Properties

Label 9.5
Level 9
Weight 5
Dimension 8
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 30
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 9 = 3^{2} \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(30\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(9))\).

Total New Old
Modular forms 16 12 4
Cusp forms 8 8 0
Eisenstein series 8 4 4

Trace form

\( 8 q - 3 q^{2} - 3 q^{3} + 11 q^{4} - 12 q^{5} - 99 q^{6} - 44 q^{7} + 99 q^{9} + 216 q^{10} + 483 q^{11} + 330 q^{12} - 230 q^{13} - 1146 q^{14} - 1026 q^{15} - 553 q^{16} + 1404 q^{18} + 862 q^{19} + 1614 q^{20}+ \cdots - 9126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(9))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
9.5.b \(\chi_{9}(8, \cdot)\) 9.5.b.a 2 1
9.5.d \(\chi_{9}(2, \cdot)\) 9.5.d.a 6 2