Properties

Label 90.2.c
Level $90$
Weight $2$
Character orbit 90.c
Rep. character $\chi_{90}(19,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $36$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 90.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(36\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(90, [\chi])\).

Total New Old
Modular forms 26 2 24
Cusp forms 10 2 8
Eisenstein series 16 0 16

Trace form

\( 2q - 2q^{4} + 4q^{5} + O(q^{10}) \) \( 2q - 2q^{4} + 4q^{5} - 2q^{10} - 4q^{11} - 4q^{14} + 2q^{16} - 4q^{20} + 6q^{25} + 12q^{26} - 16q^{31} + 4q^{34} - 4q^{35} + 2q^{40} - 4q^{41} + 4q^{44} + 8q^{46} + 6q^{49} - 8q^{50} - 8q^{55} + 4q^{56} + 20q^{59} + 4q^{61} - 2q^{64} + 12q^{65} - 8q^{70} - 24q^{71} - 4q^{74} + 4q^{80} + 4q^{85} - 8q^{86} - 20q^{89} + 24q^{91} - 16q^{94} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(90, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
90.2.c.a \(2\) \(0.719\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(4\) \(0\) \(q+iq^{2}-q^{4}+(2+i)q^{5}+2iq^{7}-iq^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(90, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(90, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)