603i 1.73205i 0.866025 0.500000i 1.00000i −1.50000 2.59808i 2.00000 + 1.00000i
49.2 0.866025 0.500000i −0.866025 + 1.50000i 0.500000 0.866025i 2.23205 + 0.133975i 1.73205i −0.866025 + 0.500000i 1.00000i −1.50000 2.59808i 2.00000 1.00000i
79.1 −0.866025 0.500000i 0.866025 + 1.50000i 0.500000 + 0.866025i −1.23205 + 1.86603i 1.73205i 0.866025 + 0.500000i 1.00000i −1.50000 + 2.59808i 2.00000 1.00000i
79.2 0.866025 + 0.500000i −0.866025 1.50000i 0.500000 + 0.866025i 2.23205 0.133975i 1.73205i −0.866025 0.500000i 1.00000i −1.50000 + 2.59808i 2.00000 + 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
9.c even 3 1 inner
45.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 90.2.i.a 4
3.b odd 2 1 270.2.i.a 4
4.b odd 2 1 720.2.by.a 4
5.b even 2 1 inner 90.2.i.a 4
5.c odd 4 1 450.2.e.b 2
5.c odd 4 1 450.2.e.g 2
9.c even 3 1 inner 90.2.i.a 4
9.c even 3 1 810.2.c.b 2
9.d odd 6 1 270.2.i.a 4
9.d odd 6 1 810.2.c.c 2
12.b even 2 1 2160.2.by.b 4
15.d odd 2 1 270.2.i.a 4
15.e even 4 1 1350.2.e.a 2
15.e even 4 1 1350.2.e.i 2
20.d odd 2 1 720.2.by.a 4
36.f odd 6 1 720.2.by.a 4
36.h even 6 1 2160.2.by.b 4
45.h odd 6 1 270.2.i.a 4
45.h odd 6 1 810.2.c.c 2
45.j even 6 1 inner 90.2.i.a 4
45.j even 6 1 810.2.c.b 2
45.k odd 12 1 450.2.e.b 2
45.k odd 12 1 450.2.e.g 2
45.k odd 12 1 4050.2.a.j 1
45.k odd 12 1 4050.2.a.x 1
45.l even 12 1 1350.2.e.a 2
45.l even 12 1 1350.2.e.i 2
45.l even 12 1 4050.2.a.g 1
45.l even 12 1 4050.2.a.be 1
60.h even 2 1 2160.2.by.b 4
180.n even 6 1 2160.2.by.b 4
180.p odd 6 1 720.2.by.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
90.2.i.a 4 1.a even 1 1 trivial
90.2.i.a 4 5.b even 2 1 inner
90.2.i.a 4 9.c even 3 1 inner
90.2.i.a 4 45.j even 6 1 inner
270.2.i.a 4 3.b odd 2 1
270.2.i.a 4 9.d odd 6 1
270.2.i.a 4 15.d odd 2 1
270.2.i.a 4 45.h odd 6 1
450.2.e.b 2 5.c odd 4 1
450.2.e.b 2 45.k odd 12 1
450.2.e.g 2 5.c odd 4 1
450.2.e.g 2 45.k odd 12 1
720.2.by.a 4 4.b odd 2 1
720.2.by.a 4 20.d odd 2 1
720.2.by.a 4 36.f odd 6 1
720.2.by.a 4 180.p odd 6 1
810.2.c.b 2 9.c even 3 1
810.2.c.b 2 45.j even 6 1
810.2.c.c 2 9.d odd 6 1
810.2.c.c 2 45.h odd 6 1
1350.2.e.a 2 15.e even 4 1
1350.2.e.a 2 45.l even 12 1
1350.2.e.i 2 15.e even 4 1
1350.2.e.i 2 45.l even 12 1
2160.2.by.b 4 12.b even 2 1
2160.2.by.b 4 36.h even 6 1
2160.2.by.b 4 60.h even 2 1
2160.2.by.b 4 180.n even 6 1
4050.2.a.g 1 45.l even 12 1
4050.2.a.j 1 45.k odd 12 1
4050.2.a.x 1 45.k odd 12 1
4050.2.a.be 1 45.l even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} - T_{7}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(90, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$5$ \( T^{4} - 2 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$11$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$17$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$19$ \( (T + 6)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$29$ \( (T^{2} - 9 T + 81)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 11 T + 121)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 16T^{2} + 256 \) Copy content Toggle raw display
$47$ \( T^{4} - 49T^{2} + 2401 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} + 4 T + 16)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 7 T + 49)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 121 T^{2} + 14641 \) Copy content Toggle raw display
$71$ \( (T + 6)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 12 T + 144)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 121 T^{2} + 14641 \) Copy content Toggle raw display
$89$ \( (T + 1)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} - 64T^{2} + 4096 \) Copy content Toggle raw display
show more
show less