Properties

Label 9.7.d
Level $9$
Weight $7$
Character orbit 9.d
Rep. character $\chi_{9}(2,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $10$
Newform subspaces $1$
Sturm bound $7$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 9.d (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(7\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(9, [\chi])\).

Total New Old
Modular forms 14 14 0
Cusp forms 10 10 0
Eisenstein series 4 4 0

Trace form

\( 10 q - 3 q^{2} + 24 q^{3} + 127 q^{4} - 219 q^{5} + 333 q^{6} - 121 q^{7} - 1980 q^{9} - 132 q^{10} + 483 q^{11} - 1830 q^{12} - 841 q^{13} + 12174 q^{14} + 7965 q^{15} - 1985 q^{16} - 7884 q^{18} + 6176 q^{19}+ \cdots - 432567 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(9, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
9.7.d.a 9.d 9.d $10$ $2.070$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 9.7.d.a \(-3\) \(24\) \(-219\) \(-121\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{1}q^{2}+(2+\beta _{1}-\beta _{2}+\beta _{3}+\beta _{6}+\cdots)q^{3}+\cdots\)