Properties

Label 90.12.c.a.19.1
Level $90$
Weight $12$
Character 90.19
Analytic conductor $69.151$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,12,Mod(19,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.19"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 90.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4096,-4950] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(69.1508862504\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{1129})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 565x^{2} + 79524 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.1
Root \(16.3003i\) of defining polynomial
Character \(\chi\) \(=\) 90.19
Dual form 90.12.c.a.19.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-32.0000i q^{2} -1024.00 q^{4} +(-6697.60 - 1992.57i) q^{5} -10004.9i q^{7} +32768.0i q^{8} +(-63762.1 + 214323. i) q^{10} +133341. q^{11} -152929. i q^{13} -320158. q^{14} +1.04858e6 q^{16} +8.14793e6i q^{17} +9.95950e6 q^{19} +(6.85834e6 + 2.04039e6i) q^{20} -4.26692e6i q^{22} +1.88677e7i q^{23} +(4.08875e7 + 2.66908e7i) q^{25} -4.89374e6 q^{26} +1.02450e7i q^{28} -1.92191e8 q^{29} +1.47585e8 q^{31} -3.35544e7i q^{32} +2.60734e8 q^{34} +(-1.99355e7 + 6.70090e7i) q^{35} -3.96277e8i q^{37} -3.18704e8i q^{38} +(6.52924e7 - 2.19467e8i) q^{40} -1.20670e8 q^{41} -7.63359e8i q^{43} -1.36542e8 q^{44} +6.03767e8 q^{46} +1.46495e9i q^{47} +1.87723e9 q^{49} +(8.54106e8 - 1.30840e9i) q^{50} +1.56600e8i q^{52} -3.22312e9i q^{53} +(-8.93067e8 - 2.65692e8i) q^{55} +3.27842e8 q^{56} +6.15010e9i q^{58} +8.47873e9 q^{59} -4.24657e9 q^{61} -4.72271e9i q^{62} -1.07374e9 q^{64} +(-3.04722e8 + 1.02426e9i) q^{65} -1.37284e10i q^{67} -8.34348e9i q^{68} +(2.14429e9 + 6.37936e8i) q^{70} +1.36888e9 q^{71} -6.85115e9i q^{73} -1.26809e10 q^{74} -1.01985e10 q^{76} -1.33407e9i q^{77} -1.88528e10 q^{79} +(-7.02294e9 - 2.08936e9i) q^{80} +3.86145e9i q^{82} -4.90531e10i q^{83} +(1.62353e10 - 5.45716e10i) q^{85} -2.44275e10 q^{86} +4.36933e9i q^{88} -5.69604e10 q^{89} -1.53005e9 q^{91} -1.93205e10i q^{92} +4.68785e10 q^{94} +(-6.67047e10 - 1.98450e10i) q^{95} +2.16070e10i q^{97} -6.00713e10i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4096 q^{4} - 4950 q^{5} + 228800 q^{10} + 452052 q^{11} - 1775232 q^{14} + 4194304 q^{16} + 36378480 q^{19} + 5068800 q^{20} + 55440000 q^{25} + 56098944 q^{26} - 257619420 q^{29} - 300753272 q^{31}+ \cdots - 63907668000 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32.0000i 0.707107i
\(3\) 0 0
\(4\) −1024.00 −0.500000
\(5\) −6697.60 1992.57i −0.958482 0.285153i
\(6\) 0 0
\(7\) 10004.9i 0.224996i −0.993652 0.112498i \(-0.964115\pi\)
0.993652 0.112498i \(-0.0358852\pi\)
\(8\) 32768.0i 0.353553i
\(9\) 0 0
\(10\) −63762.1 + 214323.i −0.201634 + 0.677749i
\(11\) 133341. 0.249635 0.124817 0.992180i \(-0.460165\pi\)
0.124817 + 0.992180i \(0.460165\pi\)
\(12\) 0 0
\(13\) 152929.i 0.114236i −0.998367 0.0571180i \(-0.981809\pi\)
0.998367 0.0571180i \(-0.0181911\pi\)
\(14\) −320158. −0.159096
\(15\) 0 0
\(16\) 1.04858e6 0.250000
\(17\) 8.14793e6i 1.39180i 0.718137 + 0.695902i \(0.244995\pi\)
−0.718137 + 0.695902i \(0.755005\pi\)
\(18\) 0 0
\(19\) 9.95950e6 0.922768 0.461384 0.887200i \(-0.347353\pi\)
0.461384 + 0.887200i \(0.347353\pi\)
\(20\) 6.85834e6 + 2.04039e6i 0.479241 + 0.142576i
\(21\) 0 0
\(22\) 4.26692e6i 0.176518i
\(23\) 1.88677e7i 0.611246i 0.952153 + 0.305623i \(0.0988648\pi\)
−0.952153 + 0.305623i \(0.901135\pi\)
\(24\) 0 0
\(25\) 4.08875e7 + 2.66908e7i 0.837376 + 0.546628i
\(26\) −4.89374e6 −0.0807770
\(27\) 0 0
\(28\) 1.02450e7i 0.112498i
\(29\) −1.92191e8 −1.73998 −0.869989 0.493072i \(-0.835874\pi\)
−0.869989 + 0.493072i \(0.835874\pi\)
\(30\) 0 0
\(31\) 1.47585e8 0.925874 0.462937 0.886391i \(-0.346796\pi\)
0.462937 + 0.886391i \(0.346796\pi\)
\(32\) 3.35544e7i 0.176777i
\(33\) 0 0
\(34\) 2.60734e8 0.984154
\(35\) −1.99355e7 + 6.70090e7i −0.0641583 + 0.215655i
\(36\) 0 0
\(37\) 3.96277e8i 0.939485i −0.882804 0.469742i \(-0.844347\pi\)
0.882804 0.469742i \(-0.155653\pi\)
\(38\) 3.18704e8i 0.652496i
\(39\) 0 0
\(40\) 6.52924e7 2.19467e8i 0.100817 0.338875i
\(41\) −1.20670e8 −0.162663 −0.0813315 0.996687i \(-0.525917\pi\)
−0.0813315 + 0.996687i \(0.525917\pi\)
\(42\) 0 0
\(43\) 7.63359e8i 0.791868i −0.918279 0.395934i \(-0.870421\pi\)
0.918279 0.395934i \(-0.129579\pi\)
\(44\) −1.36542e8 −0.124817
\(45\) 0 0
\(46\) 6.03767e8 0.432216
\(47\) 1.46495e9i 0.931720i 0.884858 + 0.465860i \(0.154255\pi\)
−0.884858 + 0.465860i \(0.845745\pi\)
\(48\) 0 0
\(49\) 1.87723e9 0.949377
\(50\) 8.54106e8 1.30840e9i 0.386524 0.592114i
\(51\) 0 0
\(52\) 1.56600e8i 0.0571180i
\(53\) 3.22312e9i 1.05867i −0.848414 0.529333i \(-0.822442\pi\)
0.848414 0.529333i \(-0.177558\pi\)
\(54\) 0 0
\(55\) −8.93067e8 2.65692e8i −0.239270 0.0711841i
\(56\) 3.27842e8 0.0795481
\(57\) 0 0
\(58\) 6.15010e9i 1.23035i
\(59\) 8.47873e9 1.54399 0.771996 0.635628i \(-0.219259\pi\)
0.771996 + 0.635628i \(0.219259\pi\)
\(60\) 0 0
\(61\) −4.24657e9 −0.643761 −0.321880 0.946780i \(-0.604315\pi\)
−0.321880 + 0.946780i \(0.604315\pi\)
\(62\) 4.72271e9i 0.654692i
\(63\) 0 0
\(64\) −1.07374e9 −0.125000
\(65\) −3.04722e8 + 1.02426e9i −0.0325747 + 0.109493i
\(66\) 0 0
\(67\) 1.37284e10i 1.24225i −0.783710 0.621127i \(-0.786675\pi\)
0.783710 0.621127i \(-0.213325\pi\)
\(68\) 8.34348e9i 0.695902i
\(69\) 0 0
\(70\) 2.14429e9 + 6.37936e8i 0.152491 + 0.0453668i
\(71\) 1.36888e9 0.0900419 0.0450209 0.998986i \(-0.485665\pi\)
0.0450209 + 0.998986i \(0.485665\pi\)
\(72\) 0 0
\(73\) 6.85115e9i 0.386801i −0.981120 0.193401i \(-0.938048\pi\)
0.981120 0.193401i \(-0.0619517\pi\)
\(74\) −1.26809e10 −0.664316
\(75\) 0 0
\(76\) −1.01985e10 −0.461384
\(77\) 1.33407e9i 0.0561668i
\(78\) 0 0
\(79\) −1.88528e10 −0.689330 −0.344665 0.938726i \(-0.612007\pi\)
−0.344665 + 0.938726i \(0.612007\pi\)
\(80\) −7.02294e9 2.08936e9i −0.239621 0.0712882i
\(81\) 0 0
\(82\) 3.86145e9i 0.115020i
\(83\) 4.90531e10i 1.36690i −0.729997 0.683451i \(-0.760478\pi\)
0.729997 0.683451i \(-0.239522\pi\)
\(84\) 0 0
\(85\) 1.62353e10 5.45716e10i 0.396877 1.33402i
\(86\) −2.44275e10 −0.559935
\(87\) 0 0
\(88\) 4.36933e9i 0.0882592i
\(89\) −5.69604e10 −1.08125 −0.540627 0.841262i \(-0.681813\pi\)
−0.540627 + 0.841262i \(0.681813\pi\)
\(90\) 0 0
\(91\) −1.53005e9 −0.0257026
\(92\) 1.93205e10i 0.305623i
\(93\) 0 0
\(94\) 4.68785e10 0.658826
\(95\) −6.67047e10 1.98450e10i −0.884457 0.263130i
\(96\) 0 0
\(97\) 2.16070e10i 0.255476i 0.991808 + 0.127738i \(0.0407717\pi\)
−0.991808 + 0.127738i \(0.959228\pi\)
\(98\) 6.00713e10i 0.671311i
\(99\) 0 0
\(100\) −4.18688e10 2.73314e10i −0.418688 0.273314i
\(101\) −3.38954e10 −0.320902 −0.160451 0.987044i \(-0.551295\pi\)
−0.160451 + 0.987044i \(0.551295\pi\)
\(102\) 0 0
\(103\) 1.21228e10i 0.103038i 0.998672 + 0.0515192i \(0.0164063\pi\)
−0.998672 + 0.0515192i \(0.983594\pi\)
\(104\) 5.01119e9 0.0403885
\(105\) 0 0
\(106\) −1.03140e11 −0.748589
\(107\) 2.00015e11i 1.37865i −0.724454 0.689323i \(-0.757908\pi\)
0.724454 0.689323i \(-0.242092\pi\)
\(108\) 0 0
\(109\) 2.71994e8 0.00169322 0.000846612 1.00000i \(-0.499731\pi\)
0.000846612 1.00000i \(0.499731\pi\)
\(110\) −8.50213e9 + 2.85781e10i −0.0503348 + 0.169190i
\(111\) 0 0
\(112\) 1.04909e10i 0.0562490i
\(113\) 1.93061e11i 0.985741i −0.870103 0.492871i \(-0.835948\pi\)
0.870103 0.492871i \(-0.164052\pi\)
\(114\) 0 0
\(115\) 3.75952e10 1.26368e11i 0.174299 0.585869i
\(116\) 1.96803e11 0.869989
\(117\) 0 0
\(118\) 2.71319e11i 1.09177i
\(119\) 8.15195e10 0.313151
\(120\) 0 0
\(121\) −2.67532e11 −0.937682
\(122\) 1.35890e11i 0.455208i
\(123\) 0 0
\(124\) −1.51127e11 −0.462937
\(125\) −2.20665e11 2.60235e11i −0.646737 0.762713i
\(126\) 0 0
\(127\) 1.00806e11i 0.270747i 0.990795 + 0.135374i \(0.0432235\pi\)
−0.990795 + 0.135374i \(0.956777\pi\)
\(128\) 3.43597e10i 0.0883883i
\(129\) 0 0
\(130\) 3.27763e10 + 9.75111e9i 0.0774233 + 0.0230338i
\(131\) 8.29795e11 1.87922 0.939612 0.342242i \(-0.111186\pi\)
0.939612 + 0.342242i \(0.111186\pi\)
\(132\) 0 0
\(133\) 9.96441e10i 0.207619i
\(134\) −4.39310e11 −0.878406
\(135\) 0 0
\(136\) −2.66991e11 −0.492077
\(137\) 2.74370e11i 0.485705i −0.970063 0.242853i \(-0.921917\pi\)
0.970063 0.242853i \(-0.0780832\pi\)
\(138\) 0 0
\(139\) 7.50277e11 1.22642 0.613212 0.789919i \(-0.289877\pi\)
0.613212 + 0.789919i \(0.289877\pi\)
\(140\) 2.04139e10 6.86172e10i 0.0320791 0.107827i
\(141\) 0 0
\(142\) 4.38042e10i 0.0636692i
\(143\) 2.03918e10i 0.0285173i
\(144\) 0 0
\(145\) 1.28722e12 + 3.82953e11i 1.66774 + 0.496160i
\(146\) −2.19237e11 −0.273510
\(147\) 0 0
\(148\) 4.05788e11i 0.469742i
\(149\) 2.90981e11 0.324594 0.162297 0.986742i \(-0.448110\pi\)
0.162297 + 0.986742i \(0.448110\pi\)
\(150\) 0 0
\(151\) 2.93157e11 0.303897 0.151949 0.988388i \(-0.451445\pi\)
0.151949 + 0.988388i \(0.451445\pi\)
\(152\) 3.26353e11i 0.326248i
\(153\) 0 0
\(154\) −4.26903e10 −0.0397160
\(155\) −9.88462e11 2.94072e11i −0.887433 0.264016i
\(156\) 0 0
\(157\) 4.63080e11i 0.387443i 0.981057 + 0.193722i \(0.0620559\pi\)
−0.981057 + 0.193722i \(0.937944\pi\)
\(158\) 6.03290e11i 0.487430i
\(159\) 0 0
\(160\) −6.68595e10 + 2.24734e11i −0.0504084 + 0.169437i
\(161\) 1.88770e11 0.137528
\(162\) 0 0
\(163\) 2.40344e12i 1.63607i −0.575168 0.818036i \(-0.695063\pi\)
0.575168 0.818036i \(-0.304937\pi\)
\(164\) 1.23566e11 0.0813315
\(165\) 0 0
\(166\) −1.56970e12 −0.966545
\(167\) 2.59189e12i 1.54410i 0.635560 + 0.772052i \(0.280769\pi\)
−0.635560 + 0.772052i \(0.719231\pi\)
\(168\) 0 0
\(169\) 1.76877e12 0.986950
\(170\) −1.74629e12 5.19529e11i −0.943294 0.280635i
\(171\) 0 0
\(172\) 7.81680e11i 0.395934i
\(173\) 3.57767e12i 1.75528i 0.479318 + 0.877641i \(0.340884\pi\)
−0.479318 + 0.877641i \(0.659116\pi\)
\(174\) 0 0
\(175\) 2.67040e11 4.09076e11i 0.122989 0.188406i
\(176\) 1.39819e11 0.0624087
\(177\) 0 0
\(178\) 1.82273e12i 0.764562i
\(179\) 1.36064e12 0.553414 0.276707 0.960954i \(-0.410757\pi\)
0.276707 + 0.960954i \(0.410757\pi\)
\(180\) 0 0
\(181\) −4.47871e12 −1.71364 −0.856822 0.515613i \(-0.827564\pi\)
−0.856822 + 0.515613i \(0.827564\pi\)
\(182\) 4.89616e10i 0.0181745i
\(183\) 0 0
\(184\) −6.18257e11 −0.216108
\(185\) −7.89609e11 + 2.65411e12i −0.267897 + 0.900479i
\(186\) 0 0
\(187\) 1.08646e12i 0.347443i
\(188\) 1.50011e12i 0.465860i
\(189\) 0 0
\(190\) −6.35039e11 + 2.13455e12i −0.186061 + 0.625405i
\(191\) 6.69223e12 1.90497 0.952483 0.304592i \(-0.0985202\pi\)
0.952483 + 0.304592i \(0.0985202\pi\)
\(192\) 0 0
\(193\) 5.04342e12i 1.35569i 0.735206 + 0.677844i \(0.237086\pi\)
−0.735206 + 0.677844i \(0.762914\pi\)
\(194\) 6.91424e11 0.180649
\(195\) 0 0
\(196\) −1.92228e12 −0.474688
\(197\) 2.74461e12i 0.659048i −0.944147 0.329524i \(-0.893112\pi\)
0.944147 0.329524i \(-0.106888\pi\)
\(198\) 0 0
\(199\) 4.80817e12 1.09216 0.546082 0.837732i \(-0.316119\pi\)
0.546082 + 0.837732i \(0.316119\pi\)
\(200\) −8.74605e11 + 1.33980e12i −0.193262 + 0.296057i
\(201\) 0 0
\(202\) 1.08465e12i 0.226912i
\(203\) 1.92286e12i 0.391488i
\(204\) 0 0
\(205\) 8.08200e11 + 2.40443e11i 0.155910 + 0.0463838i
\(206\) 3.87930e11 0.0728591
\(207\) 0 0
\(208\) 1.60358e11i 0.0285590i
\(209\) 1.32801e12 0.230355
\(210\) 0 0
\(211\) −9.13618e11 −0.150387 −0.0751936 0.997169i \(-0.523957\pi\)
−0.0751936 + 0.997169i \(0.523957\pi\)
\(212\) 3.30047e12i 0.529333i
\(213\) 0 0
\(214\) −6.40049e12 −0.974850
\(215\) −1.52104e12 + 5.11267e12i −0.225803 + 0.758991i
\(216\) 0 0
\(217\) 1.47657e12i 0.208318i
\(218\) 8.70382e9i 0.00119729i
\(219\) 0 0
\(220\) 9.14500e11 + 2.72068e11i 0.119635 + 0.0355921i
\(221\) 1.24606e12 0.158994
\(222\) 0 0
\(223\) 5.18336e12i 0.629412i −0.949189 0.314706i \(-0.898094\pi\)
0.949189 0.314706i \(-0.101906\pi\)
\(224\) −3.35710e11 −0.0397741
\(225\) 0 0
\(226\) −6.17795e12 −0.697024
\(227\) 9.06537e11i 0.0998259i −0.998754 0.0499130i \(-0.984106\pi\)
0.998754 0.0499130i \(-0.0158944\pi\)
\(228\) 0 0
\(229\) 1.49006e13 1.56354 0.781770 0.623566i \(-0.214317\pi\)
0.781770 + 0.623566i \(0.214317\pi\)
\(230\) −4.04379e12 1.20305e12i −0.414272 0.123248i
\(231\) 0 0
\(232\) 6.29771e12i 0.615175i
\(233\) 1.84683e13i 1.76186i −0.473251 0.880928i \(-0.656919\pi\)
0.473251 0.880928i \(-0.343081\pi\)
\(234\) 0 0
\(235\) 2.91902e12 9.81167e12i 0.265683 0.893037i
\(236\) −8.68222e12 −0.771996
\(237\) 0 0
\(238\) 2.60862e12i 0.221431i
\(239\) 1.12464e13 0.932879 0.466439 0.884553i \(-0.345537\pi\)
0.466439 + 0.884553i \(0.345537\pi\)
\(240\) 0 0
\(241\) 2.45061e13 1.94170 0.970848 0.239696i \(-0.0770477\pi\)
0.970848 + 0.239696i \(0.0770477\pi\)
\(242\) 8.56102e12i 0.663042i
\(243\) 0 0
\(244\) 4.34849e12 0.321880
\(245\) −1.25729e13 3.74050e12i −0.909961 0.270718i
\(246\) 0 0
\(247\) 1.52310e12i 0.105413i
\(248\) 4.83605e12i 0.327346i
\(249\) 0 0
\(250\) −8.32753e12 + 7.06127e12i −0.539320 + 0.457312i
\(251\) −1.31965e13 −0.836089 −0.418045 0.908426i \(-0.637284\pi\)
−0.418045 + 0.908426i \(0.637284\pi\)
\(252\) 0 0
\(253\) 2.51585e12i 0.152588i
\(254\) 3.22578e12 0.191447
\(255\) 0 0
\(256\) 1.09951e12 0.0625000
\(257\) 3.29792e13i 1.83488i −0.397872 0.917441i \(-0.630251\pi\)
0.397872 0.917441i \(-0.369749\pi\)
\(258\) 0 0
\(259\) −3.96473e12 −0.211380
\(260\) 3.12036e11 1.04884e12i 0.0162874 0.0547465i
\(261\) 0 0
\(262\) 2.65534e13i 1.32881i
\(263\) 3.11055e11i 0.0152433i −0.999971 0.00762167i \(-0.997574\pi\)
0.999971 0.00762167i \(-0.00242608\pi\)
\(264\) 0 0
\(265\) −6.42227e12 + 2.15871e13i −0.301881 + 1.01471i
\(266\) −3.18861e12 −0.146809
\(267\) 0 0
\(268\) 1.40579e13i 0.621127i
\(269\) 2.65722e13 1.15024 0.575122 0.818068i \(-0.304955\pi\)
0.575122 + 0.818068i \(0.304955\pi\)
\(270\) 0 0
\(271\) −1.08661e13 −0.451589 −0.225794 0.974175i \(-0.572498\pi\)
−0.225794 + 0.974175i \(0.572498\pi\)
\(272\) 8.54372e12i 0.347951i
\(273\) 0 0
\(274\) −8.77983e12 −0.343446
\(275\) 5.45199e12 + 3.55899e12i 0.209038 + 0.136457i
\(276\) 0 0
\(277\) 1.23183e13i 0.453849i 0.973912 + 0.226924i \(0.0728671\pi\)
−0.973912 + 0.226924i \(0.927133\pi\)
\(278\) 2.40089e13i 0.867212i
\(279\) 0 0
\(280\) −2.19575e12 6.53246e11i −0.0762454 0.0226834i
\(281\) −3.20934e13 −1.09278 −0.546389 0.837532i \(-0.683998\pi\)
−0.546389 + 0.837532i \(0.683998\pi\)
\(282\) 0 0
\(283\) 5.33416e13i 1.74679i −0.487012 0.873395i \(-0.661913\pi\)
0.487012 0.873395i \(-0.338087\pi\)
\(284\) −1.40173e12 −0.0450209
\(285\) 0 0
\(286\) −6.52538e11 −0.0201648
\(287\) 1.20730e12i 0.0365985i
\(288\) 0 0
\(289\) −3.21169e13 −0.937120
\(290\) 1.22545e13 4.11909e13i 0.350838 1.17927i
\(291\) 0 0
\(292\) 7.01558e12i 0.193401i
\(293\) 2.13927e13i 0.578752i −0.957215 0.289376i \(-0.906552\pi\)
0.957215 0.289376i \(-0.0934479\pi\)
\(294\) 0 0
\(295\) −5.67871e13 1.68944e13i −1.47989 0.440274i
\(296\) 1.29852e13 0.332158
\(297\) 0 0
\(298\) 9.31140e12i 0.229523i
\(299\) 2.88543e12 0.0698263
\(300\) 0 0
\(301\) −7.63736e12 −0.178167
\(302\) 9.38101e12i 0.214888i
\(303\) 0 0
\(304\) 1.04433e13 0.230692
\(305\) 2.84418e13 + 8.46158e12i 0.617033 + 0.183570i
\(306\) 0 0
\(307\) 5.17532e13i 1.08312i 0.840662 + 0.541560i \(0.182166\pi\)
−0.840662 + 0.541560i \(0.817834\pi\)
\(308\) 1.36609e12i 0.0280834i
\(309\) 0 0
\(310\) −9.41031e12 + 3.16308e13i −0.186687 + 0.627510i
\(311\) −7.46747e13 −1.45543 −0.727715 0.685880i \(-0.759418\pi\)
−0.727715 + 0.685880i \(0.759418\pi\)
\(312\) 0 0
\(313\) 7.06455e13i 1.32920i −0.747199 0.664601i \(-0.768602\pi\)
0.747199 0.664601i \(-0.231398\pi\)
\(314\) 1.48186e13 0.273964
\(315\) 0 0
\(316\) 1.93053e13 0.344665
\(317\) 4.23136e13i 0.742427i −0.928548 0.371213i \(-0.878942\pi\)
0.928548 0.371213i \(-0.121058\pi\)
\(318\) 0 0
\(319\) −2.56270e13 −0.434359
\(320\) 7.19149e12 + 2.13950e12i 0.119810 + 0.0356441i
\(321\) 0 0
\(322\) 6.04065e12i 0.0972470i
\(323\) 8.11493e13i 1.28431i
\(324\) 0 0
\(325\) 4.08181e12 6.25290e12i 0.0624446 0.0956584i
\(326\) −7.69102e13 −1.15688
\(327\) 0 0
\(328\) 3.95412e12i 0.0575101i
\(329\) 1.46568e13 0.209633
\(330\) 0 0
\(331\) 8.65899e13 1.19788 0.598940 0.800794i \(-0.295589\pi\)
0.598940 + 0.800794i \(0.295589\pi\)
\(332\) 5.02304e13i 0.683451i
\(333\) 0 0
\(334\) 8.29405e13 1.09185
\(335\) −2.73549e13 + 9.19476e13i −0.354232 + 1.19068i
\(336\) 0 0
\(337\) 1.16110e14i 1.45514i 0.686035 + 0.727568i \(0.259349\pi\)
−0.686035 + 0.727568i \(0.740651\pi\)
\(338\) 5.66007e13i 0.697879i
\(339\) 0 0
\(340\) −1.66249e13 + 5.58813e13i −0.198439 + 0.667010i
\(341\) 1.96791e13 0.231130
\(342\) 0 0
\(343\) 3.85646e13i 0.438602i
\(344\) 2.50138e13 0.279967
\(345\) 0 0
\(346\) 1.14486e14 1.24117
\(347\) 6.39053e13i 0.681906i 0.940080 + 0.340953i \(0.110750\pi\)
−0.940080 + 0.340953i \(0.889250\pi\)
\(348\) 0 0
\(349\) 4.75085e13 0.491170 0.245585 0.969375i \(-0.421020\pi\)
0.245585 + 0.969375i \(0.421020\pi\)
\(350\) −1.30904e13 8.54527e12i −0.133223 0.0869665i
\(351\) 0 0
\(352\) 4.47419e12i 0.0441296i
\(353\) 5.02444e13i 0.487895i 0.969788 + 0.243948i \(0.0784425\pi\)
−0.969788 + 0.243948i \(0.921558\pi\)
\(354\) 0 0
\(355\) −9.16821e12 2.72759e12i −0.0863035 0.0256757i
\(356\) 5.83274e13 0.540627
\(357\) 0 0
\(358\) 4.35404e13i 0.391323i
\(359\) 1.32835e14 1.17569 0.587844 0.808974i \(-0.299977\pi\)
0.587844 + 0.808974i \(0.299977\pi\)
\(360\) 0 0
\(361\) −1.72986e13 −0.148499
\(362\) 1.43319e14i 1.21173i
\(363\) 0 0
\(364\) 1.56677e12 0.0128513
\(365\) −1.36514e13 + 4.58863e13i −0.110298 + 0.370742i
\(366\) 0 0
\(367\) 7.45502e13i 0.584501i 0.956342 + 0.292251i \(0.0944041\pi\)
−0.956342 + 0.292251i \(0.905596\pi\)
\(368\) 1.97842e13i 0.152812i
\(369\) 0 0
\(370\) 8.49314e13 + 2.52675e13i 0.636735 + 0.189432i
\(371\) −3.22471e13 −0.238195
\(372\) 0 0
\(373\) 2.87139e13i 0.205918i 0.994686 + 0.102959i \(0.0328310\pi\)
−0.994686 + 0.102959i \(0.967169\pi\)
\(374\) 3.47666e13 0.245679
\(375\) 0 0
\(376\) −4.80036e13 −0.329413
\(377\) 2.93916e13i 0.198768i
\(378\) 0 0
\(379\) −1.20853e14 −0.793855 −0.396927 0.917850i \(-0.629923\pi\)
−0.396927 + 0.917850i \(0.629923\pi\)
\(380\) 6.83056e13 + 2.03212e13i 0.442228 + 0.131565i
\(381\) 0 0
\(382\) 2.14151e14i 1.34701i
\(383\) 1.60437e14i 0.994745i −0.867537 0.497372i \(-0.834298\pi\)
0.867537 0.497372i \(-0.165702\pi\)
\(384\) 0 0
\(385\) −2.65823e12 + 8.93507e12i −0.0160161 + 0.0538349i
\(386\) 1.61389e14 0.958616
\(387\) 0 0
\(388\) 2.21256e13i 0.127738i
\(389\) −2.80107e14 −1.59441 −0.797207 0.603706i \(-0.793690\pi\)
−0.797207 + 0.603706i \(0.793690\pi\)
\(390\) 0 0
\(391\) −1.53733e14 −0.850735
\(392\) 6.15130e13i 0.335655i
\(393\) 0 0
\(394\) −8.78276e13 −0.466017
\(395\) 1.26268e14 + 3.75655e13i 0.660710 + 0.196564i
\(396\) 0 0
\(397\) 2.94199e14i 1.49725i 0.662995 + 0.748624i \(0.269285\pi\)
−0.662995 + 0.748624i \(0.730715\pi\)
\(398\) 1.53861e14i 0.772276i
\(399\) 0 0
\(400\) 4.28736e13 + 2.79874e13i 0.209344 + 0.136657i
\(401\) 2.74046e14 1.31986 0.659932 0.751325i \(-0.270585\pi\)
0.659932 + 0.751325i \(0.270585\pi\)
\(402\) 0 0
\(403\) 2.25700e13i 0.105768i
\(404\) 3.47089e13 0.160451
\(405\) 0 0
\(406\) 6.15314e13 0.276824
\(407\) 5.28402e13i 0.234528i
\(408\) 0 0
\(409\) −3.71472e13 −0.160490 −0.0802451 0.996775i \(-0.525570\pi\)
−0.0802451 + 0.996775i \(0.525570\pi\)
\(410\) 7.69419e12 2.58624e13i 0.0327983 0.110245i
\(411\) 0 0
\(412\) 1.24138e13i 0.0515192i
\(413\) 8.48291e13i 0.347392i
\(414\) 0 0
\(415\) −9.77416e13 + 3.28538e14i −0.389776 + 1.31015i
\(416\) −5.13146e12 −0.0201943
\(417\) 0 0
\(418\) 4.24964e13i 0.162886i
\(419\) −3.33663e14 −1.26221 −0.631104 0.775698i \(-0.717398\pi\)
−0.631104 + 0.775698i \(0.717398\pi\)
\(420\) 0 0
\(421\) −2.75493e14 −1.01522 −0.507609 0.861588i \(-0.669470\pi\)
−0.507609 + 0.861588i \(0.669470\pi\)
\(422\) 2.92358e13i 0.106340i
\(423\) 0 0
\(424\) 1.05615e14 0.374295
\(425\) −2.17475e14 + 3.33148e14i −0.760799 + 1.16546i
\(426\) 0 0
\(427\) 4.24867e13i 0.144844i
\(428\) 2.04816e14i 0.689323i
\(429\) 0 0
\(430\) 1.63606e14 + 4.86734e13i 0.536688 + 0.159667i
\(431\) 6.62478e13 0.214559 0.107280 0.994229i \(-0.465786\pi\)
0.107280 + 0.994229i \(0.465786\pi\)
\(432\) 0 0
\(433\) 5.22063e14i 1.64831i −0.566363 0.824156i \(-0.691650\pi\)
0.566363 0.824156i \(-0.308350\pi\)
\(434\) −4.72504e13 −0.147303
\(435\) 0 0
\(436\) −2.78522e11 −0.000846612
\(437\) 1.87913e14i 0.564039i
\(438\) 0 0
\(439\) 9.25027e13 0.270769 0.135385 0.990793i \(-0.456773\pi\)
0.135385 + 0.990793i \(0.456773\pi\)
\(440\) 8.70618e12 2.92640e13i 0.0251674 0.0845949i
\(441\) 0 0
\(442\) 3.98739e13i 0.112426i
\(443\) 3.10271e14i 0.864014i −0.901870 0.432007i \(-0.857806\pi\)
0.901870 0.432007i \(-0.142194\pi\)
\(444\) 0 0
\(445\) 3.81497e14 + 1.13497e14i 1.03636 + 0.308323i
\(446\) −1.65868e14 −0.445061
\(447\) 0 0
\(448\) 1.07427e13i 0.0281245i
\(449\) −2.72361e14 −0.704353 −0.352177 0.935934i \(-0.614558\pi\)
−0.352177 + 0.935934i \(0.614558\pi\)
\(450\) 0 0
\(451\) −1.60903e13 −0.0406063
\(452\) 1.97694e14i 0.492871i
\(453\) 0 0
\(454\) −2.90092e13 −0.0705876
\(455\) 1.02477e13 + 3.04872e12i 0.0246355 + 0.00732918i
\(456\) 0 0
\(457\) 4.48576e14i 1.05268i −0.850274 0.526341i \(-0.823564\pi\)
0.850274 0.526341i \(-0.176436\pi\)
\(458\) 4.76820e14i 1.10559i
\(459\) 0 0
\(460\) −3.84975e13 + 1.29401e14i −0.0871493 + 0.292934i
\(461\) 2.08873e14 0.467227 0.233613 0.972330i \(-0.424945\pi\)
0.233613 + 0.972330i \(0.424945\pi\)
\(462\) 0 0
\(463\) 5.50658e14i 1.20278i −0.798956 0.601390i \(-0.794614\pi\)
0.798956 0.601390i \(-0.205386\pi\)
\(464\) −2.01527e14 −0.434994
\(465\) 0 0
\(466\) −5.90987e14 −1.24582
\(467\) 8.79949e14i 1.83322i −0.399782 0.916610i \(-0.630914\pi\)
0.399782 0.916610i \(-0.369086\pi\)
\(468\) 0 0
\(469\) −1.37352e14 −0.279502
\(470\) −3.13973e14 9.34086e13i −0.631473 0.187866i
\(471\) 0 0
\(472\) 2.77831e14i 0.545883i
\(473\) 1.01787e14i 0.197678i
\(474\) 0 0
\(475\) 4.07219e14 + 2.65827e14i 0.772704 + 0.504411i
\(476\) −8.34760e13 −0.156575
\(477\) 0 0
\(478\) 3.59885e14i 0.659645i
\(479\) −4.87950e14 −0.884157 −0.442079 0.896976i \(-0.645759\pi\)
−0.442079 + 0.896976i \(0.645759\pi\)
\(480\) 0 0
\(481\) −6.06025e13 −0.107323
\(482\) 7.84197e14i 1.37299i
\(483\) 0 0
\(484\) 2.73953e14 0.468841
\(485\) 4.30534e13 1.44715e14i 0.0728497 0.244869i
\(486\) 0 0
\(487\) 2.80492e14i 0.463993i 0.972717 + 0.231997i \(0.0745258\pi\)
−0.972717 + 0.231997i \(0.925474\pi\)
\(488\) 1.39152e14i 0.227604i
\(489\) 0 0
\(490\) −1.19696e14 + 4.02333e14i −0.191426 + 0.643439i
\(491\) 6.28487e14 0.993912 0.496956 0.867776i \(-0.334451\pi\)
0.496956 + 0.867776i \(0.334451\pi\)
\(492\) 0 0
\(493\) 1.56596e15i 2.42171i
\(494\) −4.87392e13 −0.0745385
\(495\) 0 0
\(496\) 1.54754e14 0.231468
\(497\) 1.36956e13i 0.0202591i
\(498\) 0 0
\(499\) −9.17043e13 −0.132690 −0.0663448 0.997797i \(-0.521134\pi\)
−0.0663448 + 0.997797i \(0.521134\pi\)
\(500\) 2.25961e14 + 2.66481e14i 0.323368 + 0.381357i
\(501\) 0 0
\(502\) 4.22287e14i 0.591204i
\(503\) 5.17206e14i 0.716209i −0.933682 0.358104i \(-0.883423\pi\)
0.933682 0.358104i \(-0.116577\pi\)
\(504\) 0 0
\(505\) 2.27018e14 + 6.75388e13i 0.307579 + 0.0915062i
\(506\) 8.05071e13 0.107896
\(507\) 0 0
\(508\) 1.03225e14i 0.135374i
\(509\) 7.65954e14 0.993700 0.496850 0.867837i \(-0.334490\pi\)
0.496850 + 0.867837i \(0.334490\pi\)
\(510\) 0 0
\(511\) −6.85453e13 −0.0870288
\(512\) 3.51844e13i 0.0441942i
\(513\) 0 0
\(514\) −1.05533e15 −1.29746
\(515\) 2.41555e13 8.11938e13i 0.0293817 0.0987604i
\(516\) 0 0
\(517\) 1.95339e14i 0.232590i
\(518\) 1.26871e14i 0.149469i
\(519\) 0 0
\(520\) −3.35629e13 9.98514e12i −0.0387117 0.0115169i
\(521\) 1.21310e15 1.38449 0.692244 0.721664i \(-0.256622\pi\)
0.692244 + 0.721664i \(0.256622\pi\)
\(522\) 0 0
\(523\) 2.78153e14i 0.310831i −0.987849 0.155415i \(-0.950328\pi\)
0.987849 0.155415i \(-0.0496716\pi\)
\(524\) −8.49710e14 −0.939612
\(525\) 0 0
\(526\) −9.95375e12 −0.0107787
\(527\) 1.20251e15i 1.28864i
\(528\) 0 0
\(529\) 5.96819e14 0.626378
\(530\) 6.90788e14 + 2.05513e14i 0.717509 + 0.213462i
\(531\) 0 0
\(532\) 1.02036e14i 0.103810i
\(533\) 1.84540e13i 0.0185820i
\(534\) 0 0
\(535\) −3.98544e14 + 1.33962e15i −0.393125 + 1.32141i
\(536\) 4.49854e14 0.439203
\(537\) 0 0
\(538\) 8.50310e14i 0.813345i
\(539\) 2.50312e14 0.236997
\(540\) 0 0
\(541\) 1.36205e15 1.26359 0.631797 0.775134i \(-0.282318\pi\)
0.631797 + 0.775134i \(0.282318\pi\)
\(542\) 3.47716e14i 0.319321i
\(543\) 0 0
\(544\) 2.73399e14 0.246039
\(545\) −1.82171e12 5.41967e11i −0.00162292 0.000482828i
\(546\) 0 0
\(547\) 2.95444e14i 0.257956i 0.991647 + 0.128978i \(0.0411696\pi\)
−0.991647 + 0.128978i \(0.958830\pi\)
\(548\) 2.80955e14i 0.242853i
\(549\) 0 0
\(550\) 1.13888e14 1.74464e14i 0.0964899 0.147812i
\(551\) −1.91412e15 −1.60560
\(552\) 0 0
\(553\) 1.88621e14i 0.155096i
\(554\) 3.94185e14 0.320920
\(555\) 0 0
\(556\) −7.68284e14 −0.613212
\(557\) 9.49495e14i 0.750394i 0.926945 + 0.375197i \(0.122425\pi\)
−0.926945 + 0.375197i \(0.877575\pi\)
\(558\) 0 0
\(559\) −1.16740e14 −0.0904597
\(560\) −2.09039e13 + 7.02640e13i −0.0160396 + 0.0539137i
\(561\) 0 0
\(562\) 1.02699e15i 0.772710i
\(563\) 1.50227e15i 1.11931i −0.828725 0.559656i \(-0.810933\pi\)
0.828725 0.559656i \(-0.189067\pi\)
\(564\) 0 0
\(565\) −3.84687e14 + 1.29304e15i −0.281087 + 0.944815i
\(566\) −1.70693e15 −1.23517
\(567\) 0 0
\(568\) 4.48555e13i 0.0318346i
\(569\) −1.23558e14 −0.0868467 −0.0434233 0.999057i \(-0.513826\pi\)
−0.0434233 + 0.999057i \(0.513826\pi\)
\(570\) 0 0
\(571\) 1.38364e15 0.953949 0.476974 0.878917i \(-0.341733\pi\)
0.476974 + 0.878917i \(0.341733\pi\)
\(572\) 2.08812e13i 0.0142586i
\(573\) 0 0
\(574\) 3.86335e13 0.0258791
\(575\) −5.03595e14 + 7.71453e14i −0.334124 + 0.511843i
\(576\) 0 0
\(577\) 1.31636e15i 0.856853i −0.903577 0.428426i \(-0.859068\pi\)
0.903577 0.428426i \(-0.140932\pi\)
\(578\) 1.02774e15i 0.662644i
\(579\) 0 0
\(580\) −1.31811e15 3.92144e14i −0.833868 0.248080i
\(581\) −4.90773e14 −0.307547
\(582\) 0 0
\(583\) 4.29775e14i 0.264280i
\(584\) 2.24499e14 0.136755
\(585\) 0 0
\(586\) −6.84565e14 −0.409240
\(587\) 1.80764e15i 1.07054i 0.844682 + 0.535268i \(0.179790\pi\)
−0.844682 + 0.535268i \(0.820210\pi\)
\(588\) 0 0
\(589\) 1.46987e15 0.854367
\(590\) −5.40622e14 + 1.81719e15i −0.311321 + 1.04644i
\(591\) 0 0
\(592\) 4.15527e14i 0.234871i
\(593\) 1.28746e15i 0.720996i −0.932760 0.360498i \(-0.882607\pi\)
0.932760 0.360498i \(-0.117393\pi\)
\(594\) 0 0
\(595\) −5.45985e14 1.62433e14i −0.300149 0.0892958i
\(596\) −2.97965e14 −0.162297
\(597\) 0 0
\(598\) 9.23338e13i 0.0493746i
\(599\) −4.05077e14 −0.214630 −0.107315 0.994225i \(-0.534225\pi\)
−0.107315 + 0.994225i \(0.534225\pi\)
\(600\) 0 0
\(601\) 1.40866e15 0.732819 0.366410 0.930454i \(-0.380587\pi\)
0.366410 + 0.930454i \(0.380587\pi\)
\(602\) 2.44395e14i 0.125983i
\(603\) 0 0
\(604\) −3.00192e14 −0.151949
\(605\) 1.79182e15 + 5.33075e14i 0.898752 + 0.267383i
\(606\) 0 0
\(607\) 3.28823e15i 1.61966i 0.586664 + 0.809831i \(0.300441\pi\)
−0.586664 + 0.809831i \(0.699559\pi\)
\(608\) 3.34185e14i 0.163124i
\(609\) 0 0
\(610\) 2.70771e14 9.10139e14i 0.129804 0.436308i
\(611\) 2.24035e14 0.106436
\(612\) 0 0
\(613\) 1.41333e15i 0.659493i −0.944070 0.329746i \(-0.893037\pi\)
0.944070 0.329746i \(-0.106963\pi\)
\(614\) 1.65610e15 0.765881
\(615\) 0 0
\(616\) 4.37148e13 0.0198580
\(617\) 1.50170e15i 0.676105i 0.941127 + 0.338052i \(0.109768\pi\)
−0.941127 + 0.338052i \(0.890232\pi\)
\(618\) 0 0
\(619\) −3.52301e15 −1.55817 −0.779087 0.626916i \(-0.784317\pi\)
−0.779087 + 0.626916i \(0.784317\pi\)
\(620\) 1.01219e15 + 3.01130e14i 0.443717 + 0.132008i
\(621\) 0 0
\(622\) 2.38959e15i 1.02914i
\(623\) 5.69884e14i 0.243278i
\(624\) 0 0
\(625\) 9.59386e14 + 2.18264e15i 0.402396 + 0.915466i
\(626\) −2.26066e15 −0.939887
\(627\) 0 0
\(628\) 4.74194e14i 0.193722i
\(629\) 3.22884e15 1.30758
\(630\) 0 0
\(631\) −1.01419e14 −0.0403606 −0.0201803 0.999796i \(-0.506424\pi\)
−0.0201803 + 0.999796i \(0.506424\pi\)
\(632\) 6.17769e14i 0.243715i
\(633\) 0 0
\(634\) −1.35403e15 −0.524975
\(635\) 2.00862e14 6.75155e14i 0.0772044 0.259506i
\(636\) 0 0
\(637\) 2.87084e14i 0.108453i
\(638\) 8.20063e14i 0.307138i
\(639\) 0 0
\(640\) 6.84641e13 2.30128e14i 0.0252042 0.0847186i
\(641\) 6.09730e14 0.222545 0.111273 0.993790i \(-0.464507\pi\)
0.111273 + 0.993790i \(0.464507\pi\)
\(642\) 0 0
\(643\) 1.71169e15i 0.614136i 0.951688 + 0.307068i \(0.0993478\pi\)
−0.951688 + 0.307068i \(0.900652\pi\)
\(644\) −1.93301e14 −0.0687640
\(645\) 0 0
\(646\) 2.59678e15 0.908147
\(647\) 3.62038e15i 1.25540i 0.778457 + 0.627698i \(0.216003\pi\)
−0.778457 + 0.627698i \(0.783997\pi\)
\(648\) 0 0
\(649\) 1.13057e15 0.385434
\(650\) −2.00093e14 1.30618e14i −0.0676407 0.0441550i
\(651\) 0 0
\(652\) 2.46113e15i 0.818036i
\(653\) 1.77012e15i 0.583419i −0.956507 0.291709i \(-0.905776\pi\)
0.956507 0.291709i \(-0.0942240\pi\)
\(654\) 0 0
\(655\) −5.55763e15 1.65342e15i −1.80120 0.535866i
\(656\) −1.26532e14 −0.0406658
\(657\) 0 0
\(658\) 4.69016e14i 0.148233i
\(659\) 1.93677e15 0.607029 0.303514 0.952827i \(-0.401840\pi\)
0.303514 + 0.952827i \(0.401840\pi\)
\(660\) 0 0
\(661\) 2.25856e15 0.696184 0.348092 0.937460i \(-0.386830\pi\)
0.348092 + 0.937460i \(0.386830\pi\)
\(662\) 2.77088e15i 0.847029i
\(663\) 0 0
\(664\) 1.60737e15 0.483273
\(665\) −1.98548e14 + 6.67376e14i −0.0592032 + 0.198999i
\(666\) 0 0
\(667\) 3.62620e15i 1.06355i
\(668\) 2.65410e15i 0.772052i
\(669\) 0 0
\(670\) 2.94232e15 + 8.75355e14i 0.841936 + 0.250480i
\(671\) −5.66244e14 −0.160705
\(672\) 0 0
\(673\) 3.47635e15i 0.970600i −0.874348 0.485300i \(-0.838710\pi\)
0.874348 0.485300i \(-0.161290\pi\)
\(674\) 3.71551e15 1.02894
\(675\) 0 0
\(676\) −1.81122e15 −0.493475
\(677\) 6.11961e15i 1.65381i −0.562340 0.826906i \(-0.690099\pi\)
0.562340 0.826906i \(-0.309901\pi\)
\(678\) 0 0
\(679\) 2.16177e14 0.0574811
\(680\) 1.78820e15 + 5.31998e14i 0.471647 + 0.140317i
\(681\) 0 0
\(682\) 6.29732e14i 0.163434i
\(683\) 2.12650e15i 0.547459i 0.961807 + 0.273730i \(0.0882574\pi\)
−0.961807 + 0.273730i \(0.911743\pi\)
\(684\) 0 0
\(685\) −5.46700e14 + 1.83762e15i −0.138500 + 0.465540i
\(686\) −1.23407e15 −0.310139
\(687\) 0 0
\(688\) 8.00440e14i 0.197967i
\(689\) −4.92909e14 −0.120938
\(690\) 0 0
\(691\) −3.62175e15 −0.874559 −0.437279 0.899326i \(-0.644058\pi\)
−0.437279 + 0.899326i \(0.644058\pi\)
\(692\) 3.66354e15i 0.877641i
\(693\) 0 0
\(694\) 2.04497e15 0.482180
\(695\) −5.02505e15 1.49498e15i −1.17550 0.349718i
\(696\) 0 0
\(697\) 9.83212e14i 0.226395i
\(698\) 1.52027e15i 0.347309i
\(699\) 0 0
\(700\) −2.73449e14 + 4.18894e14i −0.0614946 + 0.0942031i
\(701\) −4.26088e15 −0.950714 −0.475357 0.879793i \(-0.657681\pi\)
−0.475357 + 0.879793i \(0.657681\pi\)
\(702\) 0 0
\(703\) 3.94672e15i 0.866927i
\(704\) −1.43174e14 −0.0312043
\(705\) 0 0
\(706\) 1.60782e15 0.344994
\(707\) 3.39121e14i 0.0722018i
\(708\) 0 0
\(709\) 5.11768e15 1.07280 0.536400 0.843964i \(-0.319784\pi\)
0.536400 + 0.843964i \(0.319784\pi\)
\(710\) −8.72827e13 + 2.93383e14i −0.0181555 + 0.0610258i
\(711\) 0 0
\(712\) 1.86648e15i 0.382281i
\(713\) 2.78458e15i 0.565937i
\(714\) 0 0
\(715\) −4.06321e13 + 1.36576e14i −0.00813178 + 0.0273333i
\(716\) −1.39329e15 −0.276707
\(717\) 0 0
\(718\) 4.25071e15i 0.831337i
\(719\) −5.59985e15 −1.08684 −0.543422 0.839460i \(-0.682872\pi\)
−0.543422 + 0.839460i \(0.682872\pi\)
\(720\) 0 0
\(721\) 1.21288e14 0.0231832
\(722\) 5.53556e14i 0.105004i
\(723\) 0 0
\(724\) 4.58620e15 0.856822
\(725\) −7.85820e15 5.12973e15i −1.45701 0.951120i
\(726\) 0 0
\(727\) 7.58938e15i 1.38601i −0.720932 0.693006i \(-0.756286\pi\)
0.720932 0.693006i \(-0.243714\pi\)
\(728\) 5.01366e13i 0.00908725i
\(729\) 0 0
\(730\) 1.46836e15 + 4.36844e14i 0.262154 + 0.0779921i
\(731\) 6.21980e15 1.10212
\(732\) 0 0
\(733\) 8.96849e15i 1.56548i 0.622349 + 0.782740i \(0.286179\pi\)
−0.622349 + 0.782740i \(0.713821\pi\)
\(734\) 2.38561e15 0.413305
\(735\) 0 0
\(736\) 6.33095e14 0.108054
\(737\) 1.83057e15i 0.310110i
\(738\) 0 0
\(739\) −4.50240e15 −0.751449 −0.375724 0.926731i \(-0.622606\pi\)
−0.375724 + 0.926731i \(0.622606\pi\)
\(740\) 8.08560e14 2.71780e15i 0.133948 0.450240i
\(741\) 0 0
\(742\) 1.03191e15i 0.168430i
\(743\) 2.94446e15i 0.477053i −0.971136 0.238527i \(-0.923336\pi\)
0.971136 0.238527i \(-0.0766644\pi\)
\(744\) 0 0
\(745\) −1.94887e15 5.79800e14i −0.311118 0.0925589i
\(746\) 9.18846e14 0.145606
\(747\) 0 0
\(748\) 1.11253e15i 0.173721i
\(749\) −2.00114e15 −0.310190
\(750\) 0 0
\(751\) −8.50045e15 −1.29844 −0.649221 0.760600i \(-0.724905\pi\)
−0.649221 + 0.760600i \(0.724905\pi\)
\(752\) 1.53611e15i 0.232930i
\(753\) 0 0
\(754\) 9.40532e14 0.140550
\(755\) −1.96345e15 5.84134e14i −0.291280 0.0866572i
\(756\) 0 0
\(757\) 4.72643e15i 0.691044i 0.938411 + 0.345522i \(0.112298\pi\)
−0.938411 + 0.345522i \(0.887702\pi\)
\(758\) 3.86729e15i 0.561340i
\(759\) 0 0
\(760\) 6.50280e14 2.18578e15i 0.0930306 0.312703i
\(761\) 8.74955e15 1.24271 0.621356 0.783529i \(-0.286582\pi\)
0.621356 + 0.783529i \(0.286582\pi\)
\(762\) 0 0
\(763\) 2.72129e12i 0.000380969i
\(764\) −6.85284e15 −0.952483
\(765\) 0 0
\(766\) −5.13399e15 −0.703391
\(767\) 1.29665e15i 0.176379i
\(768\) 0 0
\(769\) −4.01783e15 −0.538762 −0.269381 0.963034i \(-0.586819\pi\)
−0.269381 + 0.963034i \(0.586819\pi\)
\(770\) 2.85922e14 + 8.50632e13i 0.0380670 + 0.0113251i
\(771\) 0 0
\(772\) 5.16446e15i 0.677844i
\(773\) 4.77859e15i 0.622749i −0.950287 0.311374i \(-0.899211\pi\)
0.950287 0.311374i \(-0.100789\pi\)
\(774\) 0 0
\(775\) 6.03436e15 + 3.93915e15i 0.775304 + 0.506109i
\(776\) −7.08019e14 −0.0903244
\(777\) 0 0
\(778\) 8.96342e15i 1.12742i
\(779\) −1.20181e15 −0.150100
\(780\) 0 0
\(781\) 1.82528e14 0.0224776
\(782\) 4.91945e15i 0.601561i
\(783\) 0 0
\(784\) 1.96842e15 0.237344
\(785\) 9.22718e14 3.10152e15i 0.110481 0.371357i
\(786\) 0 0
\(787\) 8.20164e15i 0.968366i 0.874967 + 0.484183i \(0.160883\pi\)
−0.874967 + 0.484183i \(0.839117\pi\)
\(788\) 2.81048e15i 0.329524i
\(789\) 0 0
\(790\) 1.20210e15 4.04059e15i 0.138992 0.467193i
\(791\) −1.93156e15 −0.221788
\(792\) 0 0
\(793\) 6.49426e14i 0.0735406i
\(794\) 9.41437e15 1.05871
\(795\) 0 0
\(796\) −4.92356e15 −0.546082
\(797\) 5.71181e15i 0.629148i −0.949233 0.314574i \(-0.898138\pi\)
0.949233 0.314574i \(-0.101862\pi\)
\(798\) 0 0
\(799\) −1.19363e16 −1.29677
\(800\) 8.95595e14 1.37196e15i 0.0966311 0.148028i
\(801\) 0 0
\(802\) 8.76947e15i 0.933285i
\(803\) 9.13542e14i 0.0965591i
\(804\) 0 0
\(805\) −1.26431e15 3.76137e14i −0.131818 0.0392165i
\(806\) −7.22241e14 −0.0747893
\(807\) 0 0
\(808\) 1.11068e15i 0.113456i
\(809\) −1.37124e15 −0.139122 −0.0695612 0.997578i \(-0.522160\pi\)
−0.0695612 + 0.997578i \(0.522160\pi\)
\(810\) 0 0
\(811\) −1.59239e16 −1.59380 −0.796900 0.604111i \(-0.793528\pi\)
−0.796900 + 0.604111i \(0.793528\pi\)
\(812\) 1.96900e15i 0.195744i
\(813\) 0 0
\(814\) −1.69089e15 −0.165836
\(815\) −4.78902e15 + 1.60973e16i −0.466531 + 1.56814i
\(816\) 0 0
\(817\) 7.60268e15i 0.730710i
\(818\) 1.18871e15i 0.113484i
\(819\) 0 0
\(820\) −8.27597e14 2.46214e14i −0.0779548 0.0231919i
\(821\) 1.99735e16 1.86882 0.934410 0.356199i \(-0.115928\pi\)
0.934410 + 0.356199i \(0.115928\pi\)
\(822\) 0 0
\(823\) 1.97814e16i 1.82624i 0.407690 + 0.913121i \(0.366335\pi\)
−0.407690 + 0.913121i \(0.633665\pi\)
\(824\) −3.97241e14 −0.0364296
\(825\) 0 0
\(826\) −2.71453e15 −0.245643
\(827\) 1.95434e15i 0.175679i −0.996135 0.0878394i \(-0.972004\pi\)
0.996135 0.0878394i \(-0.0279962\pi\)
\(828\) 0 0
\(829\) 8.79807e15 0.780436 0.390218 0.920722i \(-0.372400\pi\)
0.390218 + 0.920722i \(0.372400\pi\)
\(830\) 1.05132e16 + 3.12773e15i 0.926416 + 0.275613i
\(831\) 0 0
\(832\) 1.64207e14i 0.0142795i
\(833\) 1.52955e16i 1.32135i
\(834\) 0 0
\(835\) 5.16452e15 1.73594e16i 0.440306 1.48000i
\(836\) −1.35989e15 −0.115178
\(837\) 0 0
\(838\) 1.06772e16i 0.892516i
\(839\) −1.35734e15 −0.112719 −0.0563594 0.998411i \(-0.517949\pi\)
−0.0563594 + 0.998411i \(0.517949\pi\)
\(840\) 0 0
\(841\) 2.47368e16 2.02752
\(842\) 8.81578e15i 0.717867i
\(843\) 0 0
\(844\) 9.35544e14 0.0751936
\(845\) −1.18465e16 3.52440e15i −0.945974 0.281432i
\(846\) 0 0
\(847\) 2.67664e15i 0.210975i
\(848\) 3.37968e15i 0.264666i
\(849\) 0 0
\(850\) 1.06607e16 + 6.95920e15i 0.824107 + 0.537966i
\(851\) 7.47685e15 0.574257
\(852\) 0 0
\(853\) 4.31342e15i 0.327041i −0.986540 0.163520i \(-0.947715\pi\)
0.986540 0.163520i \(-0.0522849\pi\)
\(854\) 1.35957e15 0.102420
\(855\) 0 0
\(856\) 6.55410e15 0.487425
\(857\) 1.15504e16i 0.853496i 0.904370 + 0.426748i \(0.140341\pi\)
−0.904370 + 0.426748i \(0.859659\pi\)
\(858\) 0 0
\(859\) 1.46253e16 1.06694 0.533472 0.845818i \(-0.320887\pi\)
0.533472 + 0.845818i \(0.320887\pi\)
\(860\) 1.55755e15 5.23538e15i 0.112902 0.379495i
\(861\) 0 0
\(862\) 2.11993e15i 0.151716i
\(863\) 1.43334e16i 1.01927i 0.860391 + 0.509634i \(0.170219\pi\)
−0.860391 + 0.509634i \(0.829781\pi\)
\(864\) 0 0
\(865\) 7.12875e15 2.39618e16i 0.500524 1.68241i
\(866\) −1.67060e16 −1.16553
\(867\) 0 0
\(868\) 1.51201e15i 0.104159i
\(869\) −2.51386e15 −0.172081
\(870\) 0 0
\(871\) −2.09948e15 −0.141910
\(872\) 8.91271e12i 0.000598645i
\(873\) 0 0
\(874\) 6.01322e15 0.398836
\(875\) −2.60364e15 + 2.20773e15i −0.171607 + 0.145513i
\(876\) 0 0
\(877\) 2.69396e16i 1.75345i 0.480990 + 0.876726i \(0.340277\pi\)
−0.480990 + 0.876726i \(0.659723\pi\)
\(878\) 2.96009e15i 0.191463i
\(879\) 0 0
\(880\) −9.36448e14 2.78598e14i −0.0598176 0.0177960i
\(881\) 2.67478e15 0.169793 0.0848965 0.996390i \(-0.472944\pi\)
0.0848965 + 0.996390i \(0.472944\pi\)
\(882\) 0 0
\(883\) 2.97836e16i 1.86721i 0.358305 + 0.933605i \(0.383355\pi\)
−0.358305 + 0.933605i \(0.616645\pi\)
\(884\) −1.27596e15 −0.0794970
\(885\) 0 0
\(886\) −9.92867e15 −0.610950
\(887\) 1.08553e15i 0.0663839i −0.999449 0.0331919i \(-0.989433\pi\)
0.999449 0.0331919i \(-0.0105673\pi\)
\(888\) 0 0
\(889\) 1.00855e15 0.0609171
\(890\) 3.63191e15 1.22079e16i 0.218017 0.732819i
\(891\) 0 0
\(892\) 5.30776e15i 0.314706i
\(893\) 1.45902e16i 0.859762i
\(894\) 0 0
\(895\) −9.11299e15 2.71116e15i −0.530438 0.157808i
\(896\) 3.43767e14 0.0198870
\(897\) 0 0
\(898\) 8.71556e15i 0.498053i
\(899\) −2.83644e16 −1.61100
\(900\) 0 0
\(901\) 2.62617e16 1.47345
\(902\) 5.14891e14i 0.0287130i
\(903\) 0 0
\(904\) 6.32622e15 0.348512
\(905\) 2.99966e16 + 8.92412e15i 1.64250 + 0.488651i
\(906\) 0 0
\(907\) 2.29571e16i 1.24187i −0.783861 0.620936i \(-0.786753\pi\)
0.783861 0.620936i \(-0.213247\pi\)
\(908\) 9.28294e14i 0.0499130i
\(909\) 0 0
\(910\) 9.75592e13 3.27925e14i 0.00518251 0.0174199i
\(911\) 1.78621e16 0.943153 0.471576 0.881825i \(-0.343685\pi\)
0.471576 + 0.881825i \(0.343685\pi\)
\(912\) 0 0
\(913\) 6.54081e15i 0.341226i
\(914\) −1.43544e16 −0.744358
\(915\) 0 0
\(916\) −1.52582e16 −0.781770
\(917\) 8.30204e15i 0.422818i
\(918\) 0 0
\(919\) −2.38879e16 −1.20211 −0.601053 0.799209i \(-0.705252\pi\)
−0.601053 + 0.799209i \(0.705252\pi\)
\(920\) 4.14084e15 + 1.23192e15i 0.207136 + 0.0616239i
\(921\) 0 0
\(922\) 6.68394e15i 0.330379i
\(923\) 2.09342e14i 0.0102860i
\(924\) 0 0
\(925\) 1.05770e16 1.62028e16i 0.513549 0.786702i
\(926\) −1.76210e16 −0.850494
\(927\) 0 0
\(928\) 6.44885e15i 0.307587i
\(929\) 9.57374e15 0.453936 0.226968 0.973902i \(-0.427119\pi\)
0.226968 + 0.973902i \(0.427119\pi\)
\(930\) 0 0
\(931\) 1.86963e16 0.876055
\(932\) 1.89116e16i 0.880928i
\(933\) 0 0
\(934\) −2.81584e16 −1.29628
\(935\) 2.16484e15 7.27664e15i 0.0990744 0.333018i
\(936\) 0 0
\(937\) 2.25750e16i 1.02108i −0.859853 0.510541i \(-0.829445\pi\)
0.859853 0.510541i \(-0.170555\pi\)
\(938\) 4.39527e15i 0.197638i
\(939\) 0 0
\(940\) −2.98907e15 + 1.00471e16i −0.132841 + 0.446519i
\(941\) 9.26321e15 0.409278 0.204639 0.978837i \(-0.434398\pi\)
0.204639 + 0.978837i \(0.434398\pi\)
\(942\) 0 0
\(943\) 2.27677e15i 0.0994272i
\(944\) 8.89060e15 0.385998
\(945\) 0 0
\(946\) −3.25720e15 −0.139779
\(947\) 1.09295e16i 0.466312i −0.972439 0.233156i \(-0.925095\pi\)
0.972439 0.233156i \(-0.0749053\pi\)
\(948\) 0 0
\(949\) −1.04774e15 −0.0441866
\(950\) 8.50647e15 1.30310e16i 0.356672 0.546384i
\(951\) 0 0
\(952\) 2.67123e15i 0.110715i
\(953\) 3.06665e16i 1.26373i 0.775080 + 0.631863i \(0.217709\pi\)
−0.775080 + 0.631863i \(0.782291\pi\)
\(954\) 0 0
\(955\) −4.48218e16 1.33347e16i −1.82588 0.543207i
\(956\) −1.15163e16 −0.466439
\(957\) 0 0
\(958\) 1.56144e16i 0.625194i
\(959\) −2.74505e15 −0.109282
\(960\) 0 0
\(961\) −3.62725e15 −0.142758
\(962\) 1.93928e15i 0.0758888i
\(963\) 0 0
\(964\) −2.50943e16 −0.970848
\(965\) 1.00493e16 3.37788e16i 0.386578 1.29940i
\(966\) 0 0
\(967\) 3.64467e16i 1.38616i 0.720862 + 0.693079i \(0.243746\pi\)
−0.720862 + 0.693079i \(0.756254\pi\)
\(968\) 8.76648e15i 0.331521i
\(969\) 0 0
\(970\) −4.63088e15 1.37771e15i −0.173149 0.0515125i
\(971\) −3.51494e14 −0.0130681 −0.00653405 0.999979i \(-0.502080\pi\)
−0.00653405 + 0.999979i \(0.502080\pi\)
\(972\) 0 0
\(973\) 7.50647e15i 0.275940i
\(974\) 8.97575e15 0.328093
\(975\) 0 0
\(976\) −4.45285e15 −0.160940
\(977\) 2.49440e16i 0.896490i −0.893911 0.448245i \(-0.852049\pi\)
0.893911 0.448245i \(-0.147951\pi\)
\(978\) 0 0
\(979\) −7.59517e15 −0.269919
\(980\) 1.28747e16 + 3.83027e15i 0.454980 + 0.135359i
\(981\) 0 0
\(982\) 2.01116e16i 0.702802i
\(983\) 2.83374e16i 0.984725i −0.870390 0.492363i \(-0.836133\pi\)
0.870390 0.492363i \(-0.163867\pi\)
\(984\) 0 0
\(985\) −5.46882e15 + 1.83823e16i −0.187929 + 0.631685i
\(986\) −5.01106e16 −1.71241
\(987\) 0 0
\(988\) 1.55966e15i 0.0527067i
\(989\) 1.44028e16 0.484026
\(990\) 0 0
\(991\) 2.87221e16 0.954577 0.477289 0.878747i \(-0.341620\pi\)
0.477289 + 0.878747i \(0.341620\pi\)
\(992\) 4.95212e15i 0.163673i
\(993\) 0 0
\(994\) −4.38258e14 −0.0143253
\(995\) −3.22032e16 9.58059e15i −1.04682 0.311434i
\(996\) 0 0
\(997\) 2.75510e16i 0.885755i −0.896582 0.442877i \(-0.853958\pi\)
0.896582 0.442877i \(-0.146042\pi\)
\(998\) 2.93454e15i 0.0938257i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.12.c.a.19.1 4
3.2 odd 2 30.12.c.a.19.4 yes 4
5.4 even 2 inner 90.12.c.a.19.3 4
12.11 even 2 240.12.f.a.49.4 4
15.2 even 4 150.12.a.k.1.1 2
15.8 even 4 150.12.a.r.1.2 2
15.14 odd 2 30.12.c.a.19.2 4
60.59 even 2 240.12.f.a.49.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.12.c.a.19.2 4 15.14 odd 2
30.12.c.a.19.4 yes 4 3.2 odd 2
90.12.c.a.19.1 4 1.1 even 1 trivial
90.12.c.a.19.3 4 5.4 even 2 inner
150.12.a.k.1.1 2 15.2 even 4
150.12.a.r.1.2 2 15.8 even 4
240.12.f.a.49.2 4 60.59 even 2
240.12.f.a.49.4 4 12.11 even 2