Properties

Label 90.2.c.a.19.2
Level $90$
Weight $2$
Character 90.19
Analytic conductor $0.719$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 90.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.718653618192\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 90.19
Dual form 90.2.c.a.19.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +(2.00000 + 1.00000i) q^{5} +2.00000i q^{7} -1.00000i q^{8} +O(q^{10})\) \(q+1.00000i q^{2} -1.00000 q^{4} +(2.00000 + 1.00000i) q^{5} +2.00000i q^{7} -1.00000i q^{8} +(-1.00000 + 2.00000i) q^{10} -2.00000 q^{11} -6.00000i q^{13} -2.00000 q^{14} +1.00000 q^{16} -2.00000i q^{17} +(-2.00000 - 1.00000i) q^{20} -2.00000i q^{22} -4.00000i q^{23} +(3.00000 + 4.00000i) q^{25} +6.00000 q^{26} -2.00000i q^{28} -8.00000 q^{31} +1.00000i q^{32} +2.00000 q^{34} +(-2.00000 + 4.00000i) q^{35} +2.00000i q^{37} +(1.00000 - 2.00000i) q^{40} -2.00000 q^{41} +4.00000i q^{43} +2.00000 q^{44} +4.00000 q^{46} +8.00000i q^{47} +3.00000 q^{49} +(-4.00000 + 3.00000i) q^{50} +6.00000i q^{52} +6.00000i q^{53} +(-4.00000 - 2.00000i) q^{55} +2.00000 q^{56} +10.0000 q^{59} +2.00000 q^{61} -8.00000i q^{62} -1.00000 q^{64} +(6.00000 - 12.0000i) q^{65} -8.00000i q^{67} +2.00000i q^{68} +(-4.00000 - 2.00000i) q^{70} -12.0000 q^{71} +4.00000i q^{73} -2.00000 q^{74} -4.00000i q^{77} +(2.00000 + 1.00000i) q^{80} -2.00000i q^{82} -4.00000i q^{83} +(2.00000 - 4.00000i) q^{85} -4.00000 q^{86} +2.00000i q^{88} -10.0000 q^{89} +12.0000 q^{91} +4.00000i q^{92} -8.00000 q^{94} -8.00000i q^{97} +3.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} + 4q^{5} + O(q^{10}) \) \( 2q - 2q^{4} + 4q^{5} - 2q^{10} - 4q^{11} - 4q^{14} + 2q^{16} - 4q^{20} + 6q^{25} + 12q^{26} - 16q^{31} + 4q^{34} - 4q^{35} + 2q^{40} - 4q^{41} + 4q^{44} + 8q^{46} + 6q^{49} - 8q^{50} - 8q^{55} + 4q^{56} + 20q^{59} + 4q^{61} - 2q^{64} + 12q^{65} - 8q^{70} - 24q^{71} - 4q^{74} + 4q^{80} + 4q^{85} - 8q^{86} - 20q^{89} + 24q^{91} - 16q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 2.00000 + 1.00000i 0.894427 + 0.447214i
\(6\) 0 0
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −1.00000 + 2.00000i −0.316228 + 0.632456i
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 6.00000i 1.66410i −0.554700 0.832050i \(-0.687167\pi\)
0.554700 0.832050i \(-0.312833\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.00000i 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) −2.00000 1.00000i −0.447214 0.223607i
\(21\) 0 0
\(22\) 2.00000i 0.426401i
\(23\) 4.00000i 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 6.00000 1.17670
\(27\) 0 0
\(28\) 2.00000i 0.377964i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) −2.00000 + 4.00000i −0.338062 + 0.676123i
\(36\) 0 0
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 1.00000 2.00000i 0.158114 0.316228i
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) 8.00000i 1.16692i 0.812142 + 0.583460i \(0.198301\pi\)
−0.812142 + 0.583460i \(0.801699\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) −4.00000 + 3.00000i −0.565685 + 0.424264i
\(51\) 0 0
\(52\) 6.00000i 0.832050i
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) −4.00000 2.00000i −0.539360 0.269680i
\(56\) 2.00000 0.267261
\(57\) 0 0
\(58\) 0 0
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 8.00000i 1.01600i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 6.00000 12.0000i 0.744208 1.48842i
\(66\) 0 0
\(67\) 8.00000i 0.977356i −0.872464 0.488678i \(-0.837479\pi\)
0.872464 0.488678i \(-0.162521\pi\)
\(68\) 2.00000i 0.242536i
\(69\) 0 0
\(70\) −4.00000 2.00000i −0.478091 0.239046i
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) 0 0
\(77\) 4.00000i 0.455842i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 2.00000 + 1.00000i 0.223607 + 0.111803i
\(81\) 0 0
\(82\) 2.00000i 0.220863i
\(83\) 4.00000i 0.439057i −0.975606 0.219529i \(-0.929548\pi\)
0.975606 0.219529i \(-0.0704519\pi\)
\(84\) 0 0
\(85\) 2.00000 4.00000i 0.216930 0.433861i
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) 2.00000i 0.213201i
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 4.00000i 0.417029i
\(93\) 0 0
\(94\) −8.00000 −0.825137
\(95\) 0 0
\(96\) 0 0
\(97\) 8.00000i 0.812277i −0.913812 0.406138i \(-0.866875\pi\)
0.913812 0.406138i \(-0.133125\pi\)
\(98\) 3.00000i 0.303046i
\(99\) 0 0
\(100\) −3.00000 4.00000i −0.300000 0.400000i
\(101\) 8.00000 0.796030 0.398015 0.917379i \(-0.369699\pi\)
0.398015 + 0.917379i \(0.369699\pi\)
\(102\) 0 0
\(103\) 14.0000i 1.37946i 0.724066 + 0.689730i \(0.242271\pi\)
−0.724066 + 0.689730i \(0.757729\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) 12.0000i 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 2.00000 4.00000i 0.190693 0.381385i
\(111\) 0 0
\(112\) 2.00000i 0.188982i
\(113\) 6.00000i 0.564433i 0.959351 + 0.282216i \(0.0910696\pi\)
−0.959351 + 0.282216i \(0.908930\pi\)
\(114\) 0 0
\(115\) 4.00000 8.00000i 0.373002 0.746004i
\(116\) 0 0
\(117\) 0 0
\(118\) 10.0000i 0.920575i
\(119\) 4.00000 0.366679
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 2.00000i 0.181071i
\(123\) 0 0
\(124\) 8.00000 0.718421
\(125\) 2.00000 + 11.0000i 0.178885 + 0.983870i
\(126\) 0 0
\(127\) 2.00000i 0.177471i 0.996055 + 0.0887357i \(0.0282826\pi\)
−0.996055 + 0.0887357i \(0.971717\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 12.0000 + 6.00000i 1.05247 + 0.526235i
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 8.00000 0.691095
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) 18.0000i 1.53784i 0.639343 + 0.768922i \(0.279207\pi\)
−0.639343 + 0.768922i \(0.720793\pi\)
\(138\) 0 0
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 2.00000 4.00000i 0.169031 0.338062i
\(141\) 0 0
\(142\) 12.0000i 1.00702i
\(143\) 12.0000i 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) −4.00000 −0.331042
\(147\) 0 0
\(148\) 2.00000i 0.164399i
\(149\) −20.0000 −1.63846 −0.819232 0.573462i \(-0.805600\pi\)
−0.819232 + 0.573462i \(0.805600\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 4.00000 0.322329
\(155\) −16.0000 8.00000i −1.28515 0.642575i
\(156\) 0 0
\(157\) 22.0000i 1.75579i 0.478852 + 0.877896i \(0.341053\pi\)
−0.478852 + 0.877896i \(0.658947\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −1.00000 + 2.00000i −0.0790569 + 0.158114i
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) 16.0000i 1.25322i −0.779334 0.626608i \(-0.784443\pi\)
0.779334 0.626608i \(-0.215557\pi\)
\(164\) 2.00000 0.156174
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) 12.0000i 0.928588i −0.885681 0.464294i \(-0.846308\pi\)
0.885681 0.464294i \(-0.153692\pi\)
\(168\) 0 0
\(169\) −23.0000 −1.76923
\(170\) 4.00000 + 2.00000i 0.306786 + 0.153393i
\(171\) 0 0
\(172\) 4.00000i 0.304997i
\(173\) 14.0000i 1.06440i −0.846619 0.532200i \(-0.821365\pi\)
0.846619 0.532200i \(-0.178635\pi\)
\(174\) 0 0
\(175\) −8.00000 + 6.00000i −0.604743 + 0.453557i
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) 10.0000i 0.749532i
\(179\) 10.0000 0.747435 0.373718 0.927543i \(-0.378083\pi\)
0.373718 + 0.927543i \(0.378083\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 12.0000i 0.889499i
\(183\) 0 0
\(184\) −4.00000 −0.294884
\(185\) −2.00000 + 4.00000i −0.147043 + 0.294086i
\(186\) 0 0
\(187\) 4.00000i 0.292509i
\(188\) 8.00000i 0.583460i
\(189\) 0 0
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) 4.00000i 0.287926i 0.989583 + 0.143963i \(0.0459847\pi\)
−0.989583 + 0.143963i \(0.954015\pi\)
\(194\) 8.00000 0.574367
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 22.0000i 1.56744i −0.621117 0.783718i \(-0.713321\pi\)
0.621117 0.783718i \(-0.286679\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 4.00000 3.00000i 0.282843 0.212132i
\(201\) 0 0
\(202\) 8.00000i 0.562878i
\(203\) 0 0
\(204\) 0 0
\(205\) −4.00000 2.00000i −0.279372 0.139686i
\(206\) −14.0000 −0.975426
\(207\) 0 0
\(208\) 6.00000i 0.416025i
\(209\) 0 0
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 6.00000i 0.412082i
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) −4.00000 + 8.00000i −0.272798 + 0.545595i
\(216\) 0 0
\(217\) 16.0000i 1.08615i
\(218\) 10.0000i 0.677285i
\(219\) 0 0
\(220\) 4.00000 + 2.00000i 0.269680 + 0.134840i
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) 26.0000i 1.74109i −0.492090 0.870544i \(-0.663767\pi\)
0.492090 0.870544i \(-0.336233\pi\)
\(224\) −2.00000 −0.133631
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) 28.0000i 1.85843i 0.369546 + 0.929213i \(0.379513\pi\)
−0.369546 + 0.929213i \(0.620487\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 8.00000 + 4.00000i 0.527504 + 0.263752i
\(231\) 0 0
\(232\) 0 0
\(233\) 14.0000i 0.917170i −0.888650 0.458585i \(-0.848356\pi\)
0.888650 0.458585i \(-0.151644\pi\)
\(234\) 0 0
\(235\) −8.00000 + 16.0000i −0.521862 + 1.04372i
\(236\) −10.0000 −0.650945
\(237\) 0 0
\(238\) 4.00000i 0.259281i
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 7.00000i 0.449977i
\(243\) 0 0
\(244\) −2.00000 −0.128037
\(245\) 6.00000 + 3.00000i 0.383326 + 0.191663i
\(246\) 0 0
\(247\) 0 0
\(248\) 8.00000i 0.508001i
\(249\) 0 0
\(250\) −11.0000 + 2.00000i −0.695701 + 0.126491i
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 0 0
\(253\) 8.00000i 0.502956i
\(254\) −2.00000 −0.125491
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000i 1.12281i 0.827541 + 0.561405i \(0.189739\pi\)
−0.827541 + 0.561405i \(0.810261\pi\)
\(258\) 0 0
\(259\) −4.00000 −0.248548
\(260\) −6.00000 + 12.0000i −0.372104 + 0.744208i
\(261\) 0 0
\(262\) 18.0000i 1.11204i
\(263\) 4.00000i 0.246651i −0.992366 0.123325i \(-0.960644\pi\)
0.992366 0.123325i \(-0.0393559\pi\)
\(264\) 0 0
\(265\) −6.00000 + 12.0000i −0.368577 + 0.737154i
\(266\) 0 0
\(267\) 0 0
\(268\) 8.00000i 0.488678i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 2.00000i 0.121268i
\(273\) 0 0
\(274\) −18.0000 −1.08742
\(275\) −6.00000 8.00000i −0.361814 0.482418i
\(276\) 0 0
\(277\) 2.00000i 0.120168i 0.998193 + 0.0600842i \(0.0191369\pi\)
−0.998193 + 0.0600842i \(0.980863\pi\)
\(278\) 20.0000i 1.19952i
\(279\) 0 0
\(280\) 4.00000 + 2.00000i 0.239046 + 0.119523i
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) 16.0000i 0.951101i −0.879688 0.475551i \(-0.842249\pi\)
0.879688 0.475551i \(-0.157751\pi\)
\(284\) 12.0000 0.712069
\(285\) 0 0
\(286\) −12.0000 −0.709575
\(287\) 4.00000i 0.236113i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 4.00000i 0.234082i
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) 0 0
\(295\) 20.0000 + 10.0000i 1.16445 + 0.582223i
\(296\) 2.00000 0.116248
\(297\) 0 0
\(298\) 20.0000i 1.15857i
\(299\) −24.0000 −1.38796
\(300\) 0 0
\(301\) −8.00000 −0.461112
\(302\) 8.00000i 0.460348i
\(303\) 0 0
\(304\) 0 0
\(305\) 4.00000 + 2.00000i 0.229039 + 0.114520i
\(306\) 0 0
\(307\) 12.0000i 0.684876i 0.939540 + 0.342438i \(0.111253\pi\)
−0.939540 + 0.342438i \(0.888747\pi\)
\(308\) 4.00000i 0.227921i
\(309\) 0 0
\(310\) 8.00000 16.0000i 0.454369 0.908739i
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) 4.00000i 0.226093i 0.993590 + 0.113047i \(0.0360610\pi\)
−0.993590 + 0.113047i \(0.963939\pi\)
\(314\) −22.0000 −1.24153
\(315\) 0 0
\(316\) 0 0
\(317\) 2.00000i 0.112331i −0.998421 0.0561656i \(-0.982113\pi\)
0.998421 0.0561656i \(-0.0178875\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −2.00000 1.00000i −0.111803 0.0559017i
\(321\) 0 0
\(322\) 8.00000i 0.445823i
\(323\) 0 0
\(324\) 0 0
\(325\) 24.0000 18.0000i 1.33128 0.998460i
\(326\) 16.0000 0.886158
\(327\) 0 0
\(328\) 2.00000i 0.110432i
\(329\) −16.0000 −0.882109
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 4.00000i 0.219529i
\(333\) 0 0
\(334\) 12.0000 0.656611
\(335\) 8.00000 16.0000i 0.437087 0.874173i
\(336\) 0 0
\(337\) 28.0000i 1.52526i −0.646837 0.762629i \(-0.723908\pi\)
0.646837 0.762629i \(-0.276092\pi\)
\(338\) 23.0000i 1.25104i
\(339\) 0 0
\(340\) −2.00000 + 4.00000i −0.108465 + 0.216930i
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) 12.0000i 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) −6.00000 8.00000i −0.320713 0.427618i
\(351\) 0 0
\(352\) 2.00000i 0.106600i
\(353\) 14.0000i 0.745145i −0.928003 0.372572i \(-0.878476\pi\)
0.928003 0.372572i \(-0.121524\pi\)
\(354\) 0 0
\(355\) −24.0000 12.0000i −1.27379 0.636894i
\(356\) 10.0000 0.529999
\(357\) 0 0
\(358\) 10.0000i 0.528516i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 2.00000i 0.105118i
\(363\) 0 0
\(364\) −12.0000 −0.628971
\(365\) −4.00000 + 8.00000i −0.209370 + 0.418739i
\(366\) 0 0
\(367\) 2.00000i 0.104399i 0.998637 + 0.0521996i \(0.0166232\pi\)
−0.998637 + 0.0521996i \(0.983377\pi\)
\(368\) 4.00000i 0.208514i
\(369\) 0 0
\(370\) −4.00000 2.00000i −0.207950 0.103975i
\(371\) −12.0000 −0.623009
\(372\) 0 0
\(373\) 6.00000i 0.310668i −0.987862 0.155334i \(-0.950355\pi\)
0.987862 0.155334i \(-0.0496454\pi\)
\(374\) −4.00000 −0.206835
\(375\) 0 0
\(376\) 8.00000 0.412568
\(377\) 0 0
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 12.0000i 0.613973i
\(383\) 16.0000i 0.817562i 0.912633 + 0.408781i \(0.134046\pi\)
−0.912633 + 0.408781i \(0.865954\pi\)
\(384\) 0 0
\(385\) 4.00000 8.00000i 0.203859 0.407718i
\(386\) −4.00000 −0.203595
\(387\) 0 0
\(388\) 8.00000i 0.406138i
\(389\) 20.0000 1.01404 0.507020 0.861934i \(-0.330747\pi\)
0.507020 + 0.861934i \(0.330747\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 3.00000i 0.151523i
\(393\) 0 0
\(394\) 22.0000 1.10834
\(395\) 0 0
\(396\) 0 0
\(397\) 2.00000i 0.100377i 0.998740 + 0.0501886i \(0.0159822\pi\)
−0.998740 + 0.0501886i \(0.984018\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 3.00000 + 4.00000i 0.150000 + 0.200000i
\(401\) −22.0000 −1.09863 −0.549314 0.835616i \(-0.685111\pi\)
−0.549314 + 0.835616i \(0.685111\pi\)
\(402\) 0 0
\(403\) 48.0000i 2.39105i
\(404\) −8.00000 −0.398015
\(405\) 0 0
\(406\) 0 0
\(407\) 4.00000i 0.198273i
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 2.00000 4.00000i 0.0987730 0.197546i
\(411\) 0 0
\(412\) 14.0000i 0.689730i
\(413\) 20.0000i 0.984136i
\(414\) 0 0
\(415\) 4.00000 8.00000i 0.196352 0.392705i
\(416\) 6.00000 0.294174
\(417\) 0 0
\(418\) 0 0
\(419\) −10.0000 −0.488532 −0.244266 0.969708i \(-0.578547\pi\)
−0.244266 + 0.969708i \(0.578547\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 12.0000i 0.584151i
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 8.00000 6.00000i 0.388057 0.291043i
\(426\) 0 0
\(427\) 4.00000i 0.193574i
\(428\) 12.0000i 0.580042i
\(429\) 0 0
\(430\) −8.00000 4.00000i −0.385794 0.192897i
\(431\) −32.0000 −1.54139 −0.770693 0.637207i \(-0.780090\pi\)
−0.770693 + 0.637207i \(0.780090\pi\)
\(432\) 0 0
\(433\) 4.00000i 0.192228i 0.995370 + 0.0961139i \(0.0306413\pi\)
−0.995370 + 0.0961139i \(0.969359\pi\)
\(434\) 16.0000 0.768025
\(435\) 0 0
\(436\) 10.0000 0.478913
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) −2.00000 + 4.00000i −0.0953463 + 0.190693i
\(441\) 0 0
\(442\) 12.0000i 0.570782i
\(443\) 36.0000i 1.71041i 0.518289 + 0.855206i \(0.326569\pi\)
−0.518289 + 0.855206i \(0.673431\pi\)
\(444\) 0 0
\(445\) −20.0000 10.0000i −0.948091 0.474045i
\(446\) 26.0000 1.23114
\(447\) 0 0
\(448\) 2.00000i 0.0944911i
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 4.00000 0.188353
\(452\) 6.00000i 0.282216i
\(453\) 0 0
\(454\) −28.0000 −1.31411
\(455\) 24.0000 + 12.0000i 1.12514 + 0.562569i
\(456\) 0 0
\(457\) 32.0000i 1.49690i 0.663193 + 0.748448i \(0.269201\pi\)
−0.663193 + 0.748448i \(0.730799\pi\)
\(458\) 10.0000i 0.467269i
\(459\) 0 0
\(460\) −4.00000 + 8.00000i −0.186501 + 0.373002i
\(461\) −12.0000 −0.558896 −0.279448 0.960161i \(-0.590151\pi\)
−0.279448 + 0.960161i \(0.590151\pi\)
\(462\) 0 0
\(463\) 6.00000i 0.278844i −0.990233 0.139422i \(-0.955476\pi\)
0.990233 0.139422i \(-0.0445244\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 14.0000 0.648537
\(467\) 12.0000i 0.555294i −0.960683 0.277647i \(-0.910445\pi\)
0.960683 0.277647i \(-0.0895545\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) −16.0000 8.00000i −0.738025 0.369012i
\(471\) 0 0
\(472\) 10.0000i 0.460287i
\(473\) 8.00000i 0.367840i
\(474\) 0 0
\(475\) 0 0
\(476\) −4.00000 −0.183340
\(477\) 0 0
\(478\) 20.0000i 0.914779i
\(479\) 20.0000 0.913823 0.456912 0.889512i \(-0.348956\pi\)
0.456912 + 0.889512i \(0.348956\pi\)
\(480\) 0 0
\(481\) 12.0000 0.547153
\(482\) 22.0000i 1.00207i
\(483\) 0 0
\(484\) 7.00000 0.318182
\(485\) 8.00000 16.0000i 0.363261 0.726523i
\(486\) 0 0
\(487\) 18.0000i 0.815658i −0.913058 0.407829i \(-0.866286\pi\)
0.913058 0.407829i \(-0.133714\pi\)
\(488\) 2.00000i 0.0905357i
\(489\) 0 0
\(490\) −3.00000 + 6.00000i −0.135526 + 0.271052i
\(491\) 18.0000 0.812329 0.406164 0.913800i \(-0.366866\pi\)
0.406164 + 0.913800i \(0.366866\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) 24.0000i 1.07655i
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) −2.00000 11.0000i −0.0894427 0.491935i
\(501\) 0 0
\(502\) 18.0000i 0.803379i
\(503\) 24.0000i 1.07011i −0.844818 0.535054i \(-0.820291\pi\)
0.844818 0.535054i \(-0.179709\pi\)
\(504\) 0 0
\(505\) 16.0000 + 8.00000i 0.711991 + 0.355995i
\(506\) −8.00000 −0.355643
\(507\) 0 0
\(508\) 2.00000i 0.0887357i
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) −8.00000 −0.353899
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −18.0000 −0.793946
\(515\) −14.0000 + 28.0000i −0.616914 + 1.23383i
\(516\) 0 0
\(517\) 16.0000i 0.703679i
\(518\) 4.00000i 0.175750i
\(519\) 0 0
\(520\) −12.0000 6.00000i −0.526235 0.263117i
\(521\) −22.0000 −0.963837 −0.481919 0.876216i \(-0.660060\pi\)
−0.481919 + 0.876216i \(0.660060\pi\)
\(522\) 0 0
\(523\) 16.0000i 0.699631i −0.936819 0.349816i \(-0.886244\pi\)
0.936819 0.349816i \(-0.113756\pi\)
\(524\) −18.0000 −0.786334
\(525\) 0 0
\(526\) 4.00000 0.174408
\(527\) 16.0000i 0.696971i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) −12.0000 6.00000i −0.521247 0.260623i
\(531\) 0 0
\(532\) 0 0
\(533\) 12.0000i 0.519778i
\(534\) 0 0
\(535\) 12.0000 24.0000i 0.518805 1.03761i
\(536\) −8.00000 −0.345547
\(537\) 0 0
\(538\) 0 0
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) −38.0000 −1.63375 −0.816874 0.576816i \(-0.804295\pi\)
−0.816874 + 0.576816i \(0.804295\pi\)
\(542\) 8.00000i 0.343629i
\(543\) 0 0
\(544\) 2.00000 0.0857493
\(545\) −20.0000 10.0000i −0.856706 0.428353i
\(546\) 0 0
\(547\) 28.0000i 1.19719i −0.801050 0.598597i \(-0.795725\pi\)
0.801050 0.598597i \(-0.204275\pi\)
\(548\) 18.0000i 0.768922i
\(549\) 0 0
\(550\) 8.00000 6.00000i 0.341121 0.255841i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −2.00000 −0.0849719
\(555\) 0 0
\(556\) −20.0000 −0.848189
\(557\) 18.0000i 0.762684i 0.924434 + 0.381342i \(0.124538\pi\)
−0.924434 + 0.381342i \(0.875462\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) −2.00000 + 4.00000i −0.0845154 + 0.169031i
\(561\) 0 0
\(562\) 18.0000i 0.759284i
\(563\) 44.0000i 1.85438i −0.374593 0.927189i \(-0.622217\pi\)
0.374593 0.927189i \(-0.377783\pi\)
\(564\) 0 0
\(565\) −6.00000 + 12.0000i −0.252422 + 0.504844i
\(566\) 16.0000 0.672530
\(567\) 0 0
\(568\) 12.0000i 0.503509i
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) −8.00000 −0.334790 −0.167395 0.985890i \(-0.553535\pi\)
−0.167395 + 0.985890i \(0.553535\pi\)
\(572\) 12.0000i 0.501745i
\(573\) 0 0
\(574\) 4.00000 0.166957
\(575\) 16.0000 12.0000i 0.667246 0.500435i
\(576\) 0 0
\(577\) 32.0000i 1.33218i 0.745873 + 0.666089i \(0.232033\pi\)
−0.745873 + 0.666089i \(0.767967\pi\)
\(578\) 13.0000i 0.540729i
\(579\) 0 0
\(580\) 0 0
\(581\) 8.00000 0.331896
\(582\) 0 0
\(583\) 12.0000i 0.496989i
\(584\) 4.00000 0.165521
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 12.0000i 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −10.0000 + 20.0000i −0.411693 + 0.823387i
\(591\) 0 0
\(592\) 2.00000i 0.0821995i
\(593\) 6.00000i 0.246390i 0.992382 + 0.123195i \(0.0393141\pi\)
−0.992382 + 0.123195i \(0.960686\pi\)
\(594\) 0 0
\(595\) 8.00000 + 4.00000i 0.327968 + 0.163984i
\(596\) 20.0000 0.819232
\(597\) 0 0
\(598\) 24.0000i 0.981433i
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 8.00000i 0.326056i
\(603\) 0 0
\(604\) 8.00000 0.325515
\(605\) −14.0000 7.00000i −0.569181 0.284590i
\(606\) 0 0
\(607\) 22.0000i 0.892952i 0.894795 + 0.446476i \(0.147321\pi\)
−0.894795 + 0.446476i \(0.852679\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −2.00000 + 4.00000i −0.0809776 + 0.161955i
\(611\) 48.0000 1.94187
\(612\) 0 0
\(613\) 26.0000i 1.05013i −0.851062 0.525065i \(-0.824041\pi\)
0.851062 0.525065i \(-0.175959\pi\)
\(614\) −12.0000 −0.484281
\(615\) 0 0
\(616\) −4.00000 −0.161165
\(617\) 2.00000i 0.0805170i −0.999189 0.0402585i \(-0.987182\pi\)
0.999189 0.0402585i \(-0.0128181\pi\)
\(618\) 0 0
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 16.0000 + 8.00000i 0.642575 + 0.321288i
\(621\) 0 0
\(622\) 12.0000i 0.481156i
\(623\) 20.0000i 0.801283i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) −4.00000 −0.159872
\(627\) 0 0
\(628\) 22.0000i 0.877896i
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 2.00000 0.0794301
\(635\) −2.00000 + 4.00000i −0.0793676 + 0.158735i
\(636\) 0 0
\(637\) 18.0000i 0.713186i
\(638\) 0 0
\(639\) 0 0
\(640\) 1.00000 2.00000i 0.0395285 0.0790569i
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) 0 0
\(643\) 24.0000i 0.946468i 0.880937 + 0.473234i \(0.156913\pi\)
−0.880937 + 0.473234i \(0.843087\pi\)
\(644\) −8.00000 −0.315244
\(645\) 0 0
\(646\) 0 0
\(647\) 48.0000i 1.88707i 0.331266 + 0.943537i \(0.392524\pi\)
−0.331266 + 0.943537i \(0.607476\pi\)
\(648\) 0 0
\(649\) −20.0000 −0.785069
\(650\) 18.0000 + 24.0000i 0.706018 + 0.941357i
\(651\) 0 0
\(652\) 16.0000i 0.626608i
\(653\) 26.0000i 1.01746i 0.860927 + 0.508729i \(0.169885\pi\)
−0.860927 + 0.508729i \(0.830115\pi\)
\(654\) 0 0
\(655\) 36.0000 + 18.0000i 1.40664 + 0.703318i
\(656\) −2.00000 −0.0780869
\(657\) 0 0
\(658\) 16.0000i 0.623745i
\(659\) −50.0000 −1.94772 −0.973862 0.227142i \(-0.927062\pi\)
−0.973862 + 0.227142i \(0.927062\pi\)
\(660\) 0 0
\(661\) 2.00000 0.0777910 0.0388955 0.999243i \(-0.487616\pi\)
0.0388955 + 0.999243i \(0.487616\pi\)
\(662\) 8.00000i 0.310929i
\(663\) 0 0
\(664\) −4.00000 −0.155230
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 12.0000i 0.464294i
\(669\) 0 0
\(670\) 16.0000 + 8.00000i 0.618134 + 0.309067i
\(671\) −4.00000 −0.154418
\(672\) 0 0
\(673\) 36.0000i 1.38770i −0.720121 0.693849i \(-0.755914\pi\)
0.720121 0.693849i \(-0.244086\pi\)
\(674\) 28.0000 1.07852
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) 2.00000i 0.0768662i −0.999261 0.0384331i \(-0.987763\pi\)
0.999261 0.0384331i \(-0.0122367\pi\)
\(678\) 0 0
\(679\) 16.0000 0.614024
\(680\) −4.00000 2.00000i −0.153393 0.0766965i
\(681\) 0 0
\(682\) 16.0000i 0.612672i
\(683\) 4.00000i 0.153056i −0.997067 0.0765279i \(-0.975617\pi\)
0.997067 0.0765279i \(-0.0243834\pi\)
\(684\) 0 0
\(685\) −18.0000 + 36.0000i −0.687745 + 1.37549i
\(686\) −20.0000 −0.763604
\(687\) 0 0
\(688\) 4.00000i 0.152499i
\(689\) 36.0000 1.37149
\(690\) 0 0
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) 14.0000i 0.532200i
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 40.0000 + 20.0000i 1.51729 + 0.758643i
\(696\) 0 0
\(697\) 4.00000i 0.151511i
\(698\) 10.0000i 0.378506i
\(699\) 0 0
\(700\) 8.00000 6.00000i 0.302372 0.226779i
\(701\) −32.0000 −1.20862 −0.604312 0.796748i \(-0.706552\pi\)
−0.604312 + 0.796748i \(0.706552\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 2.00000 0.0753778
\(705\) 0 0
\(706\) 14.0000 0.526897
\(707\) 16.0000i 0.601742i
\(708\) 0 0
\(709\) −30.0000 −1.12667 −0.563337 0.826227i \(-0.690483\pi\)
−0.563337 + 0.826227i \(0.690483\pi\)
\(710\) 12.0000 24.0000i 0.450352 0.900704i
\(711\) 0 0
\(712\) 10.0000i 0.374766i
\(713\) 32.0000i 1.19841i
\(714\) 0 0
\(715\) −12.0000 + 24.0000i −0.448775 + 0.897549i
\(716\) −10.0000 −0.373718
\(717\) 0 0
\(718\) 0 0
\(719\) −40.0000 −1.49175 −0.745874 0.666087i \(-0.767968\pi\)
−0.745874 + 0.666087i \(0.767968\pi\)
\(720\) 0 0
\(721\) −28.0000 −1.04277
\(722\) 19.0000i 0.707107i
\(723\) 0 0
\(724\) −2.00000 −0.0743294
\(725\) 0 0
\(726\) 0 0
\(727\) 18.0000i 0.667583i −0.942647 0.333792i \(-0.891672\pi\)
0.942647 0.333792i \(-0.108328\pi\)
\(728\) 12.0000i 0.444750i
\(729\) 0 0
\(730\) −8.00000 4.00000i −0.296093 0.148047i
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) 14.0000i 0.517102i 0.965998 + 0.258551i \(0.0832450\pi\)
−0.965998 + 0.258551i \(0.916755\pi\)
\(734\) −2.00000 −0.0738213
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) 16.0000i 0.589368i
\(738\) 0 0
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) 2.00000 4.00000i 0.0735215 0.147043i
\(741\) 0 0
\(742\) 12.0000i 0.440534i
\(743\) 24.0000i 0.880475i −0.897881 0.440237i \(-0.854894\pi\)
0.897881 0.440237i \(-0.145106\pi\)
\(744\) 0 0
\(745\) −40.0000 20.0000i −1.46549 0.732743i
\(746\) 6.00000 0.219676
\(747\) 0 0
\(748\) 4.00000i 0.146254i
\(749\) 24.0000 0.876941
\(750\) 0 0
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) 8.00000i 0.291730i
\(753\) 0 0
\(754\) 0 0
\(755\) −16.0000 8.00000i −0.582300 0.291150i
\(756\) 0 0
\(757\) 2.00000i 0.0726912i 0.999339 + 0.0363456i \(0.0115717\pi\)
−0.999339 + 0.0363456i \(0.988428\pi\)
\(758\) 20.0000i 0.726433i
\(759\) 0 0
\(760\) 0 0
\(761\) 18.0000 0.652499 0.326250 0.945284i \(-0.394215\pi\)
0.326250 + 0.945284i \(0.394215\pi\)
\(762\) 0 0
\(763\) 20.0000i 0.724049i
\(764\) 12.0000 0.434145
\(765\) 0 0
\(766\) −16.0000 −0.578103
\(767\) 60.0000i 2.16647i
\(768\) 0 0
\(769\) 30.0000 1.08183 0.540914 0.841078i \(-0.318079\pi\)
0.540914 + 0.841078i \(0.318079\pi\)
\(770\) 8.00000 + 4.00000i 0.288300 + 0.144150i
\(771\) 0 0
\(772\) 4.00000i 0.143963i
\(773\) 54.0000i 1.94225i −0.238581 0.971123i \(-0.576682\pi\)
0.238581 0.971123i \(-0.423318\pi\)
\(774\) 0 0
\(775\) −24.0000 32.0000i −0.862105 1.14947i
\(776\) −8.00000 −0.287183
\(777\) 0 0
\(778\) 20.0000i 0.717035i
\(779\) 0 0
\(780\) 0 0
\(781\) 24.0000 0.858788
\(782\) 8.00000i 0.286079i
\(783\) 0 0
\(784\) 3.00000 0.107143
\(785\) −22.0000 + 44.0000i −0.785214 + 1.57043i
\(786\) 0 0
\(787\) 32.0000i 1.14068i 0.821410 + 0.570338i \(0.193188\pi\)
−0.821410 + 0.570338i \(0.806812\pi\)
\(788\) 22.0000i 0.783718i
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 12.0000i 0.426132i
\(794\) −2.00000 −0.0709773
\(795\) 0 0
\(796\) 0 0
\(797\) 2.00000i 0.0708436i −0.999372 0.0354218i \(-0.988723\pi\)
0.999372 0.0354218i \(-0.0112775\pi\)
\(798\) 0 0
\(799\) 16.0000 0.566039