Properties

Label 9.9.b
Level $9$
Weight $9$
Character orbit 9.b
Rep. character $\chi_{9}(8,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $9$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 9.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(9\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(9, [\chi])\).

Total New Old
Modular forms 10 2 8
Cusp forms 6 2 4
Eisenstein series 4 0 4

Trace form

\( 2 q + 476 q^{4} + 3304 q^{7} - 8388 q^{10} - 52544 q^{13} + 104072 q^{16} + 93280 q^{19} + 181296 q^{22} - 1173154 q^{25} + 786352 q^{28} - 392888 q^{31} - 128844 q^{34} + 5638828 q^{37} - 4143672 q^{40}+ \cdots - 48903488 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(9, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
9.9.b.a 9.b 3.b $2$ $3.666$ \(\Q(\sqrt{-2}) \) None 9.9.b.a \(0\) \(0\) \(0\) \(3304\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}+238q^{4}+233\beta q^{5}+1652q^{7}+\cdots\)

Decomposition of \(S_{9}^{\mathrm{old}}(9, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(9, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 2}\)