Properties

Label 90.10.a.e
Level 90
Weight 10
Character orbit 90.a
Self dual yes
Analytic conductor 46.353
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) = \( 10 \)
Character orbit: \([\chi]\) = 90.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(46.3532252547\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 16q^{2} + 256q^{4} + 625q^{5} + 4658q^{7} - 4096q^{8} + O(q^{10}) \) \( q - 16q^{2} + 256q^{4} + 625q^{5} + 4658q^{7} - 4096q^{8} - 10000q^{10} - 28992q^{11} - 164446q^{13} - 74528q^{14} + 65536q^{16} + 594822q^{17} - 295780q^{19} + 160000q^{20} + 463872q^{22} - 2544534q^{23} + 390625q^{25} + 2631136q^{26} + 1192448q^{28} + 3722970q^{29} + 2335772q^{31} - 1048576q^{32} - 9517152q^{34} + 2911250q^{35} + 10840418q^{37} + 4732480q^{38} - 2560000q^{40} - 21593862q^{41} + 10832294q^{43} - 7421952q^{44} + 40712544q^{46} - 5172138q^{47} - 18656643q^{49} - 6250000q^{50} - 42098176q^{52} - 98179674q^{53} - 18120000q^{55} - 19079168q^{56} - 59567520q^{58} - 16162860q^{59} - 43928158q^{61} - 37372352q^{62} + 16777216q^{64} - 102778750q^{65} - 81557422q^{67} + 152274432q^{68} - 46580000q^{70} - 161307732q^{71} - 247147966q^{73} - 173446688q^{74} - 75719680q^{76} - 135044736q^{77} - 583345720q^{79} + 40960000q^{80} + 345501792q^{82} + 14571786q^{83} + 371763750q^{85} - 173316704q^{86} + 118751232q^{88} - 470133690q^{89} - 765989468q^{91} - 651400704q^{92} + 82754208q^{94} - 184862500q^{95} - 117838462q^{97} + 298506288q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−16.0000 0 256.000 625.000 0 4658.00 −4096.00 0 −10000.0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 90.10.a.e 1
3.b odd 2 1 10.10.a.c 1
12.b even 2 1 80.10.a.a 1
15.d odd 2 1 50.10.a.a 1
15.e even 4 2 50.10.b.d 2
24.f even 2 1 320.10.a.i 1
24.h odd 2 1 320.10.a.b 1
60.h even 2 1 400.10.a.j 1
60.l odd 4 2 400.10.c.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.10.a.c 1 3.b odd 2 1
50.10.a.a 1 15.d odd 2 1
50.10.b.d 2 15.e even 4 2
80.10.a.a 1 12.b even 2 1
90.10.a.e 1 1.a even 1 1 trivial
320.10.a.b 1 24.h odd 2 1
320.10.a.i 1 24.f even 2 1
400.10.a.j 1 60.h even 2 1
400.10.c.c 2 60.l odd 4 2

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(90))\):

\( T_{7} - 4658 \)
\( T_{11} + 28992 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + 16 T \)
$3$ 1
$5$ \( 1 - 625 T \)
$7$ \( 1 - 4658 T + 40353607 T^{2} \)
$11$ \( 1 + 28992 T + 2357947691 T^{2} \)
$13$ \( 1 + 164446 T + 10604499373 T^{2} \)
$17$ \( 1 - 594822 T + 118587876497 T^{2} \)
$19$ \( 1 + 295780 T + 322687697779 T^{2} \)
$23$ \( 1 + 2544534 T + 1801152661463 T^{2} \)
$29$ \( 1 - 3722970 T + 14507145975869 T^{2} \)
$31$ \( 1 - 2335772 T + 26439622160671 T^{2} \)
$37$ \( 1 - 10840418 T + 129961739795077 T^{2} \)
$41$ \( 1 + 21593862 T + 327381934393961 T^{2} \)
$43$ \( 1 - 10832294 T + 502592611936843 T^{2} \)
$47$ \( 1 + 5172138 T + 1119130473102767 T^{2} \)
$53$ \( 1 + 98179674 T + 3299763591802133 T^{2} \)
$59$ \( 1 + 16162860 T + 8662995818654939 T^{2} \)
$61$ \( 1 + 43928158 T + 11694146092834141 T^{2} \)
$67$ \( 1 + 81557422 T + 27206534396294947 T^{2} \)
$71$ \( 1 + 161307732 T + 45848500718449031 T^{2} \)
$73$ \( 1 + 247147966 T + 58871586708267913 T^{2} \)
$79$ \( 1 + 583345720 T + 119851595982618319 T^{2} \)
$83$ \( 1 - 14571786 T + 186940255267540403 T^{2} \)
$89$ \( 1 + 470133690 T + 350356403707485209 T^{2} \)
$97$ \( 1 + 117838462 T + 760231058654565217 T^{2} \)
show more
show less