Properties

Label 90.18.a.k
Level $90$
Weight $18$
Character orbit 90.a
Self dual yes
Analytic conductor $164.900$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,18,Mod(1,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.1");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 90.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(164.899878610\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{83281}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 20820 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3}\cdot 5 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 270\sqrt{83281}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 256 q^{2} + 65536 q^{4} - 390625 q^{5} + (323 \beta + 301922) q^{7} + 16777216 q^{8} - 100000000 q^{10} + (582 \beta + 235740648) q^{11} + ( - 9692 \beta - 770917114) q^{13} + (82688 \beta + 77292032) q^{14}+ \cdots + (49930652672 \beta + 10\!\cdots\!12) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 512 q^{2} + 131072 q^{4} - 781250 q^{5} + 603844 q^{7} + 33554432 q^{8} - 200000000 q^{10} + 471481296 q^{11} - 1541834228 q^{13} + 154584064 q^{14} + 8589934592 q^{16} - 32139900564 q^{17} + 128672529400 q^{19}+ \cdots + 20\!\cdots\!24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−143.792
144.792
256.000 0 65536.0 −390625. 0 −2.48655e7 1.67772e7 0 −1.00000e8
1.2 256.000 0 65536.0 −390625. 0 2.54694e7 1.67772e7 0 −1.00000e8
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 90.18.a.k 2
3.b odd 2 1 10.18.a.c 2
12.b even 2 1 80.18.a.d 2
15.d odd 2 1 50.18.a.f 2
15.e even 4 2 50.18.b.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.18.a.c 2 3.b odd 2 1
50.18.a.f 2 15.d odd 2 1
50.18.b.d 4 15.e even 4 2
80.18.a.d 2 12.b even 2 1
90.18.a.k 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{18}^{\mathrm{new}}(\Gamma_0(90))\):

\( T_{7}^{2} - 603844T_{7} - 633309492538016 \) Copy content Toggle raw display
\( T_{11}^{2} - 471481296T_{11} + 53517197085392304 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 256)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 390625)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 633309492538016 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 53\!\cdots\!04 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 24\!\cdots\!96 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 12\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 88\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 10\!\cdots\!16 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 57\!\cdots\!16 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 14\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 11\!\cdots\!16 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 34\!\cdots\!24 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 12\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 26\!\cdots\!96 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 54\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 12\!\cdots\!36 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 16\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 20\!\cdots\!56 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 20\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 25\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 37\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 77\!\cdots\!16 \) Copy content Toggle raw display
show more
show less