Properties

Label 90.2.a.c.1.1
Level $90$
Weight $2$
Character 90.1
Self dual yes
Analytic conductor $0.719$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 90.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(0.718653618192\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 90.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} -4.00000 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} -4.00000 q^{7} +1.00000 q^{8} +1.00000 q^{10} +2.00000 q^{13} -4.00000 q^{14} +1.00000 q^{16} -6.00000 q^{17} -4.00000 q^{19} +1.00000 q^{20} +1.00000 q^{25} +2.00000 q^{26} -4.00000 q^{28} +6.00000 q^{29} +8.00000 q^{31} +1.00000 q^{32} -6.00000 q^{34} -4.00000 q^{35} +2.00000 q^{37} -4.00000 q^{38} +1.00000 q^{40} +6.00000 q^{41} -4.00000 q^{43} +9.00000 q^{49} +1.00000 q^{50} +2.00000 q^{52} +6.00000 q^{53} -4.00000 q^{56} +6.00000 q^{58} -10.0000 q^{61} +8.00000 q^{62} +1.00000 q^{64} +2.00000 q^{65} -4.00000 q^{67} -6.00000 q^{68} -4.00000 q^{70} +2.00000 q^{73} +2.00000 q^{74} -4.00000 q^{76} +8.00000 q^{79} +1.00000 q^{80} +6.00000 q^{82} -12.0000 q^{83} -6.00000 q^{85} -4.00000 q^{86} -18.0000 q^{89} -8.00000 q^{91} -4.00000 q^{95} +2.00000 q^{97} +9.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) −4.00000 −1.06904
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 2.00000 0.392232
\(27\) 0 0
\(28\) −4.00000 −0.755929
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −6.00000 −1.02899
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −4.00000 −0.648886
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −4.00000 −0.534522
\(57\) 0 0
\(58\) 6.00000 0.787839
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 8.00000 1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) −6.00000 −0.727607
\(69\) 0 0
\(70\) −4.00000 −0.478091
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) 0 0
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) −6.00000 −0.650791
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) 0 0
\(89\) −18.0000 −1.90800 −0.953998 0.299813i \(-0.903076\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.838628
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.00000 −0.410391
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 9.00000 0.909137
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −18.0000 −1.79107 −0.895533 0.444994i \(-0.853206\pi\)
−0.895533 + 0.444994i \(0.853206\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −4.00000 −0.377964
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 0 0
\(118\) 0 0
\(119\) 24.0000 2.20008
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) −10.0000 −0.905357
\(123\) 0 0
\(124\) 8.00000 0.718421
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 20.0000 1.77471 0.887357 0.461084i \(-0.152539\pi\)
0.887357 + 0.461084i \(0.152539\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 2.00000 0.175412
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 16.0000 1.38738
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) −6.00000 −0.514496
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) −4.00000 −0.338062
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 6.00000 0.498273
\(146\) 2.00000 0.165521
\(147\) 0 0
\(148\) 2.00000 0.164399
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 8.00000 0.636446
\(159\) 0 0
\(160\) 1.00000 0.0790569
\(161\) 0 0
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) −6.00000 −0.460179
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) 0 0
\(178\) −18.0000 −1.34916
\(179\) −24.0000 −1.79384 −0.896922 0.442189i \(-0.854202\pi\)
−0.896922 + 0.442189i \(0.854202\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) −8.00000 −0.592999
\(183\) 0 0
\(184\) 0 0
\(185\) 2.00000 0.147043
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) −4.00000 −0.290191
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 0 0
\(193\) −22.0000 −1.58359 −0.791797 0.610784i \(-0.790854\pi\)
−0.791797 + 0.610784i \(0.790854\pi\)
\(194\) 2.00000 0.143592
\(195\) 0 0
\(196\) 9.00000 0.642857
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) −18.0000 −1.26648
\(203\) −24.0000 −1.68447
\(204\) 0 0
\(205\) 6.00000 0.419058
\(206\) −4.00000 −0.278693
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) 0 0
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 6.00000 0.412082
\(213\) 0 0
\(214\) 12.0000 0.820303
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) −32.0000 −2.17230
\(218\) −10.0000 −0.677285
\(219\) 0 0
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) 20.0000 1.33930 0.669650 0.742677i \(-0.266444\pi\)
0.669650 + 0.742677i \(0.266444\pi\)
\(224\) −4.00000 −0.267261
\(225\) 0 0
\(226\) 18.0000 1.19734
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 24.0000 1.55569
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) −11.0000 −0.707107
\(243\) 0 0
\(244\) −10.0000 −0.640184
\(245\) 9.00000 0.574989
\(246\) 0 0
\(247\) −8.00000 −0.509028
\(248\) 8.00000 0.508001
\(249\) 0 0
\(250\) 1.00000 0.0632456
\(251\) 24.0000 1.51487 0.757433 0.652913i \(-0.226453\pi\)
0.757433 + 0.652913i \(0.226453\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 20.0000 1.25491
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) −8.00000 −0.497096
\(260\) 2.00000 0.124035
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 16.0000 0.981023
\(267\) 0 0
\(268\) −4.00000 −0.244339
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) −6.00000 −0.363803
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) 0 0
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) −4.00000 −0.239904
\(279\) 0 0
\(280\) −4.00000 −0.239046
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) −28.0000 −1.66443 −0.832214 0.554455i \(-0.812927\pi\)
−0.832214 + 0.554455i \(0.812927\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −24.0000 −1.41668
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 6.00000 0.352332
\(291\) 0 0
\(292\) 2.00000 0.117041
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2.00000 0.116248
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 0 0
\(300\) 0 0
\(301\) 16.0000 0.922225
\(302\) 8.00000 0.460348
\(303\) 0 0
\(304\) −4.00000 −0.229416
\(305\) −10.0000 −0.572598
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 8.00000 0.454369
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 2.00000 0.113047 0.0565233 0.998401i \(-0.481998\pi\)
0.0565233 + 0.998401i \(0.481998\pi\)
\(314\) 2.00000 0.112867
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) 0 0
\(323\) 24.0000 1.33540
\(324\) 0 0
\(325\) 2.00000 0.110940
\(326\) −4.00000 −0.221540
\(327\) 0 0
\(328\) 6.00000 0.331295
\(329\) 0 0
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) 0 0
\(335\) −4.00000 −0.218543
\(336\) 0 0
\(337\) 26.0000 1.41631 0.708155 0.706057i \(-0.249528\pi\)
0.708155 + 0.706057i \(0.249528\pi\)
\(338\) −9.00000 −0.489535
\(339\) 0 0
\(340\) −6.00000 −0.325396
\(341\) 0 0
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) −18.0000 −0.967686
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) −4.00000 −0.213809
\(351\) 0 0
\(352\) 0 0
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −18.0000 −0.953998
\(357\) 0 0
\(358\) −24.0000 −1.26844
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 14.0000 0.735824
\(363\) 0 0
\(364\) −8.00000 −0.419314
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) −28.0000 −1.46159 −0.730794 0.682598i \(-0.760850\pi\)
−0.730794 + 0.682598i \(0.760850\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 2.00000 0.103975
\(371\) −24.0000 −1.24602
\(372\) 0 0
\(373\) 26.0000 1.34623 0.673114 0.739538i \(-0.264956\pi\)
0.673114 + 0.739538i \(0.264956\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) −4.00000 −0.205196
\(381\) 0 0
\(382\) 24.0000 1.22795
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −22.0000 −1.11977
\(387\) 0 0
\(388\) 2.00000 0.101535
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 9.00000 0.454569
\(393\) 0 0
\(394\) 6.00000 0.302276
\(395\) 8.00000 0.402524
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 8.00000 0.401004
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 6.00000 0.299626 0.149813 0.988714i \(-0.452133\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(402\) 0 0
\(403\) 16.0000 0.797017
\(404\) −18.0000 −0.895533
\(405\) 0 0
\(406\) −24.0000 −1.19110
\(407\) 0 0
\(408\) 0 0
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 6.00000 0.296319
\(411\) 0 0
\(412\) −4.00000 −0.197066
\(413\) 0 0
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 2.00000 0.0980581
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 20.0000 0.973585
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) −6.00000 −0.291043
\(426\) 0 0
\(427\) 40.0000 1.93574
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) −4.00000 −0.192897
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) −32.0000 −1.53605
\(435\) 0 0
\(436\) −10.0000 −0.478913
\(437\) 0 0
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −12.0000 −0.570782
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) −18.0000 −0.853282
\(446\) 20.0000 0.947027
\(447\) 0 0
\(448\) −4.00000 −0.188982
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 18.0000 0.846649
\(453\) 0 0
\(454\) 12.0000 0.563188
\(455\) −8.00000 −0.375046
\(456\) 0 0
\(457\) 26.0000 1.21623 0.608114 0.793849i \(-0.291926\pi\)
0.608114 + 0.793849i \(0.291926\pi\)
\(458\) −10.0000 −0.467269
\(459\) 0 0
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) 18.0000 0.833834
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 24.0000 1.10004
\(477\) 0 0
\(478\) −24.0000 −1.09773
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 2.00000 0.0910975
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) 2.00000 0.0908153
\(486\) 0 0
\(487\) −28.0000 −1.26880 −0.634401 0.773004i \(-0.718753\pi\)
−0.634401 + 0.773004i \(0.718753\pi\)
\(488\) −10.0000 −0.452679
\(489\) 0 0
\(490\) 9.00000 0.406579
\(491\) −24.0000 −1.08310 −0.541552 0.840667i \(-0.682163\pi\)
−0.541552 + 0.840667i \(0.682163\pi\)
\(492\) 0 0
\(493\) −36.0000 −1.62136
\(494\) −8.00000 −0.359937
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 0 0
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) 24.0000 1.07117
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) −18.0000 −0.800989
\(506\) 0 0
\(507\) 0 0
\(508\) 20.0000 0.887357
\(509\) 6.00000 0.265945 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(510\) 0 0
\(511\) −8.00000 −0.353899
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 18.0000 0.793946
\(515\) −4.00000 −0.176261
\(516\) 0 0
\(517\) 0 0
\(518\) −8.00000 −0.351500
\(519\) 0 0
\(520\) 2.00000 0.0877058
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −48.0000 −2.09091
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 6.00000 0.260623
\(531\) 0 0
\(532\) 16.0000 0.693688
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) 12.0000 0.518805
\(536\) −4.00000 −0.172774
\(537\) 0 0
\(538\) 6.00000 0.258678
\(539\) 0 0
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) −16.0000 −0.687259
\(543\) 0 0
\(544\) −6.00000 −0.257248
\(545\) −10.0000 −0.428353
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) −6.00000 −0.256307
\(549\) 0 0
\(550\) 0 0
\(551\) −24.0000 −1.02243
\(552\) 0 0
\(553\) −32.0000 −1.36078
\(554\) 2.00000 0.0849719
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) −4.00000 −0.169031
\(561\) 0 0
\(562\) −18.0000 −0.759284
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) 0 0
\(565\) 18.0000 0.757266
\(566\) −28.0000 −1.17693
\(567\) 0 0
\(568\) 0 0
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −24.0000 −1.00174
\(575\) 0 0
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 19.0000 0.790296
\(579\) 0 0
\(580\) 6.00000 0.249136
\(581\) 48.0000 1.99138
\(582\) 0 0
\(583\) 0 0
\(584\) 2.00000 0.0827606
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) −32.0000 −1.31854
\(590\) 0 0
\(591\) 0 0
\(592\) 2.00000 0.0821995
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) 24.0000 0.983904
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) 0 0
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) 16.0000 0.652111
\(603\) 0 0
\(604\) 8.00000 0.325515
\(605\) −11.0000 −0.447214
\(606\) 0 0
\(607\) −4.00000 −0.162355 −0.0811775 0.996700i \(-0.525868\pi\)
−0.0811775 + 0.996700i \(0.525868\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) −10.0000 −0.404888
\(611\) 0 0
\(612\) 0 0
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) 20.0000 0.807134
\(615\) 0 0
\(616\) 0 0
\(617\) −30.0000 −1.20775 −0.603877 0.797077i \(-0.706378\pi\)
−0.603877 + 0.797077i \(0.706378\pi\)
\(618\) 0 0
\(619\) 44.0000 1.76851 0.884255 0.467005i \(-0.154667\pi\)
0.884255 + 0.467005i \(0.154667\pi\)
\(620\) 8.00000 0.321288
\(621\) 0 0
\(622\) 0 0
\(623\) 72.0000 2.88462
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 2.00000 0.0799361
\(627\) 0 0
\(628\) 2.00000 0.0798087
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 8.00000 0.318223
\(633\) 0 0
\(634\) −18.0000 −0.714871
\(635\) 20.0000 0.793676
\(636\) 0 0
\(637\) 18.0000 0.713186
\(638\) 0 0
\(639\) 0 0
\(640\) 1.00000 0.0395285
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 24.0000 0.944267
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 2.00000 0.0784465
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) −18.0000 −0.704394 −0.352197 0.935926i \(-0.614565\pi\)
−0.352197 + 0.935926i \(0.614565\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) 0 0
\(659\) −48.0000 −1.86981 −0.934907 0.354892i \(-0.884518\pi\)
−0.934907 + 0.354892i \(0.884518\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) −28.0000 −1.08825
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 16.0000 0.620453
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) −4.00000 −0.154533
\(671\) 0 0
\(672\) 0 0
\(673\) 26.0000 1.00223 0.501113 0.865382i \(-0.332924\pi\)
0.501113 + 0.865382i \(0.332924\pi\)
\(674\) 26.0000 1.00148
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) −8.00000 −0.307012
\(680\) −6.00000 −0.230089
\(681\) 0 0
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) −8.00000 −0.305441
\(687\) 0 0
\(688\) −4.00000 −0.152499
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) 44.0000 1.67384 0.836919 0.547326i \(-0.184354\pi\)
0.836919 + 0.547326i \(0.184354\pi\)
\(692\) −18.0000 −0.684257
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) −4.00000 −0.151729
\(696\) 0 0
\(697\) −36.0000 −1.36360
\(698\) −10.0000 −0.378506
\(699\) 0 0
\(700\) −4.00000 −0.151186
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 0 0
\(703\) −8.00000 −0.301726
\(704\) 0 0
\(705\) 0 0
\(706\) −6.00000 −0.225813
\(707\) 72.0000 2.70784
\(708\) 0 0
\(709\) 38.0000 1.42712 0.713560 0.700594i \(-0.247082\pi\)
0.713560 + 0.700594i \(0.247082\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −18.0000 −0.674579
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −24.0000 −0.896922
\(717\) 0 0
\(718\) 24.0000 0.895672
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) −3.00000 −0.111648
\(723\) 0 0
\(724\) 14.0000 0.520306
\(725\) 6.00000 0.222834
\(726\) 0 0
\(727\) −28.0000 −1.03846 −0.519231 0.854634i \(-0.673782\pi\)
−0.519231 + 0.854634i \(0.673782\pi\)
\(728\) −8.00000 −0.296500
\(729\) 0 0
\(730\) 2.00000 0.0740233
\(731\) 24.0000 0.887672
\(732\) 0 0
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) −28.0000 −1.03350
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −52.0000 −1.91285 −0.956425 0.291977i \(-0.905687\pi\)
−0.956425 + 0.291977i \(0.905687\pi\)
\(740\) 2.00000 0.0735215
\(741\) 0 0
\(742\) −24.0000 −0.881068
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) 6.00000 0.219823
\(746\) 26.0000 0.951928
\(747\) 0 0
\(748\) 0 0
\(749\) −48.0000 −1.75388
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 12.0000 0.437014
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) −4.00000 −0.145287
\(759\) 0 0
\(760\) −4.00000 −0.145095
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 0 0
\(763\) 40.0000 1.44810
\(764\) 24.0000 0.868290
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −22.0000 −0.791797
\(773\) −42.0000 −1.51064 −0.755318 0.655359i \(-0.772517\pi\)
−0.755318 + 0.655359i \(0.772517\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) 2.00000 0.0717958
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 9.00000 0.321429
\(785\) 2.00000 0.0713831
\(786\) 0 0
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) 6.00000 0.213741
\(789\) 0 0
\(790\) 8.00000 0.284627
\(791\) −72.0000 −2.56003
\(792\) 0 0
\(793\) −20.0000 −0.710221
\(794\) −22.0000 −0.780751
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) 30.0000 1.06265 0.531327 0.847167i \(-0.321693\pi\)
0.531327 + 0.847167i \(0.321693\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) 6.00000 0.211867
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 16.0000 0.563576
\(807\) 0 0
\(808\) −18.0000 −0.633238
\(809\) 54.0000 1.89854 0.949269 0.314464i \(-0.101825\pi\)
0.949269 + 0.314464i \(0.101825\pi\)
\(810\) 0 0
\(811\) −4.00000 −0.140459 −0.0702295 0.997531i \(-0.522373\pi\)
−0.0702295 + 0.997531i \(0.522373\pi\)
\(812\) −24.0000 −0.842235
\(813\) 0 0
\(814\) 0 0
\(815\) −4.00000 −0.140114
\(816\) 0 0
\(817\) 16.0000 0.559769
\(818\) 26.0000 0.909069
\(819\) 0 0
\(820\) 6.00000 0.209529
\(821\) −18.0000 −0.628204 −0.314102 0.949389i \(-0.601703\pi\)
−0.314102 + 0.949389i \(0.601703\pi\)
\(822\) 0 0
\(823\) 20.0000 0.697156 0.348578 0.937280i \(-0.386665\pi\)
0.348578 + 0.937280i \(0.386665\pi\)
\(824\) −4.00000 −0.139347
\(825\) 0 0
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) 38.0000 1.31979 0.659897 0.751356i \(-0.270600\pi\)
0.659897 + 0.751356i \(0.270600\pi\)
\(830\) −12.0000 −0.416526
\(831\) 0 0
\(832\) 2.00000 0.0693375
\(833\) −54.0000 −1.87099
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −10.0000 −0.344623
\(843\) 0 0
\(844\) 20.0000 0.688428
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) 44.0000 1.51186
\(848\) 6.00000 0.206041
\(849\) 0 0
\(850\) −6.00000 −0.205798
\(851\) 0 0
\(852\) 0 0
\(853\) −46.0000 −1.57501 −0.787505 0.616308i \(-0.788628\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) 40.0000 1.36877
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) 0 0
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) −4.00000 −0.136399
\(861\) 0 0
\(862\) 0 0
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) 0 0
\(865\) −18.0000 −0.612018
\(866\) 26.0000 0.883516
\(867\) 0 0
\(868\) −32.0000 −1.08615
\(869\) 0 0
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) −10.0000 −0.338643
\(873\) 0 0
\(874\) 0 0
\(875\) −4.00000 −0.135225
\(876\) 0 0
\(877\) 2.00000 0.0675352 0.0337676 0.999430i \(-0.489249\pi\)
0.0337676 + 0.999430i \(0.489249\pi\)
\(878\) 8.00000 0.269987
\(879\) 0 0
\(880\) 0 0
\(881\) 54.0000 1.81931 0.909653 0.415369i \(-0.136347\pi\)
0.909653 + 0.415369i \(0.136347\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) −12.0000 −0.403604
\(885\) 0 0
\(886\) −12.0000 −0.403148
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) −80.0000 −2.68311
\(890\) −18.0000 −0.603361
\(891\) 0 0
\(892\) 20.0000 0.669650
\(893\) 0 0
\(894\) 0 0
\(895\) −24.0000 −0.802232
\(896\) −4.00000 −0.133631
\(897\) 0 0
\(898\) 6.00000 0.200223
\(899\) 48.0000 1.60089
\(900\) 0 0
\(901\) −36.0000 −1.19933
\(902\) 0 0
\(903\) 0 0
\(904\) 18.0000 0.598671
\(905\) 14.0000 0.465376
\(906\) 0 0
\(907\) 44.0000 1.46100 0.730498 0.682915i \(-0.239288\pi\)
0.730498 + 0.682915i \(0.239288\pi\)
\(908\) 12.0000 0.398234
\(909\) 0 0
\(910\) −8.00000 −0.265197
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 26.0000 0.860004
\(915\) 0 0
\(916\) −10.0000 −0.330409
\(917\) 0 0
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 30.0000 0.987997
\(923\) 0 0
\(924\) 0 0
\(925\) 2.00000 0.0657596
\(926\) −4.00000 −0.131448
\(927\) 0 0
\(928\) 6.00000 0.196960
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) −36.0000 −1.17985
\(932\) 18.0000 0.589610
\(933\) 0 0
\(934\) 36.0000 1.17796
\(935\) 0 0
\(936\) 0 0
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 16.0000 0.522419
\(939\) 0 0
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −36.0000 −1.16984 −0.584921 0.811090i \(-0.698875\pi\)
−0.584921 + 0.811090i \(0.698875\pi\)
\(948\) 0 0
\(949\) 4.00000 0.129845
\(950\) −4.00000 −0.129777
\(951\) 0 0
\(952\) 24.0000 0.777844
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 24.0000 0.776622
\(956\) −24.0000 −0.776215
\(957\) 0 0
\(958\) 24.0000 0.775405
\(959\) 24.0000 0.775000
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 4.00000 0.128965
\(963\) 0 0
\(964\) 2.00000 0.0644157
\(965\) −22.0000 −0.708205
\(966\) 0 0
\(967\) −4.00000 −0.128631 −0.0643157 0.997930i \(-0.520486\pi\)
−0.0643157 + 0.997930i \(0.520486\pi\)
\(968\) −11.0000 −0.353553
\(969\) 0 0
\(970\) 2.00000 0.0642161
\(971\) −24.0000 −0.770197 −0.385098 0.922876i \(-0.625832\pi\)
−0.385098 + 0.922876i \(0.625832\pi\)
\(972\) 0 0
\(973\) 16.0000 0.512936
\(974\) −28.0000 −0.897178
\(975\) 0 0
\(976\) −10.0000 −0.320092
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 9.00000 0.287494
\(981\) 0 0
\(982\) −24.0000 −0.765871
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) −36.0000 −1.14647
\(987\) 0 0
\(988\) −8.00000 −0.254514
\(989\) 0 0
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 8.00000 0.254000
\(993\) 0 0
\(994\) 0 0
\(995\) 8.00000 0.253617
\(996\) 0 0
\(997\) 26.0000 0.823428 0.411714 0.911313i \(-0.364930\pi\)
0.411714 + 0.911313i \(0.364930\pi\)
\(998\) −4.00000 −0.126618
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.2.a.c.1.1 1
3.2 odd 2 30.2.a.a.1.1 1
4.3 odd 2 720.2.a.j.1.1 1
5.2 odd 4 450.2.c.b.199.2 2
5.3 odd 4 450.2.c.b.199.1 2
5.4 even 2 450.2.a.d.1.1 1
7.6 odd 2 4410.2.a.z.1.1 1
8.3 odd 2 2880.2.a.q.1.1 1
8.5 even 2 2880.2.a.a.1.1 1
9.2 odd 6 810.2.e.l.271.1 2
9.4 even 3 810.2.e.b.541.1 2
9.5 odd 6 810.2.e.l.541.1 2
9.7 even 3 810.2.e.b.271.1 2
12.11 even 2 240.2.a.b.1.1 1
15.2 even 4 150.2.c.a.49.1 2
15.8 even 4 150.2.c.a.49.2 2
15.14 odd 2 150.2.a.b.1.1 1
20.3 even 4 3600.2.f.i.2449.1 2
20.7 even 4 3600.2.f.i.2449.2 2
20.19 odd 2 3600.2.a.f.1.1 1
21.2 odd 6 1470.2.i.o.361.1 2
21.5 even 6 1470.2.i.q.361.1 2
21.11 odd 6 1470.2.i.o.961.1 2
21.17 even 6 1470.2.i.q.961.1 2
21.20 even 2 1470.2.a.d.1.1 1
24.5 odd 2 960.2.a.e.1.1 1
24.11 even 2 960.2.a.p.1.1 1
33.32 even 2 3630.2.a.w.1.1 1
39.5 even 4 5070.2.b.k.1351.2 2
39.8 even 4 5070.2.b.k.1351.1 2
39.38 odd 2 5070.2.a.w.1.1 1
48.5 odd 4 3840.2.k.y.1921.1 2
48.11 even 4 3840.2.k.f.1921.2 2
48.29 odd 4 3840.2.k.y.1921.2 2
48.35 even 4 3840.2.k.f.1921.1 2
51.50 odd 2 8670.2.a.g.1.1 1
60.23 odd 4 1200.2.f.e.49.1 2
60.47 odd 4 1200.2.f.e.49.2 2
60.59 even 2 1200.2.a.k.1.1 1
105.104 even 2 7350.2.a.ct.1.1 1
120.29 odd 2 4800.2.a.cq.1.1 1
120.53 even 4 4800.2.f.p.3649.1 2
120.59 even 2 4800.2.a.d.1.1 1
120.77 even 4 4800.2.f.p.3649.2 2
120.83 odd 4 4800.2.f.w.3649.2 2
120.107 odd 4 4800.2.f.w.3649.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.2.a.a.1.1 1 3.2 odd 2
90.2.a.c.1.1 1 1.1 even 1 trivial
150.2.a.b.1.1 1 15.14 odd 2
150.2.c.a.49.1 2 15.2 even 4
150.2.c.a.49.2 2 15.8 even 4
240.2.a.b.1.1 1 12.11 even 2
450.2.a.d.1.1 1 5.4 even 2
450.2.c.b.199.1 2 5.3 odd 4
450.2.c.b.199.2 2 5.2 odd 4
720.2.a.j.1.1 1 4.3 odd 2
810.2.e.b.271.1 2 9.7 even 3
810.2.e.b.541.1 2 9.4 even 3
810.2.e.l.271.1 2 9.2 odd 6
810.2.e.l.541.1 2 9.5 odd 6
960.2.a.e.1.1 1 24.5 odd 2
960.2.a.p.1.1 1 24.11 even 2
1200.2.a.k.1.1 1 60.59 even 2
1200.2.f.e.49.1 2 60.23 odd 4
1200.2.f.e.49.2 2 60.47 odd 4
1470.2.a.d.1.1 1 21.20 even 2
1470.2.i.o.361.1 2 21.2 odd 6
1470.2.i.o.961.1 2 21.11 odd 6
1470.2.i.q.361.1 2 21.5 even 6
1470.2.i.q.961.1 2 21.17 even 6
2880.2.a.a.1.1 1 8.5 even 2
2880.2.a.q.1.1 1 8.3 odd 2
3600.2.a.f.1.1 1 20.19 odd 2
3600.2.f.i.2449.1 2 20.3 even 4
3600.2.f.i.2449.2 2 20.7 even 4
3630.2.a.w.1.1 1 33.32 even 2
3840.2.k.f.1921.1 2 48.35 even 4
3840.2.k.f.1921.2 2 48.11 even 4
3840.2.k.y.1921.1 2 48.5 odd 4
3840.2.k.y.1921.2 2 48.29 odd 4
4410.2.a.z.1.1 1 7.6 odd 2
4800.2.a.d.1.1 1 120.59 even 2
4800.2.a.cq.1.1 1 120.29 odd 2
4800.2.f.p.3649.1 2 120.53 even 4
4800.2.f.p.3649.2 2 120.77 even 4
4800.2.f.w.3649.1 2 120.107 odd 4
4800.2.f.w.3649.2 2 120.83 odd 4
5070.2.a.w.1.1 1 39.38 odd 2
5070.2.b.k.1351.1 2 39.8 even 4
5070.2.b.k.1351.2 2 39.5 even 4
7350.2.a.ct.1.1 1 105.104 even 2
8670.2.a.g.1.1 1 51.50 odd 2