Properties

Label 9.6.c
Level $9$
Weight $6$
Character orbit 9.c
Rep. character $\chi_{9}(4,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $8$
Newform subspaces $1$
Sturm bound $6$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 9.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(6\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(9, [\chi])\).

Total New Old
Modular forms 12 12 0
Cusp forms 8 8 0
Eisenstein series 4 4 0

Trace form

\( 8 q + 3 q^{2} - 12 q^{3} - 49 q^{4} + 78 q^{5} + 171 q^{6} + 28 q^{7} - 750 q^{8} - 414 q^{9} + 60 q^{10} + 444 q^{11} + 2724 q^{12} - 182 q^{13} + 1392 q^{14} - 2052 q^{15} - 289 q^{16} - 4356 q^{17} - 8100 q^{18}+ \cdots + 33696 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(9, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
9.6.c.a 9.c 9.c $8$ $1.443$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 9.6.c.a \(3\) \(-12\) \(78\) \(28\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{1}+\beta _{4}+\beta _{5})q^{2}+(-3+3\beta _{1}+\cdots)q^{3}+\cdots\)