Properties

Label 90.18.a.k.1.2
Level $90$
Weight $18$
Character 90.1
Self dual yes
Analytic conductor $164.900$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,18,Mod(1,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.1");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 90.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(164.899878610\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{83281}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 20820 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3}\cdot 5 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(144.792\) of defining polynomial
Character \(\chi\) \(=\) 90.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+256.000 q^{2} +65536.0 q^{4} -390625. q^{5} +2.54694e7 q^{7} +1.67772e7 q^{8} -1.00000e8 q^{10} +2.81089e8 q^{11} -1.52610e9 q^{13} +6.52016e9 q^{14} +4.29497e9 q^{16} -5.46901e10 q^{17} +6.88947e8 q^{19} -2.56000e10 q^{20} +7.19587e10 q^{22} -3.91035e11 q^{23} +1.52588e11 q^{25} -3.90681e11 q^{26} +1.66916e12 q^{28} -5.12259e12 q^{29} -7.31204e10 q^{31} +1.09951e12 q^{32} -1.40007e13 q^{34} -9.94897e12 q^{35} -6.81637e12 q^{37} +1.76370e11 q^{38} -6.55360e12 q^{40} +5.76386e13 q^{41} +7.57081e13 q^{43} +1.84214e13 q^{44} -1.00105e14 q^{46} +4.60351e13 q^{47} +4.16059e14 q^{49} +3.90625e13 q^{50} -1.00014e14 q^{52} -6.58261e14 q^{53} -1.09800e14 q^{55} +4.27305e14 q^{56} -1.31138e15 q^{58} +2.98287e14 q^{59} +8.50623e14 q^{61} -1.87188e13 q^{62} +2.81475e14 q^{64} +5.96131e14 q^{65} -6.12967e15 q^{67} -3.58417e15 q^{68} -2.54694e15 q^{70} -5.41472e14 q^{71} -7.16849e15 q^{73} -1.74499e15 q^{74} +4.51508e13 q^{76} +7.15916e15 q^{77} +5.45373e15 q^{79} -1.67772e15 q^{80} +1.47555e16 q^{82} +3.64723e15 q^{83} +2.13633e16 q^{85} +1.93813e16 q^{86} +4.71589e15 q^{88} -6.81792e14 q^{89} -3.88687e16 q^{91} -2.56269e16 q^{92} +1.17850e16 q^{94} -2.69120e14 q^{95} -1.20373e17 q^{97} +1.06511e17 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 512 q^{2} + 131072 q^{4} - 781250 q^{5} + 603844 q^{7} + 33554432 q^{8} - 200000000 q^{10} + 471481296 q^{11} - 1541834228 q^{13} + 154584064 q^{14} + 8589934592 q^{16} - 32139900564 q^{17} + 128672529400 q^{19}+ \cdots + 20\!\cdots\!24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 256.000 0.707107
\(3\) 0 0
\(4\) 65536.0 0.500000
\(5\) −390625. −0.447214
\(6\) 0 0
\(7\) 2.54694e7 1.66988 0.834939 0.550342i \(-0.185503\pi\)
0.834939 + 0.550342i \(0.185503\pi\)
\(8\) 1.67772e7 0.353553
\(9\) 0 0
\(10\) −1.00000e8 −0.316228
\(11\) 2.81089e8 0.395372 0.197686 0.980265i \(-0.436657\pi\)
0.197686 + 0.980265i \(0.436657\pi\)
\(12\) 0 0
\(13\) −1.52610e9 −0.518876 −0.259438 0.965760i \(-0.583537\pi\)
−0.259438 + 0.965760i \(0.583537\pi\)
\(14\) 6.52016e9 1.18078
\(15\) 0 0
\(16\) 4.29497e9 0.250000
\(17\) −5.46901e10 −1.90148 −0.950742 0.309984i \(-0.899676\pi\)
−0.950742 + 0.309984i \(0.899676\pi\)
\(18\) 0 0
\(19\) 6.88947e8 0.00930637 0.00465318 0.999989i \(-0.498519\pi\)
0.00465318 + 0.999989i \(0.498519\pi\)
\(20\) −2.56000e10 −0.223607
\(21\) 0 0
\(22\) 7.19587e10 0.279570
\(23\) −3.91035e11 −1.04119 −0.520594 0.853804i \(-0.674290\pi\)
−0.520594 + 0.853804i \(0.674290\pi\)
\(24\) 0 0
\(25\) 1.52588e11 0.200000
\(26\) −3.90681e11 −0.366901
\(27\) 0 0
\(28\) 1.66916e12 0.834939
\(29\) −5.12259e12 −1.90154 −0.950772 0.309892i \(-0.899707\pi\)
−0.950772 + 0.309892i \(0.899707\pi\)
\(30\) 0 0
\(31\) −7.31204e10 −0.0153980 −0.00769900 0.999970i \(-0.502451\pi\)
−0.00769900 + 0.999970i \(0.502451\pi\)
\(32\) 1.09951e12 0.176777
\(33\) 0 0
\(34\) −1.40007e13 −1.34455
\(35\) −9.94897e12 −0.746792
\(36\) 0 0
\(37\) −6.81637e12 −0.319035 −0.159517 0.987195i \(-0.550994\pi\)
−0.159517 + 0.987195i \(0.550994\pi\)
\(38\) 1.76370e11 0.00658059
\(39\) 0 0
\(40\) −6.55360e12 −0.158114
\(41\) 5.76386e13 1.12733 0.563665 0.826004i \(-0.309391\pi\)
0.563665 + 0.826004i \(0.309391\pi\)
\(42\) 0 0
\(43\) 7.57081e13 0.987781 0.493890 0.869524i \(-0.335574\pi\)
0.493890 + 0.869524i \(0.335574\pi\)
\(44\) 1.84214e13 0.197686
\(45\) 0 0
\(46\) −1.00105e14 −0.736231
\(47\) 4.60351e13 0.282006 0.141003 0.990009i \(-0.454967\pi\)
0.141003 + 0.990009i \(0.454967\pi\)
\(48\) 0 0
\(49\) 4.16059e14 1.78849
\(50\) 3.90625e13 0.141421
\(51\) 0 0
\(52\) −1.00014e14 −0.259438
\(53\) −6.58261e14 −1.45229 −0.726145 0.687541i \(-0.758690\pi\)
−0.726145 + 0.687541i \(0.758690\pi\)
\(54\) 0 0
\(55\) −1.09800e14 −0.176816
\(56\) 4.27305e14 0.590391
\(57\) 0 0
\(58\) −1.31138e15 −1.34459
\(59\) 2.98287e14 0.264479 0.132240 0.991218i \(-0.457783\pi\)
0.132240 + 0.991218i \(0.457783\pi\)
\(60\) 0 0
\(61\) 8.50623e14 0.568111 0.284056 0.958808i \(-0.408320\pi\)
0.284056 + 0.958808i \(0.408320\pi\)
\(62\) −1.87188e13 −0.0108880
\(63\) 0 0
\(64\) 2.81475e14 0.125000
\(65\) 5.96131e14 0.232048
\(66\) 0 0
\(67\) −6.12967e15 −1.84417 −0.922085 0.386987i \(-0.873516\pi\)
−0.922085 + 0.386987i \(0.873516\pi\)
\(68\) −3.58417e15 −0.950742
\(69\) 0 0
\(70\) −2.54694e15 −0.528062
\(71\) −5.41472e14 −0.0995131 −0.0497565 0.998761i \(-0.515845\pi\)
−0.0497565 + 0.998761i \(0.515845\pi\)
\(72\) 0 0
\(73\) −7.16849e15 −1.04036 −0.520180 0.854057i \(-0.674135\pi\)
−0.520180 + 0.854057i \(0.674135\pi\)
\(74\) −1.74499e15 −0.225592
\(75\) 0 0
\(76\) 4.51508e13 0.00465318
\(77\) 7.15916e15 0.660223
\(78\) 0 0
\(79\) 5.45373e15 0.404448 0.202224 0.979339i \(-0.435183\pi\)
0.202224 + 0.979339i \(0.435183\pi\)
\(80\) −1.67772e15 −0.111803
\(81\) 0 0
\(82\) 1.47555e16 0.797142
\(83\) 3.64723e15 0.177746 0.0888728 0.996043i \(-0.471674\pi\)
0.0888728 + 0.996043i \(0.471674\pi\)
\(84\) 0 0
\(85\) 2.13633e16 0.850369
\(86\) 1.93813e16 0.698467
\(87\) 0 0
\(88\) 4.71589e15 0.139785
\(89\) −6.81792e14 −0.0183585 −0.00917925 0.999958i \(-0.502922\pi\)
−0.00917925 + 0.999958i \(0.502922\pi\)
\(90\) 0 0
\(91\) −3.88687e16 −0.866460
\(92\) −2.56269e16 −0.520594
\(93\) 0 0
\(94\) 1.17850e16 0.199408
\(95\) −2.69120e14 −0.00416193
\(96\) 0 0
\(97\) −1.20373e17 −1.55944 −0.779720 0.626129i \(-0.784638\pi\)
−0.779720 + 0.626129i \(0.784638\pi\)
\(98\) 1.06511e17 1.26466
\(99\) 0 0
\(100\) 1.00000e16 0.100000
\(101\) −7.74092e16 −0.711314 −0.355657 0.934617i \(-0.615743\pi\)
−0.355657 + 0.934617i \(0.615743\pi\)
\(102\) 0 0
\(103\) −1.39309e17 −1.08359 −0.541793 0.840512i \(-0.682254\pi\)
−0.541793 + 0.840512i \(0.682254\pi\)
\(104\) −2.56037e16 −0.183450
\(105\) 0 0
\(106\) −1.68515e17 −1.02692
\(107\) −2.75662e17 −1.55101 −0.775505 0.631341i \(-0.782505\pi\)
−0.775505 + 0.631341i \(0.782505\pi\)
\(108\) 0 0
\(109\) 1.37550e17 0.661202 0.330601 0.943771i \(-0.392749\pi\)
0.330601 + 0.943771i \(0.392749\pi\)
\(110\) −2.81089e16 −0.125028
\(111\) 0 0
\(112\) 1.09390e17 0.417470
\(113\) 3.90258e17 1.38097 0.690486 0.723345i \(-0.257396\pi\)
0.690486 + 0.723345i \(0.257396\pi\)
\(114\) 0 0
\(115\) 1.52748e17 0.465634
\(116\) −3.35714e17 −0.950772
\(117\) 0 0
\(118\) 7.63614e16 0.187015
\(119\) −1.39292e18 −3.17525
\(120\) 0 0
\(121\) −4.26436e17 −0.843681
\(122\) 2.17759e17 0.401715
\(123\) 0 0
\(124\) −4.79202e15 −0.00769900
\(125\) −5.96046e16 −0.0894427
\(126\) 0 0
\(127\) −7.37824e17 −0.967433 −0.483717 0.875225i \(-0.660713\pi\)
−0.483717 + 0.875225i \(0.660713\pi\)
\(128\) 7.20576e16 0.0883883
\(129\) 0 0
\(130\) 1.52610e17 0.164083
\(131\) 1.45408e18 1.46482 0.732409 0.680865i \(-0.238396\pi\)
0.732409 + 0.680865i \(0.238396\pi\)
\(132\) 0 0
\(133\) 1.75470e16 0.0155405
\(134\) −1.56919e18 −1.30403
\(135\) 0 0
\(136\) −9.17547e17 −0.672276
\(137\) 2.27534e18 1.56647 0.783236 0.621725i \(-0.213568\pi\)
0.783236 + 0.621725i \(0.213568\pi\)
\(138\) 0 0
\(139\) 1.41598e17 0.0861849 0.0430924 0.999071i \(-0.486279\pi\)
0.0430924 + 0.999071i \(0.486279\pi\)
\(140\) −6.52016e17 −0.373396
\(141\) 0 0
\(142\) −1.38617e17 −0.0703664
\(143\) −4.28969e17 −0.205149
\(144\) 0 0
\(145\) 2.00101e18 0.850396
\(146\) −1.83513e18 −0.735646
\(147\) 0 0
\(148\) −4.46717e17 −0.159517
\(149\) 1.31089e18 0.442063 0.221032 0.975267i \(-0.429058\pi\)
0.221032 + 0.975267i \(0.429058\pi\)
\(150\) 0 0
\(151\) −2.76548e18 −0.832658 −0.416329 0.909214i \(-0.636684\pi\)
−0.416329 + 0.909214i \(0.636684\pi\)
\(152\) 1.15586e16 0.00329030
\(153\) 0 0
\(154\) 1.83274e18 0.466848
\(155\) 2.85627e16 0.00688619
\(156\) 0 0
\(157\) −3.81235e18 −0.824225 −0.412112 0.911133i \(-0.635209\pi\)
−0.412112 + 0.911133i \(0.635209\pi\)
\(158\) 1.39615e18 0.285988
\(159\) 0 0
\(160\) −4.29497e17 −0.0790569
\(161\) −9.95942e18 −1.73866
\(162\) 0 0
\(163\) 1.03773e19 1.63114 0.815570 0.578658i \(-0.196423\pi\)
0.815570 + 0.578658i \(0.196423\pi\)
\(164\) 3.77740e18 0.563665
\(165\) 0 0
\(166\) 9.33690e17 0.125685
\(167\) −1.21920e19 −1.55949 −0.779747 0.626095i \(-0.784652\pi\)
−0.779747 + 0.626095i \(0.784652\pi\)
\(168\) 0 0
\(169\) −6.32145e18 −0.730768
\(170\) 5.46901e18 0.601302
\(171\) 0 0
\(172\) 4.96161e18 0.493890
\(173\) 3.88210e18 0.367853 0.183927 0.982940i \(-0.441119\pi\)
0.183927 + 0.982940i \(0.441119\pi\)
\(174\) 0 0
\(175\) 3.88632e18 0.333976
\(176\) 1.20727e18 0.0988430
\(177\) 0 0
\(178\) −1.74539e17 −0.0129814
\(179\) 1.62354e19 1.15136 0.575680 0.817675i \(-0.304737\pi\)
0.575680 + 0.817675i \(0.304737\pi\)
\(180\) 0 0
\(181\) −2.32195e19 −1.49825 −0.749127 0.662427i \(-0.769527\pi\)
−0.749127 + 0.662427i \(0.769527\pi\)
\(182\) −9.95039e18 −0.612680
\(183\) 0 0
\(184\) −6.56048e18 −0.368116
\(185\) 2.66264e18 0.142677
\(186\) 0 0
\(187\) −1.53728e19 −0.751793
\(188\) 3.01696e18 0.141003
\(189\) 0 0
\(190\) −6.88947e16 −0.00294293
\(191\) −4.47928e19 −1.82989 −0.914944 0.403580i \(-0.867766\pi\)
−0.914944 + 0.403580i \(0.867766\pi\)
\(192\) 0 0
\(193\) 3.61154e19 1.35038 0.675189 0.737645i \(-0.264062\pi\)
0.675189 + 0.737645i \(0.264062\pi\)
\(194\) −3.08154e19 −1.10269
\(195\) 0 0
\(196\) 2.72668e19 0.894247
\(197\) 1.80503e19 0.566920 0.283460 0.958984i \(-0.408518\pi\)
0.283460 + 0.958984i \(0.408518\pi\)
\(198\) 0 0
\(199\) −6.39636e18 −0.184366 −0.0921832 0.995742i \(-0.529385\pi\)
−0.0921832 + 0.995742i \(0.529385\pi\)
\(200\) 2.56000e18 0.0707107
\(201\) 0 0
\(202\) −1.98168e19 −0.502975
\(203\) −1.30469e20 −3.17535
\(204\) 0 0
\(205\) −2.25151e19 −0.504157
\(206\) −3.56631e19 −0.766211
\(207\) 0 0
\(208\) −6.55453e18 −0.129719
\(209\) 1.93655e17 0.00367948
\(210\) 0 0
\(211\) 7.72101e18 0.135292 0.0676462 0.997709i \(-0.478451\pi\)
0.0676462 + 0.997709i \(0.478451\pi\)
\(212\) −4.31398e19 −0.726145
\(213\) 0 0
\(214\) −7.05695e19 −1.09673
\(215\) −2.95735e19 −0.441749
\(216\) 0 0
\(217\) −1.86233e18 −0.0257128
\(218\) 3.52127e19 0.467541
\(219\) 0 0
\(220\) −7.19587e18 −0.0884078
\(221\) 8.34623e19 0.986634
\(222\) 0 0
\(223\) −1.08588e20 −1.18902 −0.594510 0.804088i \(-0.702654\pi\)
−0.594510 + 0.804088i \(0.702654\pi\)
\(224\) 2.80039e19 0.295196
\(225\) 0 0
\(226\) 9.99061e19 0.976495
\(227\) −1.95539e19 −0.184083 −0.0920415 0.995755i \(-0.529339\pi\)
−0.0920415 + 0.995755i \(0.529339\pi\)
\(228\) 0 0
\(229\) 1.20601e20 1.05378 0.526890 0.849933i \(-0.323358\pi\)
0.526890 + 0.849933i \(0.323358\pi\)
\(230\) 3.91035e19 0.329253
\(231\) 0 0
\(232\) −8.59427e19 −0.672297
\(233\) −7.20388e19 −0.543302 −0.271651 0.962396i \(-0.587570\pi\)
−0.271651 + 0.962396i \(0.587570\pi\)
\(234\) 0 0
\(235\) −1.79825e19 −0.126117
\(236\) 1.95485e19 0.132240
\(237\) 0 0
\(238\) −3.56588e20 −2.24524
\(239\) −1.70425e20 −1.03550 −0.517750 0.855532i \(-0.673230\pi\)
−0.517750 + 0.855532i \(0.673230\pi\)
\(240\) 0 0
\(241\) −1.71129e20 −0.968679 −0.484340 0.874880i \(-0.660940\pi\)
−0.484340 + 0.874880i \(0.660940\pi\)
\(242\) −1.09168e20 −0.596573
\(243\) 0 0
\(244\) 5.57464e19 0.284056
\(245\) −1.62523e20 −0.799839
\(246\) 0 0
\(247\) −1.05140e18 −0.00482885
\(248\) −1.22676e18 −0.00544401
\(249\) 0 0
\(250\) −1.52588e19 −0.0632456
\(251\) −1.85831e20 −0.744546 −0.372273 0.928123i \(-0.621422\pi\)
−0.372273 + 0.928123i \(0.621422\pi\)
\(252\) 0 0
\(253\) −1.09916e20 −0.411657
\(254\) −1.88883e20 −0.684078
\(255\) 0 0
\(256\) 1.84467e19 0.0625000
\(257\) −1.68273e19 −0.0551547 −0.0275773 0.999620i \(-0.508779\pi\)
−0.0275773 + 0.999620i \(0.508779\pi\)
\(258\) 0 0
\(259\) −1.73609e20 −0.532750
\(260\) 3.90681e19 0.116024
\(261\) 0 0
\(262\) 3.72245e20 1.03578
\(263\) −2.77268e20 −0.746924 −0.373462 0.927645i \(-0.621829\pi\)
−0.373462 + 0.927645i \(0.621829\pi\)
\(264\) 0 0
\(265\) 2.57133e20 0.649484
\(266\) 4.49204e18 0.0109888
\(267\) 0 0
\(268\) −4.01714e20 −0.922085
\(269\) −9.40799e19 −0.209220 −0.104610 0.994513i \(-0.533359\pi\)
−0.104610 + 0.994513i \(0.533359\pi\)
\(270\) 0 0
\(271\) −6.17628e20 −1.28970 −0.644849 0.764310i \(-0.723080\pi\)
−0.644849 + 0.764310i \(0.723080\pi\)
\(272\) −2.34892e20 −0.475371
\(273\) 0 0
\(274\) 5.82488e20 1.10766
\(275\) 4.28907e19 0.0790744
\(276\) 0 0
\(277\) −6.67865e20 −1.15774 −0.578869 0.815420i \(-0.696506\pi\)
−0.578869 + 0.815420i \(0.696506\pi\)
\(278\) 3.62491e19 0.0609419
\(279\) 0 0
\(280\) −1.66916e20 −0.264031
\(281\) 1.13640e20 0.174393 0.0871963 0.996191i \(-0.472209\pi\)
0.0871963 + 0.996191i \(0.472209\pi\)
\(282\) 0 0
\(283\) −3.76957e20 −0.544637 −0.272318 0.962207i \(-0.587790\pi\)
−0.272318 + 0.962207i \(0.587790\pi\)
\(284\) −3.54859e19 −0.0497565
\(285\) 0 0
\(286\) −1.09816e20 −0.145062
\(287\) 1.46802e21 1.88250
\(288\) 0 0
\(289\) 2.16376e21 2.61564
\(290\) 5.12259e20 0.601321
\(291\) 0 0
\(292\) −4.69794e20 −0.520180
\(293\) 3.57350e20 0.384344 0.192172 0.981361i \(-0.438447\pi\)
0.192172 + 0.981361i \(0.438447\pi\)
\(294\) 0 0
\(295\) −1.16518e20 −0.118279
\(296\) −1.14360e20 −0.112796
\(297\) 0 0
\(298\) 3.35589e20 0.312586
\(299\) 5.96757e20 0.540247
\(300\) 0 0
\(301\) 1.92824e21 1.64947
\(302\) −7.07963e20 −0.588778
\(303\) 0 0
\(304\) 2.95900e18 0.00232659
\(305\) −3.32275e20 −0.254067
\(306\) 0 0
\(307\) 2.25658e21 1.63220 0.816102 0.577908i \(-0.196131\pi\)
0.816102 + 0.577908i \(0.196131\pi\)
\(308\) 4.69182e20 0.330112
\(309\) 0 0
\(310\) 7.31204e18 0.00486927
\(311\) −5.76844e20 −0.373762 −0.186881 0.982383i \(-0.559838\pi\)
−0.186881 + 0.982383i \(0.559838\pi\)
\(312\) 0 0
\(313\) 2.63218e21 1.61506 0.807530 0.589827i \(-0.200804\pi\)
0.807530 + 0.589827i \(0.200804\pi\)
\(314\) −9.75961e20 −0.582815
\(315\) 0 0
\(316\) 3.57415e20 0.202224
\(317\) 9.95998e20 0.548599 0.274299 0.961644i \(-0.411554\pi\)
0.274299 + 0.961644i \(0.411554\pi\)
\(318\) 0 0
\(319\) −1.43990e21 −0.751817
\(320\) −1.09951e20 −0.0559017
\(321\) 0 0
\(322\) −2.54961e21 −1.22942
\(323\) −3.76786e19 −0.0176959
\(324\) 0 0
\(325\) −2.32864e20 −0.103775
\(326\) 2.65660e21 1.15339
\(327\) 0 0
\(328\) 9.67016e20 0.398571
\(329\) 1.17249e21 0.470915
\(330\) 0 0
\(331\) −3.56520e21 −1.36002 −0.680011 0.733202i \(-0.738025\pi\)
−0.680011 + 0.733202i \(0.738025\pi\)
\(332\) 2.39025e20 0.0888728
\(333\) 0 0
\(334\) −3.12114e21 −1.10273
\(335\) 2.39440e21 0.824738
\(336\) 0 0
\(337\) 3.65283e20 0.119612 0.0598060 0.998210i \(-0.480952\pi\)
0.0598060 + 0.998210i \(0.480952\pi\)
\(338\) −1.61829e21 −0.516731
\(339\) 0 0
\(340\) 1.40007e21 0.425185
\(341\) −2.05533e19 −0.00608793
\(342\) 0 0
\(343\) 4.67180e21 1.31669
\(344\) 1.27017e21 0.349233
\(345\) 0 0
\(346\) 9.93818e20 0.260112
\(347\) 2.06934e21 0.528483 0.264242 0.964457i \(-0.414878\pi\)
0.264242 + 0.964457i \(0.414878\pi\)
\(348\) 0 0
\(349\) 3.13803e20 0.0763204 0.0381602 0.999272i \(-0.487850\pi\)
0.0381602 + 0.999272i \(0.487850\pi\)
\(350\) 9.94897e20 0.236157
\(351\) 0 0
\(352\) 3.09060e20 0.0698925
\(353\) 6.87901e21 1.51859 0.759296 0.650746i \(-0.225544\pi\)
0.759296 + 0.650746i \(0.225544\pi\)
\(354\) 0 0
\(355\) 2.11513e20 0.0445036
\(356\) −4.46820e19 −0.00917925
\(357\) 0 0
\(358\) 4.15625e21 0.814134
\(359\) 9.50907e21 1.81901 0.909505 0.415693i \(-0.136461\pi\)
0.909505 + 0.415693i \(0.136461\pi\)
\(360\) 0 0
\(361\) −5.47991e21 −0.999913
\(362\) −5.94420e21 −1.05943
\(363\) 0 0
\(364\) −2.54730e21 −0.433230
\(365\) 2.80019e21 0.465263
\(366\) 0 0
\(367\) 1.88008e20 0.0298205 0.0149103 0.999889i \(-0.495254\pi\)
0.0149103 + 0.999889i \(0.495254\pi\)
\(368\) −1.67948e21 −0.260297
\(369\) 0 0
\(370\) 6.81637e20 0.100888
\(371\) −1.67655e22 −2.42515
\(372\) 0 0
\(373\) 9.66745e20 0.133594 0.0667970 0.997767i \(-0.478722\pi\)
0.0667970 + 0.997767i \(0.478722\pi\)
\(374\) −3.93543e21 −0.531598
\(375\) 0 0
\(376\) 7.72342e20 0.0997040
\(377\) 7.81756e21 0.986665
\(378\) 0 0
\(379\) 1.09478e22 1.32097 0.660484 0.750840i \(-0.270351\pi\)
0.660484 + 0.750840i \(0.270351\pi\)
\(380\) −1.76370e19 −0.00208097
\(381\) 0 0
\(382\) −1.14670e22 −1.29393
\(383\) 9.48135e21 1.04636 0.523179 0.852223i \(-0.324746\pi\)
0.523179 + 0.852223i \(0.324746\pi\)
\(384\) 0 0
\(385\) −2.79655e21 −0.295261
\(386\) 9.24554e21 0.954861
\(387\) 0 0
\(388\) −7.88875e21 −0.779720
\(389\) −8.68048e21 −0.839406 −0.419703 0.907661i \(-0.637866\pi\)
−0.419703 + 0.907661i \(0.637866\pi\)
\(390\) 0 0
\(391\) 2.13857e22 1.97980
\(392\) 6.98030e21 0.632328
\(393\) 0 0
\(394\) 4.62088e21 0.400873
\(395\) −2.13036e21 −0.180875
\(396\) 0 0
\(397\) −5.61938e21 −0.457055 −0.228528 0.973537i \(-0.573391\pi\)
−0.228528 + 0.973537i \(0.573391\pi\)
\(398\) −1.63747e21 −0.130367
\(399\) 0 0
\(400\) 6.55360e20 0.0500000
\(401\) 4.97857e21 0.371858 0.185929 0.982563i \(-0.440470\pi\)
0.185929 + 0.982563i \(0.440470\pi\)
\(402\) 0 0
\(403\) 1.11589e20 0.00798965
\(404\) −5.07309e21 −0.355657
\(405\) 0 0
\(406\) −3.34001e22 −2.24531
\(407\) −1.91600e21 −0.126137
\(408\) 0 0
\(409\) 2.65693e20 0.0167777 0.00838883 0.999965i \(-0.497330\pi\)
0.00838883 + 0.999965i \(0.497330\pi\)
\(410\) −5.76386e21 −0.356493
\(411\) 0 0
\(412\) −9.12977e21 −0.541793
\(413\) 7.59717e21 0.441648
\(414\) 0 0
\(415\) −1.42470e21 −0.0794903
\(416\) −1.67796e21 −0.0917252
\(417\) 0 0
\(418\) 4.95757e19 0.00260178
\(419\) −1.71242e22 −0.880626 −0.440313 0.897844i \(-0.645133\pi\)
−0.440313 + 0.897844i \(0.645133\pi\)
\(420\) 0 0
\(421\) 2.71839e22 1.34250 0.671249 0.741231i \(-0.265758\pi\)
0.671249 + 0.741231i \(0.265758\pi\)
\(422\) 1.97658e21 0.0956662
\(423\) 0 0
\(424\) −1.10438e22 −0.513462
\(425\) −8.34504e21 −0.380297
\(426\) 0 0
\(427\) 2.16648e22 0.948677
\(428\) −1.80658e22 −0.775505
\(429\) 0 0
\(430\) −7.57081e21 −0.312364
\(431\) 2.34759e22 0.949656 0.474828 0.880079i \(-0.342510\pi\)
0.474828 + 0.880079i \(0.342510\pi\)
\(432\) 0 0
\(433\) −1.88732e22 −0.734003 −0.367002 0.930220i \(-0.619616\pi\)
−0.367002 + 0.930220i \(0.619616\pi\)
\(434\) −4.76757e20 −0.0181817
\(435\) 0 0
\(436\) 9.01446e21 0.330601
\(437\) −2.69402e20 −0.00968968
\(438\) 0 0
\(439\) 5.51895e22 1.90945 0.954724 0.297494i \(-0.0961509\pi\)
0.954724 + 0.297494i \(0.0961509\pi\)
\(440\) −1.84214e21 −0.0625138
\(441\) 0 0
\(442\) 2.13664e22 0.697656
\(443\) 1.20735e22 0.386723 0.193362 0.981128i \(-0.438061\pi\)
0.193362 + 0.981128i \(0.438061\pi\)
\(444\) 0 0
\(445\) 2.66325e20 0.00821017
\(446\) −2.77984e22 −0.840764
\(447\) 0 0
\(448\) 7.16899e21 0.208735
\(449\) −2.57466e22 −0.735573 −0.367787 0.929910i \(-0.619884\pi\)
−0.367787 + 0.929910i \(0.619884\pi\)
\(450\) 0 0
\(451\) 1.62016e22 0.445714
\(452\) 2.55760e22 0.690486
\(453\) 0 0
\(454\) −5.00580e21 −0.130166
\(455\) 1.51831e22 0.387493
\(456\) 0 0
\(457\) −1.01069e22 −0.248503 −0.124252 0.992251i \(-0.539653\pi\)
−0.124252 + 0.992251i \(0.539653\pi\)
\(458\) 3.08739e22 0.745136
\(459\) 0 0
\(460\) 1.00105e22 0.232817
\(461\) −1.68599e21 −0.0384942 −0.0192471 0.999815i \(-0.506127\pi\)
−0.0192471 + 0.999815i \(0.506127\pi\)
\(462\) 0 0
\(463\) −2.77945e22 −0.611674 −0.305837 0.952084i \(-0.598936\pi\)
−0.305837 + 0.952084i \(0.598936\pi\)
\(464\) −2.20013e22 −0.475386
\(465\) 0 0
\(466\) −1.84419e22 −0.384172
\(467\) −8.26643e22 −1.69093 −0.845463 0.534034i \(-0.820676\pi\)
−0.845463 + 0.534034i \(0.820676\pi\)
\(468\) 0 0
\(469\) −1.56119e23 −3.07954
\(470\) −4.60351e21 −0.0891780
\(471\) 0 0
\(472\) 5.00442e21 0.0935075
\(473\) 2.12807e22 0.390541
\(474\) 0 0
\(475\) 1.05125e20 0.00186127
\(476\) −9.12865e22 −1.58762
\(477\) 0 0
\(478\) −4.36287e22 −0.732209
\(479\) −2.59191e22 −0.427335 −0.213667 0.976906i \(-0.568541\pi\)
−0.213667 + 0.976906i \(0.568541\pi\)
\(480\) 0 0
\(481\) 1.04024e22 0.165540
\(482\) −4.38091e22 −0.684960
\(483\) 0 0
\(484\) −2.79469e22 −0.421841
\(485\) 4.70206e22 0.697403
\(486\) 0 0
\(487\) −4.14828e22 −0.594116 −0.297058 0.954859i \(-0.596006\pi\)
−0.297058 + 0.954859i \(0.596006\pi\)
\(488\) 1.42711e22 0.200858
\(489\) 0 0
\(490\) −4.16059e22 −0.565572
\(491\) −3.08644e22 −0.412349 −0.206174 0.978515i \(-0.566101\pi\)
−0.206174 + 0.978515i \(0.566101\pi\)
\(492\) 0 0
\(493\) 2.80155e23 3.61575
\(494\) −2.69158e20 −0.00341451
\(495\) 0 0
\(496\) −3.14050e20 −0.00384950
\(497\) −1.37910e22 −0.166175
\(498\) 0 0
\(499\) 3.24182e22 0.377516 0.188758 0.982024i \(-0.439554\pi\)
0.188758 + 0.982024i \(0.439554\pi\)
\(500\) −3.90625e21 −0.0447214
\(501\) 0 0
\(502\) −4.75728e22 −0.526474
\(503\) −6.39324e22 −0.695654 −0.347827 0.937559i \(-0.613080\pi\)
−0.347827 + 0.937559i \(0.613080\pi\)
\(504\) 0 0
\(505\) 3.02380e22 0.318109
\(506\) −2.81384e22 −0.291085
\(507\) 0 0
\(508\) −4.83540e22 −0.483717
\(509\) 9.33355e22 0.918218 0.459109 0.888380i \(-0.348169\pi\)
0.459109 + 0.888380i \(0.348169\pi\)
\(510\) 0 0
\(511\) −1.82577e23 −1.73728
\(512\) 4.72237e21 0.0441942
\(513\) 0 0
\(514\) −4.30778e21 −0.0390003
\(515\) 5.44176e22 0.484594
\(516\) 0 0
\(517\) 1.29400e22 0.111497
\(518\) −4.44438e22 −0.376711
\(519\) 0 0
\(520\) 1.00014e22 0.0820415
\(521\) −3.30201e22 −0.266476 −0.133238 0.991084i \(-0.542537\pi\)
−0.133238 + 0.991084i \(0.542537\pi\)
\(522\) 0 0
\(523\) 4.06002e22 0.317149 0.158575 0.987347i \(-0.449310\pi\)
0.158575 + 0.987347i \(0.449310\pi\)
\(524\) 9.52948e22 0.732409
\(525\) 0 0
\(526\) −7.09807e22 −0.528155
\(527\) 3.99896e21 0.0292790
\(528\) 0 0
\(529\) 1.18585e22 0.0840729
\(530\) 6.58261e22 0.459255
\(531\) 0 0
\(532\) 1.14996e21 0.00777025
\(533\) −8.79621e22 −0.584944
\(534\) 0 0
\(535\) 1.07680e23 0.693633
\(536\) −1.02839e23 −0.652013
\(537\) 0 0
\(538\) −2.40844e22 −0.147941
\(539\) 1.16949e23 0.707121
\(540\) 0 0
\(541\) −4.20460e22 −0.246347 −0.123174 0.992385i \(-0.539307\pi\)
−0.123174 + 0.992385i \(0.539307\pi\)
\(542\) −1.58113e23 −0.911954
\(543\) 0 0
\(544\) −6.01324e22 −0.336138
\(545\) −5.37303e22 −0.295699
\(546\) 0 0
\(547\) −2.01110e23 −1.07285 −0.536427 0.843947i \(-0.680226\pi\)
−0.536427 + 0.843947i \(0.680226\pi\)
\(548\) 1.49117e23 0.783236
\(549\) 0 0
\(550\) 1.09800e22 0.0559140
\(551\) −3.52919e21 −0.0176965
\(552\) 0 0
\(553\) 1.38903e23 0.675380
\(554\) −1.70973e23 −0.818645
\(555\) 0 0
\(556\) 9.27976e21 0.0430924
\(557\) −1.46727e23 −0.671030 −0.335515 0.942035i \(-0.608910\pi\)
−0.335515 + 0.942035i \(0.608910\pi\)
\(558\) 0 0
\(559\) −1.15538e23 −0.512536
\(560\) −4.27305e22 −0.186698
\(561\) 0 0
\(562\) 2.90919e22 0.123314
\(563\) 3.39706e23 1.41834 0.709172 0.705036i \(-0.249069\pi\)
0.709172 + 0.705036i \(0.249069\pi\)
\(564\) 0 0
\(565\) −1.52445e23 −0.617590
\(566\) −9.65010e22 −0.385116
\(567\) 0 0
\(568\) −9.08439e21 −0.0351832
\(569\) −2.72602e23 −1.04010 −0.520050 0.854136i \(-0.674087\pi\)
−0.520050 + 0.854136i \(0.674087\pi\)
\(570\) 0 0
\(571\) −2.79882e22 −0.103650 −0.0518249 0.998656i \(-0.516504\pi\)
−0.0518249 + 0.998656i \(0.516504\pi\)
\(572\) −2.81129e22 −0.102574
\(573\) 0 0
\(574\) 3.75813e23 1.33113
\(575\) −5.96672e22 −0.208238
\(576\) 0 0
\(577\) 3.86678e23 1.31025 0.655127 0.755519i \(-0.272615\pi\)
0.655127 + 0.755519i \(0.272615\pi\)
\(578\) 5.53923e23 1.84954
\(579\) 0 0
\(580\) 1.31138e23 0.425198
\(581\) 9.28926e22 0.296814
\(582\) 0 0
\(583\) −1.85030e23 −0.574195
\(584\) −1.20267e23 −0.367823
\(585\) 0 0
\(586\) 9.14817e22 0.271772
\(587\) −3.64152e23 −1.06625 −0.533125 0.846036i \(-0.678983\pi\)
−0.533125 + 0.846036i \(0.678983\pi\)
\(588\) 0 0
\(589\) −5.03761e19 −0.000143299 0
\(590\) −2.98287e22 −0.0836357
\(591\) 0 0
\(592\) −2.92761e22 −0.0797587
\(593\) 6.86689e23 1.84415 0.922073 0.387017i \(-0.126494\pi\)
0.922073 + 0.387017i \(0.126494\pi\)
\(594\) 0 0
\(595\) 5.44110e23 1.42001
\(596\) 8.59108e22 0.221032
\(597\) 0 0
\(598\) 1.52770e23 0.382013
\(599\) 3.82850e23 0.943846 0.471923 0.881640i \(-0.343560\pi\)
0.471923 + 0.881640i \(0.343560\pi\)
\(600\) 0 0
\(601\) −2.66402e23 −0.638417 −0.319209 0.947684i \(-0.603417\pi\)
−0.319209 + 0.947684i \(0.603417\pi\)
\(602\) 4.93629e23 1.16635
\(603\) 0 0
\(604\) −1.81239e23 −0.416329
\(605\) 1.66577e23 0.377306
\(606\) 0 0
\(607\) −1.11277e23 −0.245076 −0.122538 0.992464i \(-0.539103\pi\)
−0.122538 + 0.992464i \(0.539103\pi\)
\(608\) 7.57505e20 0.00164515
\(609\) 0 0
\(610\) −8.50623e22 −0.179653
\(611\) −7.02541e22 −0.146326
\(612\) 0 0
\(613\) −3.91229e23 −0.792532 −0.396266 0.918136i \(-0.629694\pi\)
−0.396266 + 0.918136i \(0.629694\pi\)
\(614\) 5.77684e23 1.15414
\(615\) 0 0
\(616\) 1.20111e23 0.233424
\(617\) 5.72626e23 1.09761 0.548804 0.835951i \(-0.315083\pi\)
0.548804 + 0.835951i \(0.315083\pi\)
\(618\) 0 0
\(619\) 7.86155e23 1.46601 0.733007 0.680222i \(-0.238116\pi\)
0.733007 + 0.680222i \(0.238116\pi\)
\(620\) 1.87188e21 0.00344310
\(621\) 0 0
\(622\) −1.47672e23 −0.264290
\(623\) −1.73648e22 −0.0306565
\(624\) 0 0
\(625\) 2.32831e22 0.0400000
\(626\) 6.73838e23 1.14202
\(627\) 0 0
\(628\) −2.49846e23 −0.412112
\(629\) 3.72788e23 0.606640
\(630\) 0 0
\(631\) 6.52712e23 1.03389 0.516943 0.856020i \(-0.327070\pi\)
0.516943 + 0.856020i \(0.327070\pi\)
\(632\) 9.14983e22 0.142994
\(633\) 0 0
\(634\) 2.54975e23 0.387918
\(635\) 2.88212e23 0.432649
\(636\) 0 0
\(637\) −6.34945e23 −0.928007
\(638\) −3.68615e23 −0.531615
\(639\) 0 0
\(640\) −2.81475e22 −0.0395285
\(641\) −7.10734e23 −0.984950 −0.492475 0.870327i \(-0.663908\pi\)
−0.492475 + 0.870327i \(0.663908\pi\)
\(642\) 0 0
\(643\) 2.34278e23 0.316183 0.158092 0.987424i \(-0.449466\pi\)
0.158092 + 0.987424i \(0.449466\pi\)
\(644\) −6.52701e23 −0.869329
\(645\) 0 0
\(646\) −9.64571e21 −0.0125129
\(647\) −1.50806e23 −0.193078 −0.0965391 0.995329i \(-0.530777\pi\)
−0.0965391 + 0.995329i \(0.530777\pi\)
\(648\) 0 0
\(649\) 8.38450e22 0.104568
\(650\) −5.96131e22 −0.0733801
\(651\) 0 0
\(652\) 6.80089e23 0.815570
\(653\) −6.74375e22 −0.0798251 −0.0399126 0.999203i \(-0.512708\pi\)
−0.0399126 + 0.999203i \(0.512708\pi\)
\(654\) 0 0
\(655\) −5.68001e23 −0.655086
\(656\) 2.47556e23 0.281832
\(657\) 0 0
\(658\) 3.00157e23 0.332987
\(659\) −7.11301e22 −0.0778981 −0.0389491 0.999241i \(-0.512401\pi\)
−0.0389491 + 0.999241i \(0.512401\pi\)
\(660\) 0 0
\(661\) 1.69805e24 1.81233 0.906164 0.422926i \(-0.138997\pi\)
0.906164 + 0.422926i \(0.138997\pi\)
\(662\) −9.12691e23 −0.961680
\(663\) 0 0
\(664\) 6.11903e22 0.0628426
\(665\) −6.85431e21 −0.00694992
\(666\) 0 0
\(667\) 2.00311e24 1.97986
\(668\) −7.99012e23 −0.779747
\(669\) 0 0
\(670\) 6.12967e23 0.583178
\(671\) 2.39101e23 0.224615
\(672\) 0 0
\(673\) −1.39848e24 −1.28094 −0.640469 0.767984i \(-0.721260\pi\)
−0.640469 + 0.767984i \(0.721260\pi\)
\(674\) 9.35124e22 0.0845785
\(675\) 0 0
\(676\) −4.14282e23 −0.365384
\(677\) 9.38639e23 0.817514 0.408757 0.912643i \(-0.365962\pi\)
0.408757 + 0.912643i \(0.365962\pi\)
\(678\) 0 0
\(679\) −3.06582e24 −2.60408
\(680\) 3.58417e23 0.300651
\(681\) 0 0
\(682\) −5.26165e21 −0.00430482
\(683\) −1.23254e24 −0.995922 −0.497961 0.867199i \(-0.665918\pi\)
−0.497961 + 0.867199i \(0.665918\pi\)
\(684\) 0 0
\(685\) −8.88807e23 −0.700547
\(686\) 1.19598e24 0.931041
\(687\) 0 0
\(688\) 3.25164e23 0.246945
\(689\) 1.00457e24 0.753559
\(690\) 0 0
\(691\) 3.83055e23 0.280348 0.140174 0.990127i \(-0.455234\pi\)
0.140174 + 0.990127i \(0.455234\pi\)
\(692\) 2.54417e23 0.183927
\(693\) 0 0
\(694\) 5.29751e23 0.373694
\(695\) −5.53117e22 −0.0385431
\(696\) 0 0
\(697\) −3.15226e24 −2.14360
\(698\) 8.03335e22 0.0539667
\(699\) 0 0
\(700\) 2.54694e23 0.166988
\(701\) −1.63235e24 −1.05733 −0.528665 0.848831i \(-0.677307\pi\)
−0.528665 + 0.848831i \(0.677307\pi\)
\(702\) 0 0
\(703\) −4.69611e21 −0.00296906
\(704\) 7.91195e22 0.0494215
\(705\) 0 0
\(706\) 1.76103e24 1.07381
\(707\) −1.97156e24 −1.18781
\(708\) 0 0
\(709\) −6.09431e23 −0.358453 −0.179226 0.983808i \(-0.557359\pi\)
−0.179226 + 0.983808i \(0.557359\pi\)
\(710\) 5.41472e22 0.0314688
\(711\) 0 0
\(712\) −1.14386e22 −0.00649071
\(713\) 2.85926e22 0.0160322
\(714\) 0 0
\(715\) 1.67566e23 0.0917454
\(716\) 1.06400e24 0.575680
\(717\) 0 0
\(718\) 2.43432e24 1.28623
\(719\) 4.49148e23 0.234527 0.117264 0.993101i \(-0.462588\pi\)
0.117264 + 0.993101i \(0.462588\pi\)
\(720\) 0 0
\(721\) −3.54812e24 −1.80946
\(722\) −1.40286e24 −0.707046
\(723\) 0 0
\(724\) −1.52171e24 −0.749127
\(725\) −7.81644e23 −0.380309
\(726\) 0 0
\(727\) −5.00713e23 −0.237983 −0.118992 0.992895i \(-0.537966\pi\)
−0.118992 + 0.992895i \(0.537966\pi\)
\(728\) −6.52109e23 −0.306340
\(729\) 0 0
\(730\) 7.16849e23 0.328991
\(731\) −4.14048e24 −1.87825
\(732\) 0 0
\(733\) 1.20329e24 0.533320 0.266660 0.963791i \(-0.414080\pi\)
0.266660 + 0.963791i \(0.414080\pi\)
\(734\) 4.81301e22 0.0210863
\(735\) 0 0
\(736\) −4.29948e23 −0.184058
\(737\) −1.72298e24 −0.729133
\(738\) 0 0
\(739\) −2.19426e24 −0.907426 −0.453713 0.891148i \(-0.649901\pi\)
−0.453713 + 0.891148i \(0.649901\pi\)
\(740\) 1.74499e23 0.0713384
\(741\) 0 0
\(742\) −4.29197e24 −1.71484
\(743\) 9.89633e22 0.0390903 0.0195452 0.999809i \(-0.493778\pi\)
0.0195452 + 0.999809i \(0.493778\pi\)
\(744\) 0 0
\(745\) −5.12068e23 −0.197697
\(746\) 2.47487e23 0.0944652
\(747\) 0 0
\(748\) −1.00747e24 −0.375897
\(749\) −7.02094e24 −2.59000
\(750\) 0 0
\(751\) −1.01856e24 −0.367322 −0.183661 0.982990i \(-0.558795\pi\)
−0.183661 + 0.982990i \(0.558795\pi\)
\(752\) 1.97719e23 0.0705014
\(753\) 0 0
\(754\) 2.00130e24 0.697677
\(755\) 1.08027e24 0.372376
\(756\) 0 0
\(757\) −1.43989e24 −0.485305 −0.242653 0.970113i \(-0.578018\pi\)
−0.242653 + 0.970113i \(0.578018\pi\)
\(758\) 2.80263e24 0.934066
\(759\) 0 0
\(760\) −4.51508e21 −0.00147147
\(761\) 7.15424e23 0.230565 0.115283 0.993333i \(-0.463223\pi\)
0.115283 + 0.993333i \(0.463223\pi\)
\(762\) 0 0
\(763\) 3.50330e24 1.10413
\(764\) −2.93554e24 −0.914944
\(765\) 0 0
\(766\) 2.42722e24 0.739887
\(767\) −4.55214e23 −0.137232
\(768\) 0 0
\(769\) 1.87177e24 0.551922 0.275961 0.961169i \(-0.411004\pi\)
0.275961 + 0.961169i \(0.411004\pi\)
\(770\) −7.15916e23 −0.208781
\(771\) 0 0
\(772\) 2.36686e24 0.675189
\(773\) 1.86999e24 0.527611 0.263805 0.964576i \(-0.415022\pi\)
0.263805 + 0.964576i \(0.415022\pi\)
\(774\) 0 0
\(775\) −1.11573e22 −0.00307960
\(776\) −2.01952e24 −0.551345
\(777\) 0 0
\(778\) −2.22220e24 −0.593550
\(779\) 3.97099e22 0.0104913
\(780\) 0 0
\(781\) −1.52202e23 −0.0393447
\(782\) 5.47475e24 1.39993
\(783\) 0 0
\(784\) 1.78696e24 0.447124
\(785\) 1.48920e24 0.368604
\(786\) 0 0
\(787\) −3.29304e24 −0.797648 −0.398824 0.917027i \(-0.630582\pi\)
−0.398824 + 0.917027i \(0.630582\pi\)
\(788\) 1.18295e24 0.283460
\(789\) 0 0
\(790\) −5.45373e23 −0.127898
\(791\) 9.93963e24 2.30606
\(792\) 0 0
\(793\) −1.29813e24 −0.294779
\(794\) −1.43856e24 −0.323187
\(795\) 0 0
\(796\) −4.19192e23 −0.0921832
\(797\) 3.80089e24 0.826969 0.413485 0.910511i \(-0.364312\pi\)
0.413485 + 0.910511i \(0.364312\pi\)
\(798\) 0 0
\(799\) −2.51767e24 −0.536229
\(800\) 1.67772e23 0.0353553
\(801\) 0 0
\(802\) 1.27451e24 0.262944
\(803\) −2.01498e24 −0.411329
\(804\) 0 0
\(805\) 3.89040e24 0.777552
\(806\) 2.85667e22 0.00564953
\(807\) 0 0
\(808\) −1.29871e24 −0.251487
\(809\) −1.38713e24 −0.265799 −0.132900 0.991129i \(-0.542429\pi\)
−0.132900 + 0.991129i \(0.542429\pi\)
\(810\) 0 0
\(811\) 2.43418e24 0.456747 0.228374 0.973574i \(-0.426659\pi\)
0.228374 + 0.973574i \(0.426659\pi\)
\(812\) −8.55042e24 −1.58767
\(813\) 0 0
\(814\) −4.90497e23 −0.0891926
\(815\) −4.05365e24 −0.729468
\(816\) 0 0
\(817\) 5.21589e22 0.00919265
\(818\) 6.80174e22 0.0118636
\(819\) 0 0
\(820\) −1.47555e24 −0.252078
\(821\) 7.07675e24 1.19651 0.598256 0.801305i \(-0.295860\pi\)
0.598256 + 0.801305i \(0.295860\pi\)
\(822\) 0 0
\(823\) −5.31425e24 −0.880124 −0.440062 0.897968i \(-0.645043\pi\)
−0.440062 + 0.897968i \(0.645043\pi\)
\(824\) −2.33722e24 −0.383105
\(825\) 0 0
\(826\) 1.94488e24 0.312292
\(827\) −5.13487e24 −0.816080 −0.408040 0.912964i \(-0.633788\pi\)
−0.408040 + 0.912964i \(0.633788\pi\)
\(828\) 0 0
\(829\) 1.06738e25 1.66191 0.830954 0.556341i \(-0.187795\pi\)
0.830954 + 0.556341i \(0.187795\pi\)
\(830\) −3.64723e23 −0.0562081
\(831\) 0 0
\(832\) −4.29558e23 −0.0648595
\(833\) −2.27543e25 −3.40079
\(834\) 0 0
\(835\) 4.76248e24 0.697427
\(836\) 1.26914e22 0.00183974
\(837\) 0 0
\(838\) −4.38380e24 −0.622697
\(839\) 6.47302e24 0.910186 0.455093 0.890444i \(-0.349606\pi\)
0.455093 + 0.890444i \(0.349606\pi\)
\(840\) 0 0
\(841\) 1.89837e25 2.61587
\(842\) 6.95908e24 0.949290
\(843\) 0 0
\(844\) 5.06004e23 0.0676462
\(845\) 2.46931e24 0.326809
\(846\) 0 0
\(847\) −1.08611e25 −1.40885
\(848\) −2.82721e24 −0.363073
\(849\) 0 0
\(850\) −2.13633e24 −0.268910
\(851\) 2.66544e24 0.332175
\(852\) 0 0
\(853\) 2.69306e24 0.328988 0.164494 0.986378i \(-0.447401\pi\)
0.164494 + 0.986378i \(0.447401\pi\)
\(854\) 5.54620e24 0.670816
\(855\) 0 0
\(856\) −4.62484e24 −0.548365
\(857\) 1.86785e24 0.219283 0.109641 0.993971i \(-0.465030\pi\)
0.109641 + 0.993971i \(0.465030\pi\)
\(858\) 0 0
\(859\) −1.13124e25 −1.30200 −0.651000 0.759077i \(-0.725650\pi\)
−0.651000 + 0.759077i \(0.725650\pi\)
\(860\) −1.93813e24 −0.220875
\(861\) 0 0
\(862\) 6.00984e24 0.671508
\(863\) 2.37061e24 0.262282 0.131141 0.991364i \(-0.458136\pi\)
0.131141 + 0.991364i \(0.458136\pi\)
\(864\) 0 0
\(865\) −1.51645e24 −0.164509
\(866\) −4.83153e24 −0.519019
\(867\) 0 0
\(868\) −1.22050e23 −0.0128564
\(869\) 1.53298e24 0.159907
\(870\) 0 0
\(871\) 9.35446e24 0.956895
\(872\) 2.30770e24 0.233770
\(873\) 0 0
\(874\) −6.89670e22 −0.00685164
\(875\) −1.51809e24 −0.149358
\(876\) 0 0
\(877\) −6.79534e24 −0.655714 −0.327857 0.944727i \(-0.606326\pi\)
−0.327857 + 0.944727i \(0.606326\pi\)
\(878\) 1.41285e25 1.35018
\(879\) 0 0
\(880\) −4.71589e23 −0.0442039
\(881\) 1.88402e25 1.74900 0.874501 0.485024i \(-0.161189\pi\)
0.874501 + 0.485024i \(0.161189\pi\)
\(882\) 0 0
\(883\) 3.85491e24 0.351033 0.175517 0.984476i \(-0.443840\pi\)
0.175517 + 0.984476i \(0.443840\pi\)
\(884\) 5.46979e24 0.493317
\(885\) 0 0
\(886\) 3.09081e24 0.273455
\(887\) −8.32727e24 −0.729712 −0.364856 0.931064i \(-0.618882\pi\)
−0.364856 + 0.931064i \(0.618882\pi\)
\(888\) 0 0
\(889\) −1.87919e25 −1.61550
\(890\) 6.81792e22 0.00580547
\(891\) 0 0
\(892\) −7.11640e24 −0.594510
\(893\) 3.17158e22 0.00262445
\(894\) 0 0
\(895\) −6.34194e24 −0.514904
\(896\) 1.83526e24 0.147598
\(897\) 0 0
\(898\) −6.59113e24 −0.520129
\(899\) 3.74565e23 0.0292799
\(900\) 0 0
\(901\) 3.60004e25 2.76151
\(902\) 4.14760e24 0.315168
\(903\) 0 0
\(904\) 6.54744e24 0.488248
\(905\) 9.07012e24 0.670039
\(906\) 0 0
\(907\) 1.92435e25 1.39515 0.697576 0.716511i \(-0.254262\pi\)
0.697576 + 0.716511i \(0.254262\pi\)
\(908\) −1.28148e24 −0.0920415
\(909\) 0 0
\(910\) 3.88687e24 0.273999
\(911\) 1.57682e25 1.10123 0.550613 0.834761i \(-0.314394\pi\)
0.550613 + 0.834761i \(0.314394\pi\)
\(912\) 0 0
\(913\) 1.02519e24 0.0702756
\(914\) −2.58738e24 −0.175718
\(915\) 0 0
\(916\) 7.90373e24 0.526890
\(917\) 3.70346e25 2.44607
\(918\) 0 0
\(919\) 1.03058e25 0.668189 0.334094 0.942540i \(-0.391570\pi\)
0.334094 + 0.942540i \(0.391570\pi\)
\(920\) 2.56269e24 0.164626
\(921\) 0 0
\(922\) −4.31612e23 −0.0272195
\(923\) 8.26339e23 0.0516349
\(924\) 0 0
\(925\) −1.04010e24 −0.0638070
\(926\) −7.11539e24 −0.432519
\(927\) 0 0
\(928\) −5.63234e24 −0.336149
\(929\) −9.73688e24 −0.575819 −0.287910 0.957658i \(-0.592960\pi\)
−0.287910 + 0.957658i \(0.592960\pi\)
\(930\) 0 0
\(931\) 2.86642e23 0.0166444
\(932\) −4.72113e24 −0.271651
\(933\) 0 0
\(934\) −2.11621e25 −1.19567
\(935\) 6.00499e24 0.336212
\(936\) 0 0
\(937\) −3.22145e25 −1.77119 −0.885594 0.464459i \(-0.846249\pi\)
−0.885594 + 0.464459i \(0.846249\pi\)
\(938\) −3.99664e25 −2.17756
\(939\) 0 0
\(940\) −1.17850e24 −0.0630584
\(941\) 7.90374e24 0.419103 0.209552 0.977798i \(-0.432800\pi\)
0.209552 + 0.977798i \(0.432800\pi\)
\(942\) 0 0
\(943\) −2.25387e25 −1.17376
\(944\) 1.28113e24 0.0661198
\(945\) 0 0
\(946\) 5.44786e24 0.276154
\(947\) −2.36682e25 −1.18902 −0.594512 0.804086i \(-0.702655\pi\)
−0.594512 + 0.804086i \(0.702655\pi\)
\(948\) 0 0
\(949\) 1.09398e25 0.539818
\(950\) 2.69120e22 0.00131612
\(951\) 0 0
\(952\) −2.33693e25 −1.12262
\(953\) −9.09477e24 −0.433014 −0.216507 0.976281i \(-0.569466\pi\)
−0.216507 + 0.976281i \(0.569466\pi\)
\(954\) 0 0
\(955\) 1.74972e25 0.818351
\(956\) −1.11690e25 −0.517750
\(957\) 0 0
\(958\) −6.63529e24 −0.302171
\(959\) 5.79516e25 2.61582
\(960\) 0 0
\(961\) −2.25448e25 −0.999763
\(962\) 2.66302e24 0.117054
\(963\) 0 0
\(964\) −1.12151e25 −0.484340
\(965\) −1.41076e25 −0.603907
\(966\) 0 0
\(967\) 3.62970e25 1.52667 0.763337 0.646001i \(-0.223560\pi\)
0.763337 + 0.646001i \(0.223560\pi\)
\(968\) −7.15441e24 −0.298286
\(969\) 0 0
\(970\) 1.20373e25 0.493138
\(971\) 9.70396e24 0.394081 0.197040 0.980395i \(-0.436867\pi\)
0.197040 + 0.980395i \(0.436867\pi\)
\(972\) 0 0
\(973\) 3.60641e24 0.143918
\(974\) −1.06196e25 −0.420104
\(975\) 0 0
\(976\) 3.65340e24 0.142028
\(977\) −3.70141e25 −1.42647 −0.713236 0.700924i \(-0.752771\pi\)
−0.713236 + 0.700924i \(0.752771\pi\)
\(978\) 0 0
\(979\) −1.91644e23 −0.00725843
\(980\) −1.06511e25 −0.399920
\(981\) 0 0
\(982\) −7.90127e24 −0.291574
\(983\) 6.43184e24 0.235305 0.117652 0.993055i \(-0.462463\pi\)
0.117652 + 0.993055i \(0.462463\pi\)
\(984\) 0 0
\(985\) −7.05090e24 −0.253534
\(986\) 7.17196e25 2.55672
\(987\) 0 0
\(988\) −6.89045e22 −0.00241442
\(989\) −2.96045e25 −1.02847
\(990\) 0 0
\(991\) 5.17070e25 1.76573 0.882863 0.469631i \(-0.155613\pi\)
0.882863 + 0.469631i \(0.155613\pi\)
\(992\) −8.03967e22 −0.00272201
\(993\) 0 0
\(994\) −3.53048e24 −0.117503
\(995\) 2.49858e24 0.0824512
\(996\) 0 0
\(997\) −2.77457e25 −0.900093 −0.450047 0.893005i \(-0.648593\pi\)
−0.450047 + 0.893005i \(0.648593\pi\)
\(998\) 8.29907e24 0.266944
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.18.a.k.1.2 2
3.2 odd 2 10.18.a.c.1.2 2
12.11 even 2 80.18.a.d.1.1 2
15.2 even 4 50.18.b.d.49.1 4
15.8 even 4 50.18.b.d.49.4 4
15.14 odd 2 50.18.a.f.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.18.a.c.1.2 2 3.2 odd 2
50.18.a.f.1.1 2 15.14 odd 2
50.18.b.d.49.1 4 15.2 even 4
50.18.b.d.49.4 4 15.8 even 4
80.18.a.d.1.1 2 12.11 even 2
90.18.a.k.1.2 2 1.1 even 1 trivial