Properties

Label 9.6.a
Level $9$
Weight $6$
Character orbit 9.a
Rep. character $\chi_{9}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $6$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 9.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(6\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(9))\).

Total New Old
Modular forms 7 2 5
Cusp forms 3 1 2
Eisenstein series 4 1 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(3\)\(0\)\(3\)\(1\)\(0\)\(1\)\(2\)\(0\)\(2\)
\(-\)\(4\)\(2\)\(2\)\(2\)\(1\)\(1\)\(2\)\(1\)\(1\)

Trace form

\( q + 6 q^{2} + 4 q^{4} - 6 q^{5} - 40 q^{7} - 168 q^{8} - 36 q^{10} + 564 q^{11} + 638 q^{13} - 240 q^{14} - 1136 q^{16} - 882 q^{17} - 556 q^{19} - 24 q^{20} + 3384 q^{22} + 840 q^{23} - 3089 q^{25} + 3828 q^{26}+ \cdots - 91242 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(9))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
9.6.a.a 9.a 1.a $1$ $1.443$ \(\Q\) None 3.6.a.a \(6\) \(0\) \(-6\) \(-40\) $-$ $\mathrm{SU}(2)$ \(q+6q^{2}+4q^{4}-6q^{5}-40q^{7}-168q^{8}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(9))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(9)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)