Properties

Label 90.16.a.j
Level $90$
Weight $16$
Character orbit 90.a
Self dual yes
Analytic conductor $128.424$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,16,Mod(1,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 16, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.1");
 
S:= CuspForms(chi, 16);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 90.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.424154590\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{239569}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 59892 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2}\cdot 5 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 90\sqrt{239569}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 128 q^{2} + 16384 q^{4} - 78125 q^{5} + ( - 47 \beta - 492466) q^{7} - 2097152 q^{8} + 10000000 q^{10} + ( - 1334 \beta - 55776072) q^{11} + (3172 \beta + 144656798) q^{13} + (6016 \beta + 63035648) q^{14}+ \cdots + ( - 5925350912 \beta + 27962187351936) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 256 q^{2} + 32768 q^{4} - 156250 q^{5} - 984932 q^{7} - 4194304 q^{8} + 20000000 q^{10} - 111552144 q^{11} + 289313596 q^{13} + 126071296 q^{14} + 536870912 q^{16} - 1421739348 q^{17} + 6159406120 q^{19}+ \cdots + 55924374703872 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
245.229
−244.229
−128.000 0 16384.0 −78125.0 0 −2.56287e6 −2.09715e6 0 1.00000e7
1.2 −128.000 0 16384.0 −78125.0 0 1.57794e6 −2.09715e6 0 1.00000e7
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 90.16.a.j 2
3.b odd 2 1 10.16.a.d 2
12.b even 2 1 80.16.a.f 2
15.d odd 2 1 50.16.a.f 2
15.e even 4 2 50.16.b.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.16.a.d 2 3.b odd 2 1
50.16.a.f 2 15.d odd 2 1
50.16.b.e 4 15.e even 4 2
80.16.a.f 2 12.b even 2 1
90.16.a.j 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{16}^{\mathrm{new}}(\Gamma_0(90))\):

\( T_{7}^{2} + 984932T_{7} - 4044061398944 \) Copy content Toggle raw display
\( T_{11}^{2} + 111552144T_{11} - 342274048299216 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 128)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 78125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 4044061398944 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 342274048299216 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 14\!\cdots\!04 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 50\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 90\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 64\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 28\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 79\!\cdots\!36 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 71\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 11\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 21\!\cdots\!04 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 22\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 15\!\cdots\!36 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 27\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 23\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 14\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 89\!\cdots\!76 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 56\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 43\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 12\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 99\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 85\!\cdots\!24 \) Copy content Toggle raw display
show more
show less