Properties

Label 90.12.a.l.1.1
Level $90$
Weight $12$
Character 90.1
Self dual yes
Analytic conductor $69.151$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [90,12,Mod(1,90)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("90.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 90.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.1508862504\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1969}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 492 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 5 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-21.6867\) of defining polynomial
Character \(\chi\) \(=\) 90.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-32.0000 q^{2} +1024.00 q^{4} -3125.00 q^{5} -71494.9 q^{7} -32768.0 q^{8} +100000. q^{10} +345651. q^{11} +1.50956e6 q^{13} +2.28784e6 q^{14} +1.04858e6 q^{16} +5.39291e6 q^{17} -1.11633e7 q^{19} -3.20000e6 q^{20} -1.10608e7 q^{22} +5.27646e6 q^{23} +9.76562e6 q^{25} -4.83060e7 q^{26} -7.32108e7 q^{28} +1.86291e7 q^{29} +7.10448e7 q^{31} -3.35544e7 q^{32} -1.72573e8 q^{34} +2.23422e8 q^{35} +3.23164e8 q^{37} +3.57225e8 q^{38} +1.02400e8 q^{40} +9.11277e8 q^{41} -1.16431e9 q^{43} +3.53946e8 q^{44} -1.68847e8 q^{46} -2.81949e8 q^{47} +3.13420e9 q^{49} -3.12500e8 q^{50} +1.54579e9 q^{52} -4.05957e9 q^{53} -1.08016e9 q^{55} +2.34275e9 q^{56} -5.96132e8 q^{58} -4.89828e9 q^{59} +1.07565e10 q^{61} -2.27343e9 q^{62} +1.07374e9 q^{64} -4.71739e9 q^{65} +3.70812e9 q^{67} +5.52234e9 q^{68} -7.14949e9 q^{70} -3.45274e9 q^{71} -2.21136e10 q^{73} -1.03413e10 q^{74} -1.14312e10 q^{76} -2.47123e10 q^{77} +7.02672e9 q^{79} -3.27680e9 q^{80} -2.91609e10 q^{82} -5.55656e10 q^{83} -1.68528e10 q^{85} +3.72580e10 q^{86} -1.13263e10 q^{88} +9.29706e9 q^{89} -1.07926e11 q^{91} +5.40310e9 q^{92} +9.02235e9 q^{94} +3.48853e10 q^{95} +4.71888e10 q^{97} -1.00294e11 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 64 q^{2} + 2048 q^{4} - 6250 q^{5} + 14092 q^{7} - 65536 q^{8} + 200000 q^{10} - 421584 q^{11} + 1730524 q^{13} - 450944 q^{14} + 2097152 q^{16} + 6323628 q^{17} - 28897400 q^{19} - 6400000 q^{20}+ \cdots - 271423966272 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −32.0000 −0.707107
\(3\) 0 0
\(4\) 1024.00 0.500000
\(5\) −3125.00 −0.447214
\(6\) 0 0
\(7\) −71494.9 −1.60782 −0.803908 0.594754i \(-0.797249\pi\)
−0.803908 + 0.594754i \(0.797249\pi\)
\(8\) −32768.0 −0.353553
\(9\) 0 0
\(10\) 100000. 0.316228
\(11\) 345651. 0.647109 0.323555 0.946209i \(-0.395122\pi\)
0.323555 + 0.946209i \(0.395122\pi\)
\(12\) 0 0
\(13\) 1.50956e6 1.12762 0.563810 0.825904i \(-0.309335\pi\)
0.563810 + 0.825904i \(0.309335\pi\)
\(14\) 2.28784e6 1.13690
\(15\) 0 0
\(16\) 1.04858e6 0.250000
\(17\) 5.39291e6 0.921200 0.460600 0.887608i \(-0.347634\pi\)
0.460600 + 0.887608i \(0.347634\pi\)
\(18\) 0 0
\(19\) −1.11633e7 −1.03430 −0.517151 0.855894i \(-0.673007\pi\)
−0.517151 + 0.855894i \(0.673007\pi\)
\(20\) −3.20000e6 −0.223607
\(21\) 0 0
\(22\) −1.10608e7 −0.457575
\(23\) 5.27646e6 0.170938 0.0854692 0.996341i \(-0.472761\pi\)
0.0854692 + 0.996341i \(0.472761\pi\)
\(24\) 0 0
\(25\) 9.76562e6 0.200000
\(26\) −4.83060e7 −0.797348
\(27\) 0 0
\(28\) −7.32108e7 −0.803908
\(29\) 1.86291e7 0.168657 0.0843284 0.996438i \(-0.473126\pi\)
0.0843284 + 0.996438i \(0.473126\pi\)
\(30\) 0 0
\(31\) 7.10448e7 0.445700 0.222850 0.974853i \(-0.428464\pi\)
0.222850 + 0.974853i \(0.428464\pi\)
\(32\) −3.35544e7 −0.176777
\(33\) 0 0
\(34\) −1.72573e8 −0.651387
\(35\) 2.23422e8 0.719037
\(36\) 0 0
\(37\) 3.23164e8 0.766150 0.383075 0.923717i \(-0.374865\pi\)
0.383075 + 0.923717i \(0.374865\pi\)
\(38\) 3.57225e8 0.731362
\(39\) 0 0
\(40\) 1.02400e8 0.158114
\(41\) 9.11277e8 1.22840 0.614199 0.789151i \(-0.289479\pi\)
0.614199 + 0.789151i \(0.289479\pi\)
\(42\) 0 0
\(43\) −1.16431e9 −1.20779 −0.603897 0.797063i \(-0.706386\pi\)
−0.603897 + 0.797063i \(0.706386\pi\)
\(44\) 3.53946e8 0.323555
\(45\) 0 0
\(46\) −1.68847e8 −0.120872
\(47\) −2.81949e8 −0.179321 −0.0896606 0.995972i \(-0.528578\pi\)
−0.0896606 + 0.995972i \(0.528578\pi\)
\(48\) 0 0
\(49\) 3.13420e9 1.58507
\(50\) −3.12500e8 −0.141421
\(51\) 0 0
\(52\) 1.54579e9 0.563810
\(53\) −4.05957e9 −1.33341 −0.666704 0.745323i \(-0.732295\pi\)
−0.666704 + 0.745323i \(0.732295\pi\)
\(54\) 0 0
\(55\) −1.08016e9 −0.289396
\(56\) 2.34275e9 0.568449
\(57\) 0 0
\(58\) −5.96132e8 −0.119258
\(59\) −4.89828e9 −0.891986 −0.445993 0.895036i \(-0.647149\pi\)
−0.445993 + 0.895036i \(0.647149\pi\)
\(60\) 0 0
\(61\) 1.07565e10 1.63064 0.815320 0.579011i \(-0.196561\pi\)
0.815320 + 0.579011i \(0.196561\pi\)
\(62\) −2.27343e9 −0.315158
\(63\) 0 0
\(64\) 1.07374e9 0.125000
\(65\) −4.71739e9 −0.504287
\(66\) 0 0
\(67\) 3.70812e9 0.335539 0.167769 0.985826i \(-0.446344\pi\)
0.167769 + 0.985826i \(0.446344\pi\)
\(68\) 5.52234e9 0.460600
\(69\) 0 0
\(70\) −7.14949e9 −0.508436
\(71\) −3.45274e9 −0.227113 −0.113557 0.993532i \(-0.536224\pi\)
−0.113557 + 0.993532i \(0.536224\pi\)
\(72\) 0 0
\(73\) −2.21136e10 −1.24848 −0.624242 0.781231i \(-0.714592\pi\)
−0.624242 + 0.781231i \(0.714592\pi\)
\(74\) −1.03413e10 −0.541750
\(75\) 0 0
\(76\) −1.14312e10 −0.517151
\(77\) −2.47123e10 −1.04043
\(78\) 0 0
\(79\) 7.02672e9 0.256923 0.128462 0.991714i \(-0.458996\pi\)
0.128462 + 0.991714i \(0.458996\pi\)
\(80\) −3.27680e9 −0.111803
\(81\) 0 0
\(82\) −2.91609e10 −0.868609
\(83\) −5.55656e10 −1.54838 −0.774188 0.632956i \(-0.781841\pi\)
−0.774188 + 0.632956i \(0.781841\pi\)
\(84\) 0 0
\(85\) −1.68528e10 −0.411973
\(86\) 3.72580e10 0.854039
\(87\) 0 0
\(88\) −1.13263e10 −0.228788
\(89\) 9.29706e9 0.176482 0.0882410 0.996099i \(-0.471875\pi\)
0.0882410 + 0.996099i \(0.471875\pi\)
\(90\) 0 0
\(91\) −1.07926e11 −1.81301
\(92\) 5.40310e9 0.0854692
\(93\) 0 0
\(94\) 9.02235e9 0.126799
\(95\) 3.48853e10 0.462554
\(96\) 0 0
\(97\) 4.71888e10 0.557949 0.278975 0.960298i \(-0.410005\pi\)
0.278975 + 0.960298i \(0.410005\pi\)
\(98\) −1.00294e11 −1.12081
\(99\) 0 0
\(100\) 1.00000e10 0.100000
\(101\) −1.61228e11 −1.52642 −0.763209 0.646151i \(-0.776378\pi\)
−0.763209 + 0.646151i \(0.776378\pi\)
\(102\) 0 0
\(103\) −1.85579e11 −1.57733 −0.788666 0.614822i \(-0.789228\pi\)
−0.788666 + 0.614822i \(0.789228\pi\)
\(104\) −4.94654e10 −0.398674
\(105\) 0 0
\(106\) 1.29906e11 0.942861
\(107\) 5.45807e10 0.376208 0.188104 0.982149i \(-0.439766\pi\)
0.188104 + 0.982149i \(0.439766\pi\)
\(108\) 0 0
\(109\) −3.54035e10 −0.220394 −0.110197 0.993910i \(-0.535148\pi\)
−0.110197 + 0.993910i \(0.535148\pi\)
\(110\) 3.45651e10 0.204634
\(111\) 0 0
\(112\) −7.49679e10 −0.401954
\(113\) −1.20314e11 −0.614308 −0.307154 0.951660i \(-0.599377\pi\)
−0.307154 + 0.951660i \(0.599377\pi\)
\(114\) 0 0
\(115\) −1.64889e10 −0.0764460
\(116\) 1.90762e10 0.0843284
\(117\) 0 0
\(118\) 1.56745e11 0.630729
\(119\) −3.85566e11 −1.48112
\(120\) 0 0
\(121\) −1.65837e11 −0.581250
\(122\) −3.44209e11 −1.15304
\(123\) 0 0
\(124\) 7.27499e10 0.222850
\(125\) −3.05176e10 −0.0894427
\(126\) 0 0
\(127\) −5.60687e11 −1.50591 −0.752957 0.658070i \(-0.771373\pi\)
−0.752957 + 0.658070i \(0.771373\pi\)
\(128\) −3.43597e10 −0.0883883
\(129\) 0 0
\(130\) 1.50956e11 0.356585
\(131\) −4.11999e11 −0.933048 −0.466524 0.884508i \(-0.654494\pi\)
−0.466524 + 0.884508i \(0.654494\pi\)
\(132\) 0 0
\(133\) 7.98119e11 1.66297
\(134\) −1.18660e11 −0.237262
\(135\) 0 0
\(136\) −1.76715e11 −0.325693
\(137\) 7.86259e11 1.39188 0.695941 0.718099i \(-0.254987\pi\)
0.695941 + 0.718099i \(0.254987\pi\)
\(138\) 0 0
\(139\) 8.57152e11 1.40112 0.700562 0.713592i \(-0.252933\pi\)
0.700562 + 0.713592i \(0.252933\pi\)
\(140\) 2.28784e11 0.359518
\(141\) 0 0
\(142\) 1.10488e11 0.160593
\(143\) 5.21782e11 0.729694
\(144\) 0 0
\(145\) −5.82160e10 −0.0754256
\(146\) 7.07634e11 0.882812
\(147\) 0 0
\(148\) 3.30920e11 0.383075
\(149\) 2.38606e11 0.266168 0.133084 0.991105i \(-0.457512\pi\)
0.133084 + 0.991105i \(0.457512\pi\)
\(150\) 0 0
\(151\) −9.57309e10 −0.0992382 −0.0496191 0.998768i \(-0.515801\pi\)
−0.0496191 + 0.998768i \(0.515801\pi\)
\(152\) 3.65799e11 0.365681
\(153\) 0 0
\(154\) 7.90793e11 0.735697
\(155\) −2.22015e11 −0.199323
\(156\) 0 0
\(157\) −1.79935e12 −1.50545 −0.752727 0.658333i \(-0.771262\pi\)
−0.752727 + 0.658333i \(0.771262\pi\)
\(158\) −2.24855e11 −0.181672
\(159\) 0 0
\(160\) 1.04858e11 0.0790569
\(161\) −3.77240e11 −0.274837
\(162\) 0 0
\(163\) −2.50619e12 −1.70601 −0.853005 0.521903i \(-0.825222\pi\)
−0.853005 + 0.521903i \(0.825222\pi\)
\(164\) 9.33148e11 0.614199
\(165\) 0 0
\(166\) 1.77810e12 1.09487
\(167\) 2.69855e12 1.60764 0.803822 0.594871i \(-0.202797\pi\)
0.803822 + 0.594871i \(0.202797\pi\)
\(168\) 0 0
\(169\) 4.86623e11 0.271529
\(170\) 5.39291e11 0.291309
\(171\) 0 0
\(172\) −1.19225e12 −0.603897
\(173\) −3.07796e12 −1.51011 −0.755057 0.655659i \(-0.772391\pi\)
−0.755057 + 0.655659i \(0.772391\pi\)
\(174\) 0 0
\(175\) −6.98193e11 −0.321563
\(176\) 3.62441e11 0.161777
\(177\) 0 0
\(178\) −2.97506e11 −0.124792
\(179\) −3.51154e11 −0.142826 −0.0714128 0.997447i \(-0.522751\pi\)
−0.0714128 + 0.997447i \(0.522751\pi\)
\(180\) 0 0
\(181\) 6.34106e11 0.242622 0.121311 0.992615i \(-0.461290\pi\)
0.121311 + 0.992615i \(0.461290\pi\)
\(182\) 3.45364e12 1.28199
\(183\) 0 0
\(184\) −1.72899e11 −0.0604359
\(185\) −1.00989e12 −0.342633
\(186\) 0 0
\(187\) 1.86406e12 0.596117
\(188\) −2.88715e11 −0.0896606
\(189\) 0 0
\(190\) −1.11633e12 −0.327075
\(191\) 2.61584e12 0.744609 0.372304 0.928111i \(-0.378568\pi\)
0.372304 + 0.928111i \(0.378568\pi\)
\(192\) 0 0
\(193\) 1.59819e12 0.429598 0.214799 0.976658i \(-0.431090\pi\)
0.214799 + 0.976658i \(0.431090\pi\)
\(194\) −1.51004e12 −0.394530
\(195\) 0 0
\(196\) 3.20942e12 0.792535
\(197\) 6.16281e10 0.0147984 0.00739920 0.999973i \(-0.497645\pi\)
0.00739920 + 0.999973i \(0.497645\pi\)
\(198\) 0 0
\(199\) 2.36544e12 0.537303 0.268652 0.963237i \(-0.413422\pi\)
0.268652 + 0.963237i \(0.413422\pi\)
\(200\) −3.20000e11 −0.0707107
\(201\) 0 0
\(202\) 5.15931e12 1.07934
\(203\) −1.33189e12 −0.271169
\(204\) 0 0
\(205\) −2.84774e12 −0.549357
\(206\) 5.93851e12 1.11534
\(207\) 0 0
\(208\) 1.58289e12 0.281905
\(209\) −3.85860e12 −0.669307
\(210\) 0 0
\(211\) 5.39734e12 0.888436 0.444218 0.895919i \(-0.353482\pi\)
0.444218 + 0.895919i \(0.353482\pi\)
\(212\) −4.15700e12 −0.666704
\(213\) 0 0
\(214\) −1.74658e12 −0.266020
\(215\) 3.63847e12 0.540142
\(216\) 0 0
\(217\) −5.07934e12 −0.716604
\(218\) 1.13291e12 0.155842
\(219\) 0 0
\(220\) −1.10608e12 −0.144698
\(221\) 8.14094e12 1.03876
\(222\) 0 0
\(223\) −9.37124e12 −1.13794 −0.568971 0.822357i \(-0.692658\pi\)
−0.568971 + 0.822357i \(0.692658\pi\)
\(224\) 2.39897e12 0.284224
\(225\) 0 0
\(226\) 3.85006e12 0.434382
\(227\) 6.51561e12 0.717485 0.358742 0.933437i \(-0.383206\pi\)
0.358742 + 0.933437i \(0.383206\pi\)
\(228\) 0 0
\(229\) −1.74808e12 −0.183429 −0.0917144 0.995785i \(-0.529235\pi\)
−0.0917144 + 0.995785i \(0.529235\pi\)
\(230\) 5.27646e11 0.0540555
\(231\) 0 0
\(232\) −6.10440e11 −0.0596292
\(233\) −8.64493e12 −0.824715 −0.412358 0.911022i \(-0.635295\pi\)
−0.412358 + 0.911022i \(0.635295\pi\)
\(234\) 0 0
\(235\) 8.81089e11 0.0801949
\(236\) −5.01584e12 −0.445993
\(237\) 0 0
\(238\) 1.23381e13 1.04731
\(239\) −6.71025e12 −0.556609 −0.278304 0.960493i \(-0.589772\pi\)
−0.278304 + 0.960493i \(0.589772\pi\)
\(240\) 0 0
\(241\) −1.20329e13 −0.953404 −0.476702 0.879065i \(-0.658168\pi\)
−0.476702 + 0.879065i \(0.658168\pi\)
\(242\) 5.30679e12 0.411006
\(243\) 0 0
\(244\) 1.10147e13 0.815320
\(245\) −9.79438e12 −0.708865
\(246\) 0 0
\(247\) −1.68517e13 −1.16630
\(248\) −2.32800e12 −0.157579
\(249\) 0 0
\(250\) 9.76562e11 0.0632456
\(251\) 2.23212e13 1.41420 0.707101 0.707113i \(-0.250003\pi\)
0.707101 + 0.707113i \(0.250003\pi\)
\(252\) 0 0
\(253\) 1.82381e12 0.110616
\(254\) 1.79420e13 1.06484
\(255\) 0 0
\(256\) 1.09951e12 0.0625000
\(257\) −1.80055e13 −1.00178 −0.500890 0.865511i \(-0.666994\pi\)
−0.500890 + 0.865511i \(0.666994\pi\)
\(258\) 0 0
\(259\) −2.31046e13 −1.23183
\(260\) −4.83060e12 −0.252144
\(261\) 0 0
\(262\) 1.31840e13 0.659765
\(263\) −1.38894e13 −0.680653 −0.340326 0.940307i \(-0.610538\pi\)
−0.340326 + 0.940307i \(0.610538\pi\)
\(264\) 0 0
\(265\) 1.26862e13 0.596318
\(266\) −2.55398e13 −1.17590
\(267\) 0 0
\(268\) 3.79711e12 0.167769
\(269\) −2.71611e13 −1.17574 −0.587868 0.808957i \(-0.700033\pi\)
−0.587868 + 0.808957i \(0.700033\pi\)
\(270\) 0 0
\(271\) −7.24542e12 −0.301115 −0.150558 0.988601i \(-0.548107\pi\)
−0.150558 + 0.988601i \(0.548107\pi\)
\(272\) 5.65488e12 0.230300
\(273\) 0 0
\(274\) −2.51603e13 −0.984209
\(275\) 3.37549e12 0.129422
\(276\) 0 0
\(277\) 3.97300e13 1.46380 0.731898 0.681415i \(-0.238635\pi\)
0.731898 + 0.681415i \(0.238635\pi\)
\(278\) −2.74289e13 −0.990744
\(279\) 0 0
\(280\) −7.32108e12 −0.254218
\(281\) −5.95255e12 −0.202683 −0.101342 0.994852i \(-0.532314\pi\)
−0.101342 + 0.994852i \(0.532314\pi\)
\(282\) 0 0
\(283\) −3.85782e13 −1.26333 −0.631665 0.775241i \(-0.717628\pi\)
−0.631665 + 0.775241i \(0.717628\pi\)
\(284\) −3.53560e12 −0.113557
\(285\) 0 0
\(286\) −1.66970e13 −0.515971
\(287\) −6.51517e13 −1.97504
\(288\) 0 0
\(289\) −5.18843e12 −0.151390
\(290\) 1.86291e12 0.0533339
\(291\) 0 0
\(292\) −2.26443e13 −0.624242
\(293\) 5.32529e13 1.44069 0.720346 0.693615i \(-0.243983\pi\)
0.720346 + 0.693615i \(0.243983\pi\)
\(294\) 0 0
\(295\) 1.53071e13 0.398908
\(296\) −1.05895e13 −0.270875
\(297\) 0 0
\(298\) −7.63539e12 −0.188210
\(299\) 7.96516e12 0.192754
\(300\) 0 0
\(301\) 8.32424e13 1.94191
\(302\) 3.06339e12 0.0701720
\(303\) 0 0
\(304\) −1.17056e13 −0.258576
\(305\) −3.36142e13 −0.729244
\(306\) 0 0
\(307\) −5.74336e13 −1.20200 −0.601001 0.799249i \(-0.705231\pi\)
−0.601001 + 0.799249i \(0.705231\pi\)
\(308\) −2.53054e13 −0.520216
\(309\) 0 0
\(310\) 7.10448e12 0.140943
\(311\) 2.58616e13 0.504050 0.252025 0.967721i \(-0.418903\pi\)
0.252025 + 0.967721i \(0.418903\pi\)
\(312\) 0 0
\(313\) −3.57307e13 −0.672277 −0.336138 0.941813i \(-0.609121\pi\)
−0.336138 + 0.941813i \(0.609121\pi\)
\(314\) 5.75792e13 1.06452
\(315\) 0 0
\(316\) 7.19536e12 0.128462
\(317\) 1.78631e13 0.313422 0.156711 0.987644i \(-0.449911\pi\)
0.156711 + 0.987644i \(0.449911\pi\)
\(318\) 0 0
\(319\) 6.43917e12 0.109139
\(320\) −3.35544e12 −0.0559017
\(321\) 0 0
\(322\) 1.20717e13 0.194339
\(323\) −6.02026e13 −0.952800
\(324\) 0 0
\(325\) 1.47418e13 0.225524
\(326\) 8.01980e13 1.20633
\(327\) 0 0
\(328\) −2.98607e13 −0.434305
\(329\) 2.01579e13 0.288315
\(330\) 0 0
\(331\) 7.78278e13 1.07667 0.538333 0.842732i \(-0.319054\pi\)
0.538333 + 0.842732i \(0.319054\pi\)
\(332\) −5.68992e13 −0.774188
\(333\) 0 0
\(334\) −8.63535e13 −1.13678
\(335\) −1.15879e13 −0.150057
\(336\) 0 0
\(337\) 4.95598e12 0.0621105 0.0310552 0.999518i \(-0.490113\pi\)
0.0310552 + 0.999518i \(0.490113\pi\)
\(338\) −1.55719e13 −0.192000
\(339\) 0 0
\(340\) −1.72573e13 −0.205987
\(341\) 2.45567e13 0.288417
\(342\) 0 0
\(343\) −8.27106e13 −0.940684
\(344\) 3.81522e13 0.427019
\(345\) 0 0
\(346\) 9.84948e13 1.06781
\(347\) 6.55706e13 0.699676 0.349838 0.936810i \(-0.386237\pi\)
0.349838 + 0.936810i \(0.386237\pi\)
\(348\) 0 0
\(349\) 1.14750e14 1.18635 0.593177 0.805072i \(-0.297873\pi\)
0.593177 + 0.805072i \(0.297873\pi\)
\(350\) 2.23422e13 0.227379
\(351\) 0 0
\(352\) −1.15981e13 −0.114394
\(353\) 5.10272e13 0.495497 0.247749 0.968824i \(-0.420309\pi\)
0.247749 + 0.968824i \(0.420309\pi\)
\(354\) 0 0
\(355\) 1.07898e13 0.101568
\(356\) 9.52019e12 0.0882410
\(357\) 0 0
\(358\) 1.12369e13 0.100993
\(359\) 1.16657e14 1.03251 0.516253 0.856436i \(-0.327326\pi\)
0.516253 + 0.856436i \(0.327326\pi\)
\(360\) 0 0
\(361\) 8.12884e12 0.0697813
\(362\) −2.02914e13 −0.171559
\(363\) 0 0
\(364\) −1.10516e14 −0.906503
\(365\) 6.91049e13 0.558339
\(366\) 0 0
\(367\) 1.44058e14 1.12947 0.564733 0.825274i \(-0.308979\pi\)
0.564733 + 0.825274i \(0.308979\pi\)
\(368\) 5.53277e12 0.0427346
\(369\) 0 0
\(370\) 3.23164e13 0.242278
\(371\) 2.90239e14 2.14387
\(372\) 0 0
\(373\) 6.90594e13 0.495250 0.247625 0.968856i \(-0.420350\pi\)
0.247625 + 0.968856i \(0.420350\pi\)
\(374\) −5.96500e13 −0.421518
\(375\) 0 0
\(376\) 9.23889e12 0.0633996
\(377\) 2.81219e13 0.190181
\(378\) 0 0
\(379\) 2.28579e14 1.50149 0.750743 0.660595i \(-0.229696\pi\)
0.750743 + 0.660595i \(0.229696\pi\)
\(380\) 3.57225e13 0.231277
\(381\) 0 0
\(382\) −8.37070e13 −0.526518
\(383\) 7.16725e13 0.444385 0.222192 0.975003i \(-0.428679\pi\)
0.222192 + 0.975003i \(0.428679\pi\)
\(384\) 0 0
\(385\) 7.72259e13 0.465295
\(386\) −5.11420e13 −0.303772
\(387\) 0 0
\(388\) 4.83214e13 0.278975
\(389\) −5.31179e13 −0.302356 −0.151178 0.988507i \(-0.548307\pi\)
−0.151178 + 0.988507i \(0.548307\pi\)
\(390\) 0 0
\(391\) 2.84555e13 0.157469
\(392\) −1.02701e14 −0.560407
\(393\) 0 0
\(394\) −1.97210e12 −0.0104641
\(395\) −2.19585e13 −0.114900
\(396\) 0 0
\(397\) 9.39721e12 0.0478246 0.0239123 0.999714i \(-0.492388\pi\)
0.0239123 + 0.999714i \(0.492388\pi\)
\(398\) −7.56940e13 −0.379931
\(399\) 0 0
\(400\) 1.02400e13 0.0500000
\(401\) −2.20216e14 −1.06061 −0.530303 0.847808i \(-0.677922\pi\)
−0.530303 + 0.847808i \(0.677922\pi\)
\(402\) 0 0
\(403\) 1.07247e14 0.502581
\(404\) −1.65098e14 −0.763209
\(405\) 0 0
\(406\) 4.26204e13 0.191745
\(407\) 1.11702e14 0.495783
\(408\) 0 0
\(409\) −3.05103e14 −1.31816 −0.659080 0.752072i \(-0.729054\pi\)
−0.659080 + 0.752072i \(0.729054\pi\)
\(410\) 9.11277e13 0.388454
\(411\) 0 0
\(412\) −1.90032e14 −0.788666
\(413\) 3.50203e14 1.43415
\(414\) 0 0
\(415\) 1.73642e14 0.692455
\(416\) −5.06526e13 −0.199337
\(417\) 0 0
\(418\) 1.23475e14 0.473271
\(419\) −4.21440e14 −1.59426 −0.797130 0.603808i \(-0.793649\pi\)
−0.797130 + 0.603808i \(0.793649\pi\)
\(420\) 0 0
\(421\) 1.11120e12 0.00409487 0.00204744 0.999998i \(-0.499348\pi\)
0.00204744 + 0.999998i \(0.499348\pi\)
\(422\) −1.72715e14 −0.628219
\(423\) 0 0
\(424\) 1.33024e14 0.471431
\(425\) 5.26651e13 0.184240
\(426\) 0 0
\(427\) −7.69037e14 −2.62177
\(428\) 5.58907e13 0.188104
\(429\) 0 0
\(430\) −1.16431e14 −0.381938
\(431\) −2.29204e14 −0.742332 −0.371166 0.928567i \(-0.621042\pi\)
−0.371166 + 0.928567i \(0.621042\pi\)
\(432\) 0 0
\(433\) 1.54032e14 0.486325 0.243162 0.969986i \(-0.421815\pi\)
0.243162 + 0.969986i \(0.421815\pi\)
\(434\) 1.62539e14 0.506715
\(435\) 0 0
\(436\) −3.62531e13 −0.110197
\(437\) −5.89027e13 −0.176802
\(438\) 0 0
\(439\) −1.25797e14 −0.368227 −0.184114 0.982905i \(-0.558941\pi\)
−0.184114 + 0.982905i \(0.558941\pi\)
\(440\) 3.53946e13 0.102317
\(441\) 0 0
\(442\) −2.60510e14 −0.734517
\(443\) 1.34623e14 0.374885 0.187443 0.982276i \(-0.439980\pi\)
0.187443 + 0.982276i \(0.439980\pi\)
\(444\) 0 0
\(445\) −2.90533e13 −0.0789252
\(446\) 2.99880e14 0.804647
\(447\) 0 0
\(448\) −7.67671e13 −0.200977
\(449\) −4.28972e14 −1.10937 −0.554683 0.832062i \(-0.687160\pi\)
−0.554683 + 0.832062i \(0.687160\pi\)
\(450\) 0 0
\(451\) 3.14984e14 0.794908
\(452\) −1.23202e14 −0.307154
\(453\) 0 0
\(454\) −2.08499e14 −0.507338
\(455\) 3.37269e14 0.810801
\(456\) 0 0
\(457\) −7.89196e14 −1.85202 −0.926011 0.377497i \(-0.876785\pi\)
−0.926011 + 0.377497i \(0.876785\pi\)
\(458\) 5.59387e13 0.129704
\(459\) 0 0
\(460\) −1.68847e13 −0.0382230
\(461\) 6.01739e14 1.34602 0.673012 0.739632i \(-0.265000\pi\)
0.673012 + 0.739632i \(0.265000\pi\)
\(462\) 0 0
\(463\) 2.36873e14 0.517393 0.258696 0.965959i \(-0.416707\pi\)
0.258696 + 0.965959i \(0.416707\pi\)
\(464\) 1.95341e13 0.0421642
\(465\) 0 0
\(466\) 2.76638e14 0.583162
\(467\) −8.17060e14 −1.70220 −0.851101 0.525002i \(-0.824064\pi\)
−0.851101 + 0.525002i \(0.824064\pi\)
\(468\) 0 0
\(469\) −2.65112e14 −0.539484
\(470\) −2.81949e13 −0.0567063
\(471\) 0 0
\(472\) 1.60507e14 0.315365
\(473\) −4.02445e14 −0.781574
\(474\) 0 0
\(475\) −1.09017e14 −0.206860
\(476\) −3.94819e14 −0.740560
\(477\) 0 0
\(478\) 2.14728e14 0.393582
\(479\) −2.80917e14 −0.509018 −0.254509 0.967070i \(-0.581914\pi\)
−0.254509 + 0.967070i \(0.581914\pi\)
\(480\) 0 0
\(481\) 4.87837e14 0.863927
\(482\) 3.85053e14 0.674159
\(483\) 0 0
\(484\) −1.69817e14 −0.290625
\(485\) −1.47465e14 −0.249522
\(486\) 0 0
\(487\) −4.06414e14 −0.672294 −0.336147 0.941810i \(-0.609124\pi\)
−0.336147 + 0.941810i \(0.609124\pi\)
\(488\) −3.52470e14 −0.576518
\(489\) 0 0
\(490\) 3.13420e14 0.501243
\(491\) −1.02479e15 −1.62065 −0.810324 0.585982i \(-0.800709\pi\)
−0.810324 + 0.585982i \(0.800709\pi\)
\(492\) 0 0
\(493\) 1.00465e14 0.155367
\(494\) 5.39255e14 0.824699
\(495\) 0 0
\(496\) 7.44959e13 0.111425
\(497\) 2.46853e14 0.365156
\(498\) 0 0
\(499\) 1.01593e14 0.146997 0.0734987 0.997295i \(-0.476584\pi\)
0.0734987 + 0.997295i \(0.476584\pi\)
\(500\) −3.12500e13 −0.0447214
\(501\) 0 0
\(502\) −7.14277e14 −0.999991
\(503\) −9.67924e14 −1.34035 −0.670174 0.742204i \(-0.733780\pi\)
−0.670174 + 0.742204i \(0.733780\pi\)
\(504\) 0 0
\(505\) 5.03838e14 0.682635
\(506\) −5.83620e13 −0.0782172
\(507\) 0 0
\(508\) −5.74143e14 −0.752957
\(509\) −9.40088e14 −1.21961 −0.609805 0.792552i \(-0.708752\pi\)
−0.609805 + 0.792552i \(0.708752\pi\)
\(510\) 0 0
\(511\) 1.58101e15 2.00733
\(512\) −3.51844e13 −0.0441942
\(513\) 0 0
\(514\) 5.76175e14 0.708365
\(515\) 5.79933e14 0.705404
\(516\) 0 0
\(517\) −9.74557e13 −0.116040
\(518\) 7.39348e14 0.871034
\(519\) 0 0
\(520\) 1.54579e14 0.178293
\(521\) 1.00574e15 1.14783 0.573916 0.818914i \(-0.305424\pi\)
0.573916 + 0.818914i \(0.305424\pi\)
\(522\) 0 0
\(523\) −1.24911e15 −1.39586 −0.697931 0.716165i \(-0.745896\pi\)
−0.697931 + 0.716165i \(0.745896\pi\)
\(524\) −4.21887e14 −0.466524
\(525\) 0 0
\(526\) 4.44460e14 0.481294
\(527\) 3.83138e14 0.410579
\(528\) 0 0
\(529\) −9.24969e14 −0.970780
\(530\) −4.05957e14 −0.421660
\(531\) 0 0
\(532\) 8.17274e14 0.831483
\(533\) 1.37563e15 1.38517
\(534\) 0 0
\(535\) −1.70565e14 −0.168246
\(536\) −1.21508e14 −0.118631
\(537\) 0 0
\(538\) 8.69155e14 0.831371
\(539\) 1.08334e15 1.02571
\(540\) 0 0
\(541\) 1.47684e15 1.37009 0.685046 0.728500i \(-0.259782\pi\)
0.685046 + 0.728500i \(0.259782\pi\)
\(542\) 2.31853e14 0.212921
\(543\) 0 0
\(544\) −1.80956e14 −0.162847
\(545\) 1.10636e14 0.0985632
\(546\) 0 0
\(547\) −2.32000e14 −0.202562 −0.101281 0.994858i \(-0.532294\pi\)
−0.101281 + 0.994858i \(0.532294\pi\)
\(548\) 8.05129e14 0.695941
\(549\) 0 0
\(550\) −1.08016e14 −0.0915151
\(551\) −2.07962e14 −0.174442
\(552\) 0 0
\(553\) −5.02375e14 −0.413085
\(554\) −1.27136e15 −1.03506
\(555\) 0 0
\(556\) 8.77724e14 0.700562
\(557\) −2.34238e15 −1.85120 −0.925602 0.378498i \(-0.876441\pi\)
−0.925602 + 0.378498i \(0.876441\pi\)
\(558\) 0 0
\(559\) −1.75760e15 −1.36193
\(560\) 2.34275e14 0.179759
\(561\) 0 0
\(562\) 1.90482e14 0.143319
\(563\) −2.32309e15 −1.73089 −0.865446 0.501002i \(-0.832965\pi\)
−0.865446 + 0.501002i \(0.832965\pi\)
\(564\) 0 0
\(565\) 3.75983e14 0.274727
\(566\) 1.23450e15 0.893309
\(567\) 0 0
\(568\) 1.13139e14 0.0802967
\(569\) 2.48598e14 0.174735 0.0873676 0.996176i \(-0.472155\pi\)
0.0873676 + 0.996176i \(0.472155\pi\)
\(570\) 0 0
\(571\) −2.44700e15 −1.68708 −0.843540 0.537066i \(-0.819533\pi\)
−0.843540 + 0.537066i \(0.819533\pi\)
\(572\) 5.34305e14 0.364847
\(573\) 0 0
\(574\) 2.08486e15 1.39656
\(575\) 5.15280e13 0.0341877
\(576\) 0 0
\(577\) −2.05338e15 −1.33660 −0.668302 0.743890i \(-0.732979\pi\)
−0.668302 + 0.743890i \(0.732979\pi\)
\(578\) 1.66030e14 0.107049
\(579\) 0 0
\(580\) −5.96132e13 −0.0377128
\(581\) 3.97266e15 2.48950
\(582\) 0 0
\(583\) −1.40319e15 −0.862860
\(584\) 7.24617e14 0.441406
\(585\) 0 0
\(586\) −1.70409e15 −1.01872
\(587\) −3.00291e14 −0.177841 −0.0889207 0.996039i \(-0.528342\pi\)
−0.0889207 + 0.996039i \(0.528342\pi\)
\(588\) 0 0
\(589\) −7.93094e14 −0.460989
\(590\) −4.89828e14 −0.282071
\(591\) 0 0
\(592\) 3.38862e14 0.191538
\(593\) 2.71460e15 1.52022 0.760108 0.649796i \(-0.225146\pi\)
0.760108 + 0.649796i \(0.225146\pi\)
\(594\) 0 0
\(595\) 1.20489e15 0.662377
\(596\) 2.44332e14 0.133084
\(597\) 0 0
\(598\) −2.54885e14 −0.136298
\(599\) 2.10006e15 1.11272 0.556358 0.830943i \(-0.312198\pi\)
0.556358 + 0.830943i \(0.312198\pi\)
\(600\) 0 0
\(601\) 2.84187e15 1.47841 0.739204 0.673481i \(-0.235202\pi\)
0.739204 + 0.673481i \(0.235202\pi\)
\(602\) −2.66376e15 −1.37314
\(603\) 0 0
\(604\) −9.80284e13 −0.0496191
\(605\) 5.18242e14 0.259943
\(606\) 0 0
\(607\) −3.78069e14 −0.186223 −0.0931114 0.995656i \(-0.529681\pi\)
−0.0931114 + 0.995656i \(0.529681\pi\)
\(608\) 3.74578e14 0.182841
\(609\) 0 0
\(610\) 1.07565e15 0.515654
\(611\) −4.25619e14 −0.202206
\(612\) 0 0
\(613\) 2.97141e15 1.38653 0.693267 0.720681i \(-0.256171\pi\)
0.693267 + 0.720681i \(0.256171\pi\)
\(614\) 1.83788e15 0.849943
\(615\) 0 0
\(616\) 8.09772e14 0.367848
\(617\) 1.19545e15 0.538222 0.269111 0.963109i \(-0.413270\pi\)
0.269111 + 0.963109i \(0.413270\pi\)
\(618\) 0 0
\(619\) 3.17735e14 0.140529 0.0702645 0.997528i \(-0.477616\pi\)
0.0702645 + 0.997528i \(0.477616\pi\)
\(620\) −2.27343e14 −0.0996616
\(621\) 0 0
\(622\) −8.27572e14 −0.356417
\(623\) −6.64693e14 −0.283750
\(624\) 0 0
\(625\) 9.53674e13 0.0400000
\(626\) 1.14338e15 0.475372
\(627\) 0 0
\(628\) −1.84253e15 −0.752727
\(629\) 1.74280e15 0.705778
\(630\) 0 0
\(631\) −7.14141e14 −0.284199 −0.142099 0.989852i \(-0.545385\pi\)
−0.142099 + 0.989852i \(0.545385\pi\)
\(632\) −2.30251e14 −0.0908361
\(633\) 0 0
\(634\) −5.71618e14 −0.221623
\(635\) 1.75215e15 0.673465
\(636\) 0 0
\(637\) 4.73128e15 1.78736
\(638\) −2.06054e14 −0.0771732
\(639\) 0 0
\(640\) 1.07374e14 0.0395285
\(641\) −3.74739e15 −1.36776 −0.683880 0.729594i \(-0.739709\pi\)
−0.683880 + 0.729594i \(0.739709\pi\)
\(642\) 0 0
\(643\) 3.72691e14 0.133718 0.0668588 0.997762i \(-0.478702\pi\)
0.0668588 + 0.997762i \(0.478702\pi\)
\(644\) −3.86294e14 −0.137419
\(645\) 0 0
\(646\) 1.92648e15 0.673731
\(647\) −3.55565e15 −1.23295 −0.616475 0.787374i \(-0.711440\pi\)
−0.616475 + 0.787374i \(0.711440\pi\)
\(648\) 0 0
\(649\) −1.69310e15 −0.577212
\(650\) −4.71739e14 −0.159470
\(651\) 0 0
\(652\) −2.56633e15 −0.853005
\(653\) −5.07282e15 −1.67196 −0.835982 0.548757i \(-0.815101\pi\)
−0.835982 + 0.548757i \(0.815101\pi\)
\(654\) 0 0
\(655\) 1.28750e15 0.417272
\(656\) 9.55544e14 0.307100
\(657\) 0 0
\(658\) −6.45053e14 −0.203870
\(659\) −1.66566e15 −0.522054 −0.261027 0.965331i \(-0.584061\pi\)
−0.261027 + 0.965331i \(0.584061\pi\)
\(660\) 0 0
\(661\) 3.06978e14 0.0946235 0.0473118 0.998880i \(-0.484935\pi\)
0.0473118 + 0.998880i \(0.484935\pi\)
\(662\) −2.49049e15 −0.761318
\(663\) 0 0
\(664\) 1.82077e15 0.547433
\(665\) −2.49412e15 −0.743701
\(666\) 0 0
\(667\) 9.82960e13 0.0288299
\(668\) 2.76331e15 0.803822
\(669\) 0 0
\(670\) 3.70812e14 0.106107
\(671\) 3.71800e15 1.05520
\(672\) 0 0
\(673\) 3.20107e15 0.893742 0.446871 0.894599i \(-0.352538\pi\)
0.446871 + 0.894599i \(0.352538\pi\)
\(674\) −1.58591e14 −0.0439187
\(675\) 0 0
\(676\) 4.98302e14 0.135764
\(677\) 4.88443e15 1.32001 0.660004 0.751262i \(-0.270555\pi\)
0.660004 + 0.751262i \(0.270555\pi\)
\(678\) 0 0
\(679\) −3.37376e15 −0.897079
\(680\) 5.52234e14 0.145655
\(681\) 0 0
\(682\) −7.85814e14 −0.203941
\(683\) −3.43048e15 −0.883163 −0.441582 0.897221i \(-0.645582\pi\)
−0.441582 + 0.897221i \(0.645582\pi\)
\(684\) 0 0
\(685\) −2.45706e15 −0.622469
\(686\) 2.64674e15 0.665164
\(687\) 0 0
\(688\) −1.22087e15 −0.301948
\(689\) −6.12818e15 −1.50358
\(690\) 0 0
\(691\) 1.26067e15 0.304420 0.152210 0.988348i \(-0.451361\pi\)
0.152210 + 0.988348i \(0.451361\pi\)
\(692\) −3.15183e15 −0.755057
\(693\) 0 0
\(694\) −2.09826e15 −0.494746
\(695\) −2.67860e15 −0.626602
\(696\) 0 0
\(697\) 4.91444e15 1.13160
\(698\) −3.67201e15 −0.838879
\(699\) 0 0
\(700\) −7.14949e14 −0.160782
\(701\) 1.46416e15 0.326693 0.163347 0.986569i \(-0.447771\pi\)
0.163347 + 0.986569i \(0.447771\pi\)
\(702\) 0 0
\(703\) −3.60758e15 −0.792431
\(704\) 3.71140e14 0.0808887
\(705\) 0 0
\(706\) −1.63287e15 −0.350369
\(707\) 1.15270e16 2.45420
\(708\) 0 0
\(709\) −2.00407e15 −0.420105 −0.210053 0.977690i \(-0.567364\pi\)
−0.210053 + 0.977690i \(0.567364\pi\)
\(710\) −3.45274e14 −0.0718196
\(711\) 0 0
\(712\) −3.04646e14 −0.0623958
\(713\) 3.74865e14 0.0761873
\(714\) 0 0
\(715\) −1.63057e15 −0.326329
\(716\) −3.59582e14 −0.0714128
\(717\) 0 0
\(718\) −3.73303e15 −0.730092
\(719\) 6.94101e15 1.34714 0.673571 0.739122i \(-0.264759\pi\)
0.673571 + 0.739122i \(0.264759\pi\)
\(720\) 0 0
\(721\) 1.32679e16 2.53606
\(722\) −2.60123e14 −0.0493428
\(723\) 0 0
\(724\) 6.49324e14 0.121311
\(725\) 1.81925e14 0.0337313
\(726\) 0 0
\(727\) −8.96895e14 −0.163796 −0.0818978 0.996641i \(-0.526098\pi\)
−0.0818978 + 0.996641i \(0.526098\pi\)
\(728\) 3.53653e15 0.640994
\(729\) 0 0
\(730\) −2.21136e15 −0.394805
\(731\) −6.27903e15 −1.11262
\(732\) 0 0
\(733\) −1.11078e16 −1.93890 −0.969451 0.245286i \(-0.921118\pi\)
−0.969451 + 0.245286i \(0.921118\pi\)
\(734\) −4.60985e15 −0.798653
\(735\) 0 0
\(736\) −1.77049e14 −0.0302179
\(737\) 1.28171e15 0.217130
\(738\) 0 0
\(739\) 5.03625e15 0.840548 0.420274 0.907397i \(-0.361934\pi\)
0.420274 + 0.907397i \(0.361934\pi\)
\(740\) −1.03413e15 −0.171316
\(741\) 0 0
\(742\) −9.28764e15 −1.51595
\(743\) −1.36645e15 −0.221389 −0.110695 0.993854i \(-0.535308\pi\)
−0.110695 + 0.993854i \(0.535308\pi\)
\(744\) 0 0
\(745\) −7.45643e14 −0.119034
\(746\) −2.20990e15 −0.350194
\(747\) 0 0
\(748\) 1.90880e15 0.298059
\(749\) −3.90225e15 −0.604874
\(750\) 0 0
\(751\) −9.78301e15 −1.49435 −0.747176 0.664627i \(-0.768591\pi\)
−0.747176 + 0.664627i \(0.768591\pi\)
\(752\) −2.95644e14 −0.0448303
\(753\) 0 0
\(754\) −8.99900e14 −0.134478
\(755\) 2.99159e14 0.0443807
\(756\) 0 0
\(757\) −1.39502e15 −0.203964 −0.101982 0.994786i \(-0.532518\pi\)
−0.101982 + 0.994786i \(0.532518\pi\)
\(758\) −7.31454e15 −1.06171
\(759\) 0 0
\(760\) −1.14312e15 −0.163538
\(761\) −6.09995e15 −0.866385 −0.433192 0.901301i \(-0.642613\pi\)
−0.433192 + 0.901301i \(0.642613\pi\)
\(762\) 0 0
\(763\) 2.53117e15 0.354353
\(764\) 2.67862e15 0.372304
\(765\) 0 0
\(766\) −2.29352e15 −0.314228
\(767\) −7.39427e15 −1.00582
\(768\) 0 0
\(769\) 6.60626e15 0.885851 0.442925 0.896558i \(-0.353941\pi\)
0.442925 + 0.896558i \(0.353941\pi\)
\(770\) −2.47123e15 −0.329013
\(771\) 0 0
\(772\) 1.63654e15 0.214799
\(773\) −3.74520e15 −0.488076 −0.244038 0.969766i \(-0.578472\pi\)
−0.244038 + 0.969766i \(0.578472\pi\)
\(774\) 0 0
\(775\) 6.93797e14 0.0891400
\(776\) −1.54628e15 −0.197265
\(777\) 0 0
\(778\) 1.69977e15 0.213798
\(779\) −1.01729e16 −1.27054
\(780\) 0 0
\(781\) −1.19344e15 −0.146967
\(782\) −9.10576e14 −0.111347
\(783\) 0 0
\(784\) 3.28645e15 0.396267
\(785\) 5.62297e15 0.673259
\(786\) 0 0
\(787\) −1.01107e16 −1.19377 −0.596885 0.802326i \(-0.703595\pi\)
−0.596885 + 0.802326i \(0.703595\pi\)
\(788\) 6.31072e13 0.00739920
\(789\) 0 0
\(790\) 7.02672e14 0.0812463
\(791\) 8.60188e15 0.987694
\(792\) 0 0
\(793\) 1.62377e16 1.83874
\(794\) −3.00711e14 −0.0338171
\(795\) 0 0
\(796\) 2.42221e15 0.268652
\(797\) 1.40032e16 1.54244 0.771219 0.636570i \(-0.219647\pi\)
0.771219 + 0.636570i \(0.219647\pi\)
\(798\) 0 0
\(799\) −1.52052e15 −0.165191
\(800\) −3.27680e14 −0.0353553
\(801\) 0 0
\(802\) 7.04691e15 0.749962
\(803\) −7.64357e15 −0.807906
\(804\) 0 0
\(805\) 1.17888e15 0.122911
\(806\) −3.43189e15 −0.355378
\(807\) 0 0
\(808\) 5.28313e15 0.539671
\(809\) −2.05016e15 −0.208004 −0.104002 0.994577i \(-0.533165\pi\)
−0.104002 + 0.994577i \(0.533165\pi\)
\(810\) 0 0
\(811\) −1.45631e16 −1.45760 −0.728801 0.684725i \(-0.759922\pi\)
−0.728801 + 0.684725i \(0.759922\pi\)
\(812\) −1.36385e15 −0.135584
\(813\) 0 0
\(814\) −3.57446e15 −0.350571
\(815\) 7.83183e15 0.762951
\(816\) 0 0
\(817\) 1.29975e16 1.24922
\(818\) 9.76330e15 0.932080
\(819\) 0 0
\(820\) −2.91609e15 −0.274678
\(821\) 5.13429e15 0.480389 0.240195 0.970725i \(-0.422789\pi\)
0.240195 + 0.970725i \(0.422789\pi\)
\(822\) 0 0
\(823\) −6.16638e15 −0.569287 −0.284643 0.958633i \(-0.591875\pi\)
−0.284643 + 0.958633i \(0.591875\pi\)
\(824\) 6.08104e15 0.557671
\(825\) 0 0
\(826\) −1.12065e16 −1.01410
\(827\) 2.77673e15 0.249605 0.124803 0.992182i \(-0.460170\pi\)
0.124803 + 0.992182i \(0.460170\pi\)
\(828\) 0 0
\(829\) 1.33865e16 1.18745 0.593726 0.804667i \(-0.297656\pi\)
0.593726 + 0.804667i \(0.297656\pi\)
\(830\) −5.55656e15 −0.489639
\(831\) 0 0
\(832\) 1.62088e15 0.140953
\(833\) 1.69025e16 1.46017
\(834\) 0 0
\(835\) −8.43296e15 −0.718960
\(836\) −3.95121e15 −0.334653
\(837\) 0 0
\(838\) 1.34861e16 1.12731
\(839\) −1.47887e16 −1.22812 −0.614059 0.789260i \(-0.710464\pi\)
−0.614059 + 0.789260i \(0.710464\pi\)
\(840\) 0 0
\(841\) −1.18535e16 −0.971555
\(842\) −3.55584e13 −0.00289551
\(843\) 0 0
\(844\) 5.52687e15 0.444218
\(845\) −1.52070e15 −0.121431
\(846\) 0 0
\(847\) 1.18565e16 0.934542
\(848\) −4.25677e15 −0.333352
\(849\) 0 0
\(850\) −1.68528e15 −0.130277
\(851\) 1.70517e15 0.130965
\(852\) 0 0
\(853\) 1.97554e16 1.49784 0.748922 0.662658i \(-0.230572\pi\)
0.748922 + 0.662658i \(0.230572\pi\)
\(854\) 2.46092e16 1.85387
\(855\) 0 0
\(856\) −1.78850e15 −0.133010
\(857\) 2.32233e16 1.71605 0.858023 0.513612i \(-0.171693\pi\)
0.858023 + 0.513612i \(0.171693\pi\)
\(858\) 0 0
\(859\) −1.67344e16 −1.22081 −0.610405 0.792089i \(-0.708993\pi\)
−0.610405 + 0.792089i \(0.708993\pi\)
\(860\) 3.72580e15 0.270071
\(861\) 0 0
\(862\) 7.33454e15 0.524908
\(863\) 2.46024e16 1.74951 0.874757 0.484563i \(-0.161021\pi\)
0.874757 + 0.484563i \(0.161021\pi\)
\(864\) 0 0
\(865\) 9.61864e15 0.675344
\(866\) −4.92901e15 −0.343883
\(867\) 0 0
\(868\) −5.20125e15 −0.358302
\(869\) 2.42879e15 0.166257
\(870\) 0 0
\(871\) 5.59764e15 0.378360
\(872\) 1.16010e15 0.0779211
\(873\) 0 0
\(874\) 1.88489e15 0.125018
\(875\) 2.18185e15 0.143807
\(876\) 0 0
\(877\) −4.55865e15 −0.296714 −0.148357 0.988934i \(-0.547399\pi\)
−0.148357 + 0.988934i \(0.547399\pi\)
\(878\) 4.02551e15 0.260376
\(879\) 0 0
\(880\) −1.13263e15 −0.0723490
\(881\) −1.67834e16 −1.06540 −0.532701 0.846304i \(-0.678823\pi\)
−0.532701 + 0.846304i \(0.678823\pi\)
\(882\) 0 0
\(883\) −1.13628e16 −0.712362 −0.356181 0.934417i \(-0.615921\pi\)
−0.356181 + 0.934417i \(0.615921\pi\)
\(884\) 8.33632e15 0.519382
\(885\) 0 0
\(886\) −4.30793e15 −0.265084
\(887\) −1.55603e16 −0.951563 −0.475782 0.879563i \(-0.657835\pi\)
−0.475782 + 0.879563i \(0.657835\pi\)
\(888\) 0 0
\(889\) 4.00863e16 2.42123
\(890\) 9.29706e14 0.0558085
\(891\) 0 0
\(892\) −9.59615e15 −0.568971
\(893\) 3.14747e15 0.185472
\(894\) 0 0
\(895\) 1.09736e15 0.0638736
\(896\) 2.45655e15 0.142112
\(897\) 0 0
\(898\) 1.37271e16 0.784440
\(899\) 1.32350e15 0.0751704
\(900\) 0 0
\(901\) −2.18929e16 −1.22834
\(902\) −1.00795e16 −0.562085
\(903\) 0 0
\(904\) 3.94246e15 0.217191
\(905\) −1.98158e15 −0.108504
\(906\) 0 0
\(907\) 3.40764e16 1.84338 0.921688 0.387932i \(-0.126811\pi\)
0.921688 + 0.387932i \(0.126811\pi\)
\(908\) 6.67198e15 0.358742
\(909\) 0 0
\(910\) −1.07926e16 −0.573323
\(911\) −1.60732e16 −0.848697 −0.424348 0.905499i \(-0.639497\pi\)
−0.424348 + 0.905499i \(0.639497\pi\)
\(912\) 0 0
\(913\) −1.92063e16 −1.00197
\(914\) 2.52543e16 1.30958
\(915\) 0 0
\(916\) −1.79004e15 −0.0917144
\(917\) 2.94559e16 1.50017
\(918\) 0 0
\(919\) −7.32080e15 −0.368403 −0.184201 0.982889i \(-0.558970\pi\)
−0.184201 + 0.982889i \(0.558970\pi\)
\(920\) 5.40310e14 0.0270277
\(921\) 0 0
\(922\) −1.92556e16 −0.951783
\(923\) −5.21213e15 −0.256098
\(924\) 0 0
\(925\) 3.15590e15 0.153230
\(926\) −7.57994e15 −0.365852
\(927\) 0 0
\(928\) −6.25090e14 −0.0298146
\(929\) 1.41658e16 0.671666 0.335833 0.941922i \(-0.390982\pi\)
0.335833 + 0.941922i \(0.390982\pi\)
\(930\) 0 0
\(931\) −3.49880e16 −1.63944
\(932\) −8.85241e15 −0.412358
\(933\) 0 0
\(934\) 2.61459e16 1.20364
\(935\) −5.82520e15 −0.266592
\(936\) 0 0
\(937\) 1.51385e16 0.684721 0.342361 0.939569i \(-0.388774\pi\)
0.342361 + 0.939569i \(0.388774\pi\)
\(938\) 8.48358e15 0.381473
\(939\) 0 0
\(940\) 9.02235e14 0.0400974
\(941\) −8.81297e15 −0.389385 −0.194693 0.980864i \(-0.562371\pi\)
−0.194693 + 0.980864i \(0.562371\pi\)
\(942\) 0 0
\(943\) 4.80832e15 0.209981
\(944\) −5.13622e15 −0.222996
\(945\) 0 0
\(946\) 1.28782e16 0.552656
\(947\) −6.85225e15 −0.292353 −0.146177 0.989258i \(-0.546697\pi\)
−0.146177 + 0.989258i \(0.546697\pi\)
\(948\) 0 0
\(949\) −3.33818e16 −1.40782
\(950\) 3.48853e15 0.146272
\(951\) 0 0
\(952\) 1.26342e16 0.523655
\(953\) −3.21185e16 −1.32356 −0.661781 0.749697i \(-0.730199\pi\)
−0.661781 + 0.749697i \(0.730199\pi\)
\(954\) 0 0
\(955\) −8.17451e15 −0.332999
\(956\) −6.87129e15 −0.278304
\(957\) 0 0
\(958\) 8.98935e15 0.359930
\(959\) −5.62135e16 −2.23789
\(960\) 0 0
\(961\) −2.03611e16 −0.801351
\(962\) −1.56108e16 −0.610889
\(963\) 0 0
\(964\) −1.23217e16 −0.476702
\(965\) −4.99433e15 −0.192122
\(966\) 0 0
\(967\) 2.01801e16 0.767500 0.383750 0.923437i \(-0.374633\pi\)
0.383750 + 0.923437i \(0.374633\pi\)
\(968\) 5.43416e15 0.205503
\(969\) 0 0
\(970\) 4.71888e15 0.176439
\(971\) −7.19924e15 −0.267658 −0.133829 0.991004i \(-0.542727\pi\)
−0.133829 + 0.991004i \(0.542727\pi\)
\(972\) 0 0
\(973\) −6.12821e16 −2.25275
\(974\) 1.30052e16 0.475383
\(975\) 0 0
\(976\) 1.12790e16 0.407660
\(977\) −3.14860e16 −1.13161 −0.565806 0.824538i \(-0.691435\pi\)
−0.565806 + 0.824538i \(0.691435\pi\)
\(978\) 0 0
\(979\) 3.21353e15 0.114203
\(980\) −1.00294e16 −0.354432
\(981\) 0 0
\(982\) 3.27934e16 1.14597
\(983\) 1.68059e15 0.0584006 0.0292003 0.999574i \(-0.490704\pi\)
0.0292003 + 0.999574i \(0.490704\pi\)
\(984\) 0 0
\(985\) −1.92588e14 −0.00661805
\(986\) −3.21489e15 −0.109861
\(987\) 0 0
\(988\) −1.72561e16 −0.583150
\(989\) −6.14345e15 −0.206458
\(990\) 0 0
\(991\) −2.21678e15 −0.0736746 −0.0368373 0.999321i \(-0.511728\pi\)
−0.0368373 + 0.999321i \(0.511728\pi\)
\(992\) −2.38387e15 −0.0787894
\(993\) 0 0
\(994\) −7.89931e15 −0.258205
\(995\) −7.39199e15 −0.240289
\(996\) 0 0
\(997\) 2.59411e14 0.00833999 0.00416999 0.999991i \(-0.498673\pi\)
0.00416999 + 0.999991i \(0.498673\pi\)
\(998\) −3.25097e15 −0.103943
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.12.a.l.1.1 2
3.2 odd 2 10.12.a.d.1.2 2
12.11 even 2 80.12.a.g.1.1 2
15.2 even 4 50.12.b.f.49.3 4
15.8 even 4 50.12.b.f.49.2 4
15.14 odd 2 50.12.a.f.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.12.a.d.1.2 2 3.2 odd 2
50.12.a.f.1.1 2 15.14 odd 2
50.12.b.f.49.2 4 15.8 even 4
50.12.b.f.49.3 4 15.2 even 4
80.12.a.g.1.1 2 12.11 even 2
90.12.a.l.1.1 2 1.1 even 1 trivial