Properties

Label 9.4.c.a.4.2
Level $9$
Weight $4$
Character 9.4
Analytic conductor $0.531$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 9.c (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.531017190052\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Defining polynomial: \(x^{4} - x^{3} - 2 x^{2} - 3 x + 9\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 4.2
Root \(-1.18614 - 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 9.4
Dual form 9.4.c.a.7.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.686141 + 1.18843i) q^{2} +(-5.05842 - 1.18843i) q^{3} +(3.05842 - 5.29734i) q^{4} +(-5.18614 + 8.98266i) q^{5} +(-2.05842 - 6.82701i) q^{6} +(2.55842 + 4.43132i) q^{7} +19.3723 q^{8} +(24.1753 + 12.0232i) q^{9} +O(q^{10})\) \(q+(0.686141 + 1.18843i) q^{2} +(-5.05842 - 1.18843i) q^{3} +(3.05842 - 5.29734i) q^{4} +(-5.18614 + 8.98266i) q^{5} +(-2.05842 - 6.82701i) q^{6} +(2.55842 + 4.43132i) q^{7} +19.3723 q^{8} +(24.1753 + 12.0232i) q^{9} -14.2337 q^{10} +(-27.9891 - 48.4786i) q^{11} +(-21.7663 + 23.1615i) q^{12} +(-18.7921 + 32.5489i) q^{13} +(-3.51087 + 6.08101i) q^{14} +(36.9090 - 39.2747i) q^{15} +(-11.1753 - 19.3561i) q^{16} +23.6495 q^{17} +(2.29894 + 36.9802i) q^{18} +39.0516 q^{19} +(31.7228 + 54.9455i) q^{20} +(-7.67527 - 25.4560i) q^{21} +(38.4090 - 66.5263i) q^{22} +(-35.5367 + 61.5513i) q^{23} +(-97.9932 - 23.0226i) q^{24} +(8.70789 + 15.0825i) q^{25} -51.5761 q^{26} +(-108.000 - 89.5489i) q^{27} +31.2989 q^{28} +(14.1861 + 24.5711i) q^{29} +(72.0000 + 16.9157i) q^{30} +(-6.44158 + 11.1571i) q^{31} +(92.8247 - 160.777i) q^{32} +(83.9674 + 278.488i) q^{33} +(16.2269 + 28.1057i) q^{34} -53.0733 q^{35} +(137.629 - 91.2927i) q^{36} -180.103 q^{37} +(26.7949 + 46.4101i) q^{38} +(133.741 - 142.313i) q^{39} +(-100.467 + 174.015i) q^{40} +(107.742 - 186.614i) q^{41} +(24.9863 - 26.5879i) q^{42} +(-30.6168 - 53.0299i) q^{43} -342.410 q^{44} +(-233.376 + 154.804i) q^{45} -97.5326 q^{46} +(30.9388 + 53.5876i) q^{47} +(33.5258 + 111.192i) q^{48} +(158.409 - 274.372i) q^{49} +(-11.9497 + 20.6974i) q^{50} +(-119.629 - 28.1057i) q^{51} +(114.948 + 199.096i) q^{52} +492.310 q^{53} +(32.3194 - 189.794i) q^{54} +580.622 q^{55} +(49.5625 + 85.8447i) q^{56} +(-197.539 - 46.4101i) q^{57} +(-19.4674 + 33.7185i) q^{58} +(-394.815 + 683.840i) q^{59} +(-95.1684 - 315.638i) q^{60} +(-260.545 - 451.277i) q^{61} -17.6793 q^{62} +(8.57207 + 137.889i) q^{63} +75.9590 q^{64} +(-194.917 - 337.606i) q^{65} +(-273.351 + 290.872i) q^{66} +(-152.215 + 263.644i) q^{67} +(72.3301 - 125.279i) q^{68} +(252.909 - 269.120i) q^{69} +(-36.4158 - 63.0740i) q^{70} +270.391 q^{71} +(468.330 + 232.916i) q^{72} -925.464 q^{73} +(-123.576 - 214.040i) q^{74} +(-26.1237 - 86.6424i) q^{75} +(119.436 - 206.870i) q^{76} +(143.216 - 248.057i) q^{77} +(260.894 + 61.2946i) q^{78} +(644.517 + 1116.34i) q^{79} +231.826 q^{80} +(439.887 + 581.326i) q^{81} +295.704 q^{82} +(-356.917 - 618.198i) q^{83} +(-158.323 - 37.1966i) q^{84} +(-122.649 + 212.435i) q^{85} +(42.0149 - 72.7720i) q^{86} +(-42.5584 - 141.150i) q^{87} +(-542.213 - 939.141i) q^{88} -404.804 q^{89} +(-344.103 - 171.134i) q^{90} -192.313 q^{91} +(217.372 + 376.500i) q^{92} +(45.8437 - 48.7822i) q^{93} +(-42.4567 + 73.5372i) q^{94} +(-202.527 + 350.787i) q^{95} +(-660.619 + 702.963i) q^{96} +(-37.5137 - 64.9756i) q^{97} +434.763 q^{98} +(-93.7785 - 1508.50i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 3q^{2} - 3q^{3} - 5q^{4} - 15q^{5} + 9q^{6} - 7q^{7} + 66q^{8} + 45q^{9} + O(q^{10}) \) \( 4q - 3q^{2} - 3q^{3} - 5q^{4} - 15q^{5} + 9q^{6} - 7q^{7} + 66q^{8} + 45q^{9} + 12q^{10} - 66q^{11} - 156q^{12} + 11q^{13} - 60q^{14} + 27q^{15} + 7q^{16} + 198q^{17} + 216q^{18} - 154q^{19} + 12q^{20} + 21q^{21} + 33q^{22} - 33q^{23} - 99q^{24} + 121q^{25} - 528q^{26} - 432q^{27} + 332q^{28} + 51q^{29} + 288q^{30} - 43q^{31} + 423q^{32} + 198q^{33} - 297q^{34} + 6q^{35} - 225q^{36} - 100q^{37} + 561q^{38} + 759q^{39} - 264q^{40} - 132q^{41} - 486q^{42} - 88q^{43} - 462q^{44} - 675q^{45} - 528q^{46} - 399q^{47} - 21q^{48} + 513q^{49} + 429q^{50} + 297q^{51} + 770q^{52} + 108q^{53} + 1215q^{54} + 1254q^{55} - 66q^{56} - 1221q^{57} + 60q^{58} - 798q^{59} - 36q^{60} - 439q^{61} + 228q^{62} + 603q^{63} - 1454q^{64} - 165q^{65} - 990q^{66} - 988q^{67} - 693q^{68} + 891q^{69} - 318q^{70} + 2736q^{71} + 891q^{72} - 910q^{73} - 816q^{74} - 363q^{75} + 1529q^{76} + 165q^{77} - 990q^{78} + 803q^{79} + 192q^{80} - 567q^{81} + 3630q^{82} - 813q^{83} + 642q^{84} - 594q^{85} - 33q^{86} - 153q^{87} - 1221q^{88} - 792q^{89} - 756q^{90} - 1562q^{91} + 858q^{92} - 213q^{93} - 2100q^{94} + 132q^{95} + 1080q^{96} - 736q^{97} - 846q^{98} + 297q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/9\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.686141 + 1.18843i 0.242587 + 0.420174i 0.961451 0.274978i \(-0.0886706\pi\)
−0.718863 + 0.695152i \(0.755337\pi\)
\(3\) −5.05842 1.18843i −0.973494 0.228714i
\(4\) 3.05842 5.29734i 0.382303 0.662168i
\(5\) −5.18614 + 8.98266i −0.463863 + 0.803433i −0.999149 0.0412369i \(-0.986870\pi\)
0.535287 + 0.844670i \(0.320204\pi\)
\(6\) −2.05842 6.82701i −0.140058 0.464519i
\(7\) 2.55842 + 4.43132i 0.138142 + 0.239269i 0.926793 0.375572i \(-0.122554\pi\)
−0.788651 + 0.614841i \(0.789220\pi\)
\(8\) 19.3723 0.856142
\(9\) 24.1753 + 12.0232i 0.895380 + 0.445302i
\(10\) −14.2337 −0.450109
\(11\) −27.9891 48.4786i −0.767185 1.32880i −0.939083 0.343689i \(-0.888323\pi\)
0.171898 0.985115i \(-0.445010\pi\)
\(12\) −21.7663 + 23.1615i −0.523616 + 0.557178i
\(13\) −18.7921 + 32.5489i −0.400923 + 0.694418i −0.993838 0.110847i \(-0.964644\pi\)
0.592915 + 0.805265i \(0.297977\pi\)
\(14\) −3.51087 + 6.08101i −0.0670229 + 0.116087i
\(15\) 36.9090 39.2747i 0.635323 0.676046i
\(16\) −11.1753 19.3561i −0.174614 0.302440i
\(17\) 23.6495 0.337402 0.168701 0.985667i \(-0.446043\pi\)
0.168701 + 0.985667i \(0.446043\pi\)
\(18\) 2.29894 + 36.9802i 0.0301036 + 0.484240i
\(19\) 39.0516 0.471529 0.235764 0.971810i \(-0.424241\pi\)
0.235764 + 0.971810i \(0.424241\pi\)
\(20\) 31.7228 + 54.9455i 0.354672 + 0.614310i
\(21\) −7.67527 25.4560i −0.0797562 0.264521i
\(22\) 38.4090 66.5263i 0.372219 0.644702i
\(23\) −35.5367 + 61.5513i −0.322170 + 0.558015i −0.980936 0.194334i \(-0.937746\pi\)
0.658766 + 0.752348i \(0.271079\pi\)
\(24\) −97.9932 23.0226i −0.833449 0.195811i
\(25\) 8.70789 + 15.0825i 0.0696631 + 0.120660i
\(26\) −51.5761 −0.389035
\(27\) −108.000 89.5489i −0.769800 0.638285i
\(28\) 31.2989 0.211248
\(29\) 14.1861 + 24.5711i 0.0908379 + 0.157336i 0.907864 0.419265i \(-0.137712\pi\)
−0.817026 + 0.576601i \(0.804379\pi\)
\(30\) 72.0000 + 16.9157i 0.438178 + 0.102946i
\(31\) −6.44158 + 11.1571i −0.0373207 + 0.0646413i −0.884082 0.467331i \(-0.845216\pi\)
0.846762 + 0.531972i \(0.178549\pi\)
\(32\) 92.8247 160.777i 0.512789 0.888177i
\(33\) 83.9674 + 278.488i 0.442935 + 1.46905i
\(34\) 16.2269 + 28.1057i 0.0818495 + 0.141768i
\(35\) −53.0733 −0.256315
\(36\) 137.629 91.2927i 0.637171 0.422652i
\(37\) −180.103 −0.800237 −0.400119 0.916463i \(-0.631031\pi\)
−0.400119 + 0.916463i \(0.631031\pi\)
\(38\) 26.7949 + 46.4101i 0.114387 + 0.198124i
\(39\) 133.741 142.313i 0.549119 0.584315i
\(40\) −100.467 + 174.015i −0.397132 + 0.687853i
\(41\) 107.742 186.614i 0.410401 0.710835i −0.584533 0.811370i \(-0.698722\pi\)
0.994934 + 0.100535i \(0.0320554\pi\)
\(42\) 24.9863 26.5879i 0.0917971 0.0976810i
\(43\) −30.6168 53.0299i −0.108582 0.188069i 0.806614 0.591078i \(-0.201298\pi\)
−0.915196 + 0.403009i \(0.867964\pi\)
\(44\) −342.410 −1.17319
\(45\) −233.376 + 154.804i −0.773104 + 0.512819i
\(46\) −97.5326 −0.312617
\(47\) 30.9388 + 53.5876i 0.0960189 + 0.166310i 0.910033 0.414535i \(-0.136056\pi\)
−0.814014 + 0.580845i \(0.802722\pi\)
\(48\) 33.5258 + 111.192i 0.100813 + 0.334359i
\(49\) 158.409 274.372i 0.461834 0.799919i
\(50\) −11.9497 + 20.6974i −0.0337988 + 0.0585412i
\(51\) −119.629 28.1057i −0.328459 0.0771685i
\(52\) 114.948 + 199.096i 0.306548 + 0.530956i
\(53\) 492.310 1.27592 0.637962 0.770068i \(-0.279778\pi\)
0.637962 + 0.770068i \(0.279778\pi\)
\(54\) 32.3194 189.794i 0.0814466 0.478290i
\(55\) 580.622 1.42347
\(56\) 49.5625 + 85.8447i 0.118269 + 0.204848i
\(57\) −197.539 46.4101i −0.459031 0.107845i
\(58\) −19.4674 + 33.7185i −0.0440723 + 0.0763354i
\(59\) −394.815 + 683.840i −0.871196 + 1.50896i −0.0104351 + 0.999946i \(0.503322\pi\)
−0.860761 + 0.509010i \(0.830012\pi\)
\(60\) −95.1684 315.638i −0.204770 0.679145i
\(61\) −260.545 451.277i −0.546874 0.947214i −0.998486 0.0549998i \(-0.982484\pi\)
0.451612 0.892214i \(-0.350849\pi\)
\(62\) −17.6793 −0.0362141
\(63\) 8.57207 + 137.889i 0.0171425 + 0.275751i
\(64\) 75.9590 0.148358
\(65\) −194.917 337.606i −0.371946 0.644229i
\(66\) −273.351 + 290.872i −0.509805 + 0.542482i
\(67\) −152.215 + 263.644i −0.277552 + 0.480734i −0.970776 0.239988i \(-0.922856\pi\)
0.693224 + 0.720722i \(0.256190\pi\)
\(68\) 72.3301 125.279i 0.128990 0.223417i
\(69\) 252.909 269.120i 0.441256 0.469539i
\(70\) −36.4158 63.0740i −0.0621788 0.107697i
\(71\) 270.391 0.451966 0.225983 0.974131i \(-0.427441\pi\)
0.225983 + 0.974131i \(0.427441\pi\)
\(72\) 468.330 + 232.916i 0.766573 + 0.381242i
\(73\) −925.464 −1.48380 −0.741900 0.670510i \(-0.766075\pi\)
−0.741900 + 0.670510i \(0.766075\pi\)
\(74\) −123.576 214.040i −0.194127 0.336239i
\(75\) −26.1237 86.6424i −0.0402200 0.133395i
\(76\) 119.436 206.870i 0.180267 0.312231i
\(77\) 143.216 248.057i 0.211961 0.367127i
\(78\) 260.894 + 61.2946i 0.378723 + 0.0889776i
\(79\) 644.517 + 1116.34i 0.917897 + 1.58984i 0.802603 + 0.596513i \(0.203448\pi\)
0.115294 + 0.993331i \(0.463219\pi\)
\(80\) 231.826 0.323987
\(81\) 439.887 + 581.326i 0.603411 + 0.797430i
\(82\) 295.704 0.398232
\(83\) −356.917 618.198i −0.472009 0.817543i 0.527478 0.849569i \(-0.323138\pi\)
−0.999487 + 0.0320252i \(0.989804\pi\)
\(84\) −158.323 37.1966i −0.205649 0.0483153i
\(85\) −122.649 + 212.435i −0.156508 + 0.271080i
\(86\) 42.0149 72.7720i 0.0526812 0.0912466i
\(87\) −42.5584 141.150i −0.0524453 0.173941i
\(88\) −542.213 939.141i −0.656820 1.13764i
\(89\) −404.804 −0.482125 −0.241063 0.970510i \(-0.577496\pi\)
−0.241063 + 0.970510i \(0.577496\pi\)
\(90\) −344.103 171.134i −0.403018 0.200435i
\(91\) −192.313 −0.221537
\(92\) 217.372 + 376.500i 0.246333 + 0.426661i
\(93\) 45.8437 48.7822i 0.0511158 0.0543922i
\(94\) −42.4567 + 73.5372i −0.0465859 + 0.0806892i
\(95\) −202.527 + 350.787i −0.218725 + 0.378842i
\(96\) −660.619 + 702.963i −0.702335 + 0.747353i
\(97\) −37.5137 64.9756i −0.0392674 0.0680131i 0.845724 0.533621i \(-0.179169\pi\)
−0.884991 + 0.465608i \(0.845836\pi\)
\(98\) 434.763 0.448140
\(99\) −93.7785 1508.50i −0.0952029 1.53141i
\(100\) 106.530 0.106530
\(101\) 543.939 + 942.130i 0.535881 + 0.928172i 0.999120 + 0.0419392i \(0.0133536\pi\)
−0.463240 + 0.886233i \(0.653313\pi\)
\(102\) −48.6806 161.455i −0.0472558 0.156730i
\(103\) 545.909 945.542i 0.522233 0.904534i −0.477432 0.878669i \(-0.658432\pi\)
0.999665 0.0258657i \(-0.00823423\pi\)
\(104\) −364.046 + 630.546i −0.343247 + 0.594521i
\(105\) 268.467 + 63.0740i 0.249521 + 0.0586228i
\(106\) 337.794 + 585.076i 0.309523 + 0.536109i
\(107\) −1029.15 −0.929833 −0.464917 0.885354i \(-0.653916\pi\)
−0.464917 + 0.885354i \(0.653916\pi\)
\(108\) −804.681 + 298.235i −0.716948 + 0.265719i
\(109\) 1776.52 1.56110 0.780548 0.625096i \(-0.214940\pi\)
0.780548 + 0.625096i \(0.214940\pi\)
\(110\) 398.388 + 690.029i 0.345317 + 0.598106i
\(111\) 911.038 + 214.040i 0.779026 + 0.183025i
\(112\) 57.1821 99.0423i 0.0482429 0.0835591i
\(113\) 807.969 1399.44i 0.672631 1.16503i −0.304524 0.952505i \(-0.598498\pi\)
0.977155 0.212526i \(-0.0681692\pi\)
\(114\) −80.3847 266.606i −0.0660413 0.219034i
\(115\) −368.596 638.428i −0.298885 0.517684i
\(116\) 173.549 0.138910
\(117\) −845.645 + 560.937i −0.668204 + 0.443237i
\(118\) −1083.59 −0.845364
\(119\) 60.5053 + 104.798i 0.0466094 + 0.0807298i
\(120\) 715.011 760.841i 0.543927 0.578791i
\(121\) −901.282 + 1561.07i −0.677147 + 1.17285i
\(122\) 357.541 619.279i 0.265330 0.459564i
\(123\) −766.781 + 815.930i −0.562100 + 0.598130i
\(124\) 39.4021 + 68.2465i 0.0285356 + 0.0494251i
\(125\) −1477.18 −1.05698
\(126\) −157.989 + 104.798i −0.111705 + 0.0740966i
\(127\) −1206.10 −0.842711 −0.421356 0.906895i \(-0.638446\pi\)
−0.421356 + 0.906895i \(0.638446\pi\)
\(128\) −690.479 1195.95i −0.476799 0.825841i
\(129\) 91.8505 + 304.634i 0.0626898 + 0.207919i
\(130\) 267.481 463.291i 0.180459 0.312564i
\(131\) 513.928 890.149i 0.342764 0.593684i −0.642181 0.766553i \(-0.721970\pi\)
0.984945 + 0.172869i \(0.0553036\pi\)
\(132\) 1732.06 + 406.931i 1.14209 + 0.268324i
\(133\) 99.9105 + 173.050i 0.0651379 + 0.112822i
\(134\) −417.763 −0.269322
\(135\) 1364.49 505.714i 0.869901 0.322407i
\(136\) 458.144 0.288864
\(137\) 630.454 + 1091.98i 0.393163 + 0.680978i 0.992865 0.119245i \(-0.0380475\pi\)
−0.599702 + 0.800223i \(0.704714\pi\)
\(138\) 493.361 + 115.911i 0.304331 + 0.0714998i
\(139\) −230.916 + 399.958i −0.140907 + 0.244057i −0.927838 0.372983i \(-0.878335\pi\)
0.786932 + 0.617040i \(0.211668\pi\)
\(140\) −162.321 + 281.148i −0.0979900 + 0.169724i
\(141\) −92.8164 307.837i −0.0554365 0.183862i
\(142\) 185.527 + 321.341i 0.109641 + 0.189904i
\(143\) 2103.90 1.23033
\(144\) −37.4431 602.302i −0.0216685 0.348554i
\(145\) −294.285 −0.168545
\(146\) −634.999 1099.85i −0.359951 0.623454i
\(147\) −1127.37 + 1199.63i −0.632545 + 0.673089i
\(148\) −550.832 + 954.068i −0.305933 + 0.529891i
\(149\) −729.661 + 1263.81i −0.401182 + 0.694868i −0.993869 0.110565i \(-0.964734\pi\)
0.592687 + 0.805433i \(0.298067\pi\)
\(150\) 85.0440 90.4950i 0.0462921 0.0492593i
\(151\) −770.659 1334.82i −0.415333 0.719378i 0.580130 0.814524i \(-0.303002\pi\)
−0.995463 + 0.0951456i \(0.969668\pi\)
\(152\) 756.518 0.403696
\(153\) 571.732 + 284.341i 0.302103 + 0.150246i
\(154\) 393.065 0.205676
\(155\) −66.8139 115.725i −0.0346233 0.0599694i
\(156\) −344.845 1143.72i −0.176985 0.586994i
\(157\) 1607.79 2784.77i 0.817295 1.41560i −0.0903734 0.995908i \(-0.528806\pi\)
0.907668 0.419688i \(-0.137861\pi\)
\(158\) −884.459 + 1531.93i −0.445341 + 0.771352i
\(159\) −2490.31 585.076i −1.24210 0.291821i
\(160\) 962.804 + 1667.63i 0.475727 + 0.823984i
\(161\) −363.671 −0.178021
\(162\) −389.042 + 921.647i −0.188679 + 0.446984i
\(163\) 947.587 0.455342 0.227671 0.973738i \(-0.426889\pi\)
0.227671 + 0.973738i \(0.426889\pi\)
\(164\) −659.040 1141.49i −0.313795 0.543509i
\(165\) −2937.03 690.029i −1.38574 0.325568i
\(166\) 489.791 848.342i 0.229007 0.396651i
\(167\) −342.980 + 594.058i −0.158926 + 0.275267i −0.934481 0.356012i \(-0.884136\pi\)
0.775556 + 0.631279i \(0.217470\pi\)
\(168\) −148.687 493.140i −0.0682826 0.226468i
\(169\) 392.213 + 679.333i 0.178522 + 0.309209i
\(170\) −336.619 −0.151868
\(171\) 944.083 + 469.524i 0.422198 + 0.209973i
\(172\) −374.557 −0.166045
\(173\) 1106.41 + 1916.36i 0.486237 + 0.842188i 0.999875 0.0158193i \(-0.00503566\pi\)
−0.513637 + 0.858007i \(0.671702\pi\)
\(174\) 138.546 147.427i 0.0603630 0.0642321i
\(175\) −44.5569 + 77.1748i −0.0192468 + 0.0333364i
\(176\) −625.572 + 1083.52i −0.267922 + 0.464054i
\(177\) 2809.84 2989.94i 1.19322 1.26970i
\(178\) −277.753 481.082i −0.116958 0.202576i
\(179\) 3023.22 1.26238 0.631190 0.775629i \(-0.282567\pi\)
0.631190 + 0.775629i \(0.282567\pi\)
\(180\) 106.288 + 1709.73i 0.0440126 + 0.707977i
\(181\) 391.445 0.160751 0.0803753 0.996765i \(-0.474388\pi\)
0.0803753 + 0.996765i \(0.474388\pi\)
\(182\) −131.953 228.550i −0.0537420 0.0930839i
\(183\) 781.634 + 2592.39i 0.315738 + 1.04718i
\(184\) −688.426 + 1192.39i −0.275823 + 0.477740i
\(185\) 934.040 1617.81i 0.371200 0.642937i
\(186\) 89.4294 + 21.0106i 0.0352542 + 0.00828266i
\(187\) −661.928 1146.49i −0.258850 0.448341i
\(188\) 378.496 0.146833
\(189\) 120.510 707.686i 0.0463799 0.272363i
\(190\) −555.848 −0.212239
\(191\) −1742.79 3018.61i −0.660231 1.14355i −0.980555 0.196246i \(-0.937125\pi\)
0.320324 0.947308i \(-0.396208\pi\)
\(192\) −384.233 90.2720i −0.144425 0.0339314i
\(193\) −1107.53 + 1918.31i −0.413068 + 0.715455i −0.995223 0.0976228i \(-0.968876\pi\)
0.582156 + 0.813077i \(0.302209\pi\)
\(194\) 51.4793 89.1647i 0.0190515 0.0329982i
\(195\) 584.751 + 1939.40i 0.214743 + 0.712222i
\(196\) −968.963 1678.29i −0.353121 0.611623i
\(197\) −3975.11 −1.43764 −0.718820 0.695196i \(-0.755318\pi\)
−0.718820 + 0.695196i \(0.755318\pi\)
\(198\) 1728.40 1146.49i 0.620365 0.411504i
\(199\) −1555.34 −0.554046 −0.277023 0.960863i \(-0.589348\pi\)
−0.277023 + 0.960863i \(0.589348\pi\)
\(200\) 168.692 + 292.183i 0.0596415 + 0.103302i
\(201\) 1083.29 1152.72i 0.380146 0.404512i
\(202\) −746.437 + 1292.87i −0.259996 + 0.450326i
\(203\) −72.5883 + 125.727i −0.0250970 + 0.0434693i
\(204\) −514.762 + 547.756i −0.176669 + 0.187993i
\(205\) 1117.53 + 1935.62i 0.380739 + 0.659460i
\(206\) 1498.28 0.506749
\(207\) −1599.15 + 1060.76i −0.536950 + 0.356172i
\(208\) 840.027 0.280026
\(209\) −1093.02 1893.17i −0.361750 0.626570i
\(210\) 109.247 + 362.332i 0.0358990 + 0.119063i
\(211\) −873.865 + 1513.58i −0.285115 + 0.493834i −0.972637 0.232329i \(-0.925365\pi\)
0.687522 + 0.726164i \(0.258699\pi\)
\(212\) 1505.69 2607.93i 0.487789 0.844875i
\(213\) −1367.75 321.341i −0.439986 0.103371i
\(214\) −706.145 1223.08i −0.225566 0.390691i
\(215\) 635.133 0.201468
\(216\) −2092.21 1734.77i −0.659058 0.546462i
\(217\) −65.9211 −0.0206222
\(218\) 1218.94 + 2111.27i 0.378702 + 0.655931i
\(219\) 4681.39 + 1099.85i 1.44447 + 0.339365i
\(220\) 1775.79 3075.75i 0.544198 0.942579i
\(221\) −444.423 + 769.764i −0.135272 + 0.234298i
\(222\) 370.728 + 1229.57i 0.112080 + 0.371726i
\(223\) 1270.97 + 2201.39i 0.381662 + 0.661057i 0.991300 0.131622i \(-0.0420187\pi\)
−0.609638 + 0.792680i \(0.708685\pi\)
\(224\) 949.939 0.283350
\(225\) 29.1761 + 469.320i 0.00864476 + 0.139058i
\(226\) 2217.52 0.652687
\(227\) 1496.63 + 2592.24i 0.437598 + 0.757943i 0.997504 0.0706140i \(-0.0224959\pi\)
−0.559905 + 0.828557i \(0.689163\pi\)
\(228\) −850.009 + 904.492i −0.246900 + 0.262726i
\(229\) 2152.65 3728.50i 0.621185 1.07592i −0.368081 0.929794i \(-0.619985\pi\)
0.989265 0.146130i \(-0.0466816\pi\)
\(230\) 505.818 876.102i 0.145012 0.251167i
\(231\) −1019.25 + 1084.58i −0.290309 + 0.308917i
\(232\) 274.818 + 475.999i 0.0777702 + 0.134702i
\(233\) −5581.34 −1.56930 −0.784648 0.619942i \(-0.787156\pi\)
−0.784648 + 0.619942i \(0.787156\pi\)
\(234\) −1246.87 620.108i −0.348334 0.173238i
\(235\) −641.812 −0.178158
\(236\) 2415.02 + 4182.94i 0.666121 + 1.15376i
\(237\) −1933.55 6412.87i −0.529948 1.75764i
\(238\) −83.0303 + 143.813i −0.0226137 + 0.0391680i
\(239\) −704.814 + 1220.77i −0.190756 + 0.330399i −0.945501 0.325619i \(-0.894427\pi\)
0.754745 + 0.656018i \(0.227761\pi\)
\(240\) −1172.67 275.509i −0.315399 0.0741001i
\(241\) −313.286 542.627i −0.0837366 0.145036i 0.821116 0.570762i \(-0.193352\pi\)
−0.904852 + 0.425726i \(0.860019\pi\)
\(242\) −2473.63 −0.657069
\(243\) −1534.27 3463.37i −0.405034 0.914302i
\(244\) −3187.42 −0.836286
\(245\) 1643.06 + 2845.87i 0.428455 + 0.742105i
\(246\) −1495.80 351.424i −0.387677 0.0910811i
\(247\) −733.862 + 1271.09i −0.189047 + 0.327438i
\(248\) −124.788 + 216.139i −0.0319518 + 0.0553422i
\(249\) 1070.75 + 3551.28i 0.272514 + 0.903828i
\(250\) −1013.55 1755.52i −0.256410 0.444116i
\(251\) 1705.53 0.428892 0.214446 0.976736i \(-0.431205\pi\)
0.214446 + 0.976736i \(0.431205\pi\)
\(252\) 756.660 + 376.312i 0.189147 + 0.0940692i
\(253\) 3978.56 0.988656
\(254\) −827.556 1433.37i −0.204431 0.354085i
\(255\) 872.877 928.826i 0.214360 0.228099i
\(256\) 1251.37 2167.43i 0.305510 0.529158i
\(257\) 1798.69 3115.42i 0.436573 0.756166i −0.560850 0.827918i \(-0.689525\pi\)
0.997423 + 0.0717513i \(0.0228588\pi\)
\(258\) −299.014 + 318.180i −0.0721542 + 0.0767791i
\(259\) −460.780 798.094i −0.110546 0.191472i
\(260\) −2384.55 −0.568784
\(261\) 47.5311 + 764.576i 0.0112724 + 0.181326i
\(262\) 1410.51 0.332601
\(263\) −2068.75 3583.18i −0.485037 0.840108i 0.514815 0.857301i \(-0.327860\pi\)
−0.999852 + 0.0171926i \(0.994527\pi\)
\(264\) 1626.64 + 5394.95i 0.379215 + 1.25771i
\(265\) −2553.19 + 4422.25i −0.591853 + 1.02512i
\(266\) −137.105 + 237.473i −0.0316032 + 0.0547384i
\(267\) 2047.67 + 481.082i 0.469346 + 0.110269i
\(268\) 931.074 + 1612.67i 0.212218 + 0.367572i
\(269\) 6090.99 1.38057 0.690287 0.723536i \(-0.257484\pi\)
0.690287 + 0.723536i \(0.257484\pi\)
\(270\) 1537.24 + 1274.61i 0.346494 + 0.287298i
\(271\) −3196.62 −0.716534 −0.358267 0.933619i \(-0.616632\pi\)
−0.358267 + 0.933619i \(0.616632\pi\)
\(272\) −264.289 457.762i −0.0589150 0.102044i
\(273\) 972.798 + 228.550i 0.215665 + 0.0506684i
\(274\) −865.160 + 1498.50i −0.190753 + 0.330393i
\(275\) 487.452 844.292i 0.106889 0.185137i
\(276\) −652.117 2162.83i −0.142220 0.471692i
\(277\) 1559.68 + 2701.45i 0.338311 + 0.585972i 0.984115 0.177531i \(-0.0568111\pi\)
−0.645804 + 0.763503i \(0.723478\pi\)
\(278\) −633.763 −0.136729
\(279\) −289.871 + 192.279i −0.0622012 + 0.0412596i
\(280\) −1028.15 −0.219442
\(281\) −2474.17 4285.38i −0.525254 0.909767i −0.999567 0.0294105i \(-0.990637\pi\)
0.474313 0.880356i \(-0.342696\pi\)
\(282\) 302.158 321.525i 0.0638058 0.0678956i
\(283\) 2272.47 3936.03i 0.477329 0.826758i −0.522333 0.852741i \(-0.674938\pi\)
0.999662 + 0.0259834i \(0.00827171\pi\)
\(284\) 826.971 1432.36i 0.172788 0.299277i
\(285\) 1441.35 1533.74i 0.299573 0.318775i
\(286\) 1443.57 + 2500.34i 0.298462 + 0.516951i
\(287\) 1102.60 0.226774
\(288\) 4177.11 2770.78i 0.854648 0.566910i
\(289\) −4353.70 −0.886160
\(290\) −201.921 349.738i −0.0408869 0.0708183i
\(291\) 112.541 + 373.256i 0.0226710 + 0.0751913i
\(292\) −2830.46 + 4902.50i −0.567261 + 0.982525i
\(293\) −3430.05 + 5941.03i −0.683911 + 1.18457i 0.289867 + 0.957067i \(0.406389\pi\)
−0.973778 + 0.227501i \(0.926944\pi\)
\(294\) −2199.22 516.686i −0.436262 0.102496i
\(295\) −4095.13 7092.98i −0.808230 1.39990i
\(296\) −3489.01 −0.685117
\(297\) −1318.38 + 7742.08i −0.257576 + 1.51260i
\(298\) −2002.60 −0.389287
\(299\) −1335.62 2313.36i −0.258330 0.447441i
\(300\) −538.872 126.603i −0.103706 0.0243648i
\(301\) 156.662 271.346i 0.0299994 0.0519605i
\(302\) 1057.56 1831.75i 0.201509 0.349024i
\(303\) −1631.82 5412.12i −0.309391 1.02613i
\(304\) −436.412 755.888i −0.0823353 0.142609i
\(305\) 5404.89 1.01470
\(306\) 54.3686 + 874.562i 0.0101570 + 0.163384i
\(307\) 6332.25 1.17720 0.588600 0.808424i \(-0.299679\pi\)
0.588600 + 0.808424i \(0.299679\pi\)
\(308\) −876.030 1517.33i −0.162066 0.280707i
\(309\) −3885.15 + 4134.18i −0.715270 + 0.761117i
\(310\) 91.6874 158.807i 0.0167984 0.0290956i
\(311\) −3538.84 + 6129.44i −0.645238 + 1.11758i 0.339009 + 0.940783i \(0.389908\pi\)
−0.984247 + 0.176801i \(0.943425\pi\)
\(312\) 2590.86 2756.93i 0.470123 0.500257i
\(313\) −690.649 1196.24i −0.124721 0.216024i 0.796903 0.604108i \(-0.206470\pi\)
−0.921624 + 0.388084i \(0.873137\pi\)
\(314\) 4412.67 0.793062
\(315\) −1283.06 638.110i −0.229500 0.114138i
\(316\) 7884.83 1.40366
\(317\) 4087.47 + 7079.70i 0.724211 + 1.25437i 0.959298 + 0.282396i \(0.0911294\pi\)
−0.235086 + 0.971974i \(0.575537\pi\)
\(318\) −1013.38 3361.00i −0.178703 0.592691i
\(319\) 794.115 1375.45i 0.139379 0.241412i
\(320\) −393.934 + 682.314i −0.0688175 + 0.119195i
\(321\) 5205.90 + 1223.08i 0.905187 + 0.212665i
\(322\) −249.530 432.198i −0.0431855 0.0747995i
\(323\) 923.549 0.159095
\(324\) 4424.85 552.290i 0.758718 0.0947000i
\(325\) −654.559 −0.111718
\(326\) 650.178 + 1126.14i 0.110460 + 0.191323i
\(327\) −8986.37 2111.27i −1.51972 0.357044i
\(328\) 2087.20 3615.14i 0.351361 0.608576i
\(329\) −158.309 + 274.199i −0.0265284 + 0.0459486i
\(330\) −1195.17 3963.92i −0.199369 0.661231i
\(331\) 4830.64 + 8366.92i 0.802163 + 1.38939i 0.918189 + 0.396142i \(0.129651\pi\)
−0.116026 + 0.993246i \(0.537016\pi\)
\(332\) −4366.41 −0.721801
\(333\) −4354.04 2165.41i −0.716517 0.356348i
\(334\) −941.329 −0.154213
\(335\) −1578.81 2734.59i −0.257492 0.445989i
\(336\) −406.956 + 433.041i −0.0660752 + 0.0703104i
\(337\) 2478.01 4292.04i 0.400552 0.693776i −0.593241 0.805025i \(-0.702152\pi\)
0.993793 + 0.111249i \(0.0354852\pi\)
\(338\) −538.227 + 932.236i −0.0866144 + 0.150021i
\(339\) −5750.19 + 6118.76i −0.921260 + 0.980311i
\(340\) 750.228 + 1299.43i 0.119667 + 0.207269i
\(341\) 721.177 0.114528
\(342\) 89.7771 + 1444.14i 0.0141947 + 0.228333i
\(343\) 3376.19 0.531478
\(344\) −593.118 1027.31i −0.0929616 0.161014i
\(345\) 1105.79 + 3667.49i 0.172561 + 0.572321i
\(346\) −1518.31 + 2629.79i −0.235910 + 0.408608i
\(347\) 507.802 879.540i 0.0785598 0.136070i −0.824069 0.566490i \(-0.808301\pi\)
0.902629 + 0.430420i \(0.141635\pi\)
\(348\) −877.883 206.251i −0.135228 0.0317707i
\(349\) −6079.29 10529.6i −0.932426 1.61501i −0.779160 0.626825i \(-0.784354\pi\)
−0.153267 0.988185i \(-0.548979\pi\)
\(350\) −122.289 −0.0186761
\(351\) 4944.26 1832.47i 0.751867 0.278661i
\(352\) −10392.3 −1.57362
\(353\) −2118.04 3668.56i −0.319354 0.553138i 0.660999 0.750387i \(-0.270133\pi\)
−0.980353 + 0.197249i \(0.936799\pi\)
\(354\) 5481.28 + 1287.78i 0.822957 + 0.193346i
\(355\) −1402.29 + 2428.83i −0.209650 + 0.363124i
\(356\) −1238.06 + 2144.39i −0.184318 + 0.319248i
\(357\) −181.516 602.020i −0.0269099 0.0892501i
\(358\) 2074.35 + 3592.88i 0.306237 + 0.530418i
\(359\) −517.939 −0.0761443 −0.0380721 0.999275i \(-0.512122\pi\)
−0.0380721 + 0.999275i \(0.512122\pi\)
\(360\) −4521.03 + 2998.91i −0.661887 + 0.439046i
\(361\) −5333.97 −0.777660
\(362\) 268.586 + 465.205i 0.0389961 + 0.0675432i
\(363\) 6414.29 6825.42i 0.927445 0.986892i
\(364\) −588.173 + 1018.75i −0.0846941 + 0.146694i
\(365\) 4799.59 8313.13i 0.688279 1.19213i
\(366\) −2544.56 + 2707.66i −0.363405 + 0.386699i
\(367\) 2308.15 + 3997.83i 0.328295 + 0.568624i 0.982174 0.187976i \(-0.0601926\pi\)
−0.653879 + 0.756600i \(0.726859\pi\)
\(368\) 1588.53 0.225021
\(369\) 4848.38 3216.05i 0.684002 0.453715i
\(370\) 2563.53 0.360194
\(371\) 1259.54 + 2181.58i 0.176258 + 0.305288i
\(372\) −118.206 392.046i −0.0164750 0.0546415i
\(373\) −2382.71 + 4126.98i −0.330756 + 0.572887i −0.982660 0.185415i \(-0.940637\pi\)
0.651904 + 0.758301i \(0.273970\pi\)
\(374\) 908.351 1573.31i 0.125588 0.217524i
\(375\) 7472.18 + 1755.52i 1.02896 + 0.241746i
\(376\) 599.355 + 1038.11i 0.0822058 + 0.142385i
\(377\) −1066.35 −0.145676
\(378\) 923.722 342.355i 0.125691 0.0465842i
\(379\) −2000.33 −0.271108 −0.135554 0.990770i \(-0.543281\pi\)
−0.135554 + 0.990770i \(0.543281\pi\)
\(380\) 1238.83 + 2145.71i 0.167238 + 0.289665i
\(381\) 6100.98 + 1433.37i 0.820374 + 0.192740i
\(382\) 2391.60 4142.38i 0.320327 0.554823i
\(383\) −495.147 + 857.619i −0.0660596 + 0.114419i −0.897164 0.441699i \(-0.854376\pi\)
0.831104 + 0.556117i \(0.187709\pi\)
\(384\) 2071.44 + 6870.18i 0.275280 + 0.913001i
\(385\) 1485.48 + 2572.92i 0.196641 + 0.340593i
\(386\) −3039.70 −0.400820
\(387\) −102.583 1650.12i −0.0134743 0.216746i
\(388\) −458.930 −0.0600481
\(389\) −202.205 350.230i −0.0263553 0.0456487i 0.852547 0.522651i \(-0.175057\pi\)
−0.878902 + 0.477002i \(0.841723\pi\)
\(390\) −1903.62 + 2025.64i −0.247163 + 0.263005i
\(391\) −840.423 + 1455.66i −0.108701 + 0.188275i
\(392\) 3068.74 5315.22i 0.395395 0.684845i
\(393\) −3657.54 + 3891.98i −0.469462 + 0.499553i
\(394\) −2727.49 4724.15i −0.348753 0.604059i
\(395\) −13370.2 −1.70311
\(396\) −8277.86 4116.85i −1.05045 0.522424i
\(397\) 2919.61 0.369096 0.184548 0.982824i \(-0.440918\pi\)
0.184548 + 0.982824i \(0.440918\pi\)
\(398\) −1067.18 1848.42i −0.134405 0.232796i
\(399\) −299.731 994.097i −0.0376074 0.124730i
\(400\) 194.626 337.102i 0.0243282 0.0421378i
\(401\) 5093.10 8821.52i 0.634258 1.09857i −0.352414 0.935844i \(-0.614639\pi\)
0.986672 0.162723i \(-0.0520277\pi\)
\(402\) 2113.22 + 496.482i 0.262184 + 0.0615977i
\(403\) −242.102 419.332i −0.0299254 0.0518323i
\(404\) 6654.38 0.819474
\(405\) −7503.17 + 936.514i −0.920582 + 0.114903i
\(406\) −199.223 −0.0243529
\(407\) 5040.93 + 8731.15i 0.613930 + 1.06336i
\(408\) −2317.49 544.472i −0.281208 0.0660672i
\(409\) −3457.12 + 5987.91i −0.417955 + 0.723920i −0.995734 0.0922740i \(-0.970586\pi\)
0.577778 + 0.816194i \(0.303920\pi\)
\(410\) −1533.56 + 2656.21i −0.184725 + 0.319953i
\(411\) −1891.36 6272.94i −0.226993 0.752850i
\(412\) −3339.24 5783.73i −0.399302 0.691612i
\(413\) −4040.41 −0.481394
\(414\) −2357.88 1172.65i −0.279911 0.139209i
\(415\) 7404.09 0.875789
\(416\) 3488.75 + 6042.68i 0.411177 + 0.712180i
\(417\) 1643.39 1748.73i 0.192991 0.205361i
\(418\) 1499.93 2597.96i 0.175512 0.303996i
\(419\) −2560.16 + 4434.32i −0.298501 + 0.517019i −0.975793 0.218695i \(-0.929820\pi\)
0.677292 + 0.735714i \(0.263153\pi\)
\(420\) 1155.21 1229.26i 0.134211 0.142813i
\(421\) −933.246 1616.43i −0.108037 0.187126i 0.806938 0.590636i \(-0.201123\pi\)
−0.914975 + 0.403511i \(0.867790\pi\)
\(422\) −2398.38 −0.276662
\(423\) 103.661 + 1667.48i 0.0119153 + 0.191668i
\(424\) 9537.16 1.09237
\(425\) 205.937 + 356.693i 0.0235045 + 0.0407110i
\(426\) −556.580 1845.97i −0.0633014 0.209947i
\(427\) 1333.17 2309.11i 0.151092 0.261700i
\(428\) −3147.59 + 5451.79i −0.355478 + 0.615706i
\(429\) −10642.4 2500.34i −1.19772 0.281393i
\(430\) 435.791 + 754.811i 0.0488737 + 0.0846517i
\(431\) −4090.64 −0.457168 −0.228584 0.973524i \(-0.573410\pi\)
−0.228584 + 0.973524i \(0.573410\pi\)
\(432\) −526.391 + 3091.19i −0.0586250 + 0.344271i
\(433\) 633.052 0.0702599 0.0351299 0.999383i \(-0.488815\pi\)
0.0351299 + 0.999383i \(0.488815\pi\)
\(434\) −45.2311 78.3426i −0.00500268 0.00866490i
\(435\) 1488.62 + 349.738i 0.164078 + 0.0385486i
\(436\) 5433.34 9410.81i 0.596811 1.03371i
\(437\) −1387.76 + 2403.68i −0.151912 + 0.263120i
\(438\) 1905.00 + 6318.16i 0.207818 + 0.689254i
\(439\) 5653.26 + 9791.74i 0.614614 + 1.06454i 0.990452 + 0.137857i \(0.0440214\pi\)
−0.375838 + 0.926685i \(0.622645\pi\)
\(440\) 11248.0 1.21870
\(441\) 7128.40 4728.45i 0.769723 0.510576i
\(442\) −1219.75 −0.131261
\(443\) 4140.65 + 7171.82i 0.444082 + 0.769172i 0.997988 0.0634071i \(-0.0201967\pi\)
−0.553906 + 0.832579i \(0.686863\pi\)
\(444\) 3920.18 4171.45i 0.419017 0.445875i
\(445\) 2099.37 3636.22i 0.223640 0.387356i
\(446\) −1744.13 + 3020.92i −0.185173 + 0.320728i
\(447\) 5192.88 5525.73i 0.549474 0.584694i
\(448\) 194.335 + 336.599i 0.0204944 + 0.0354973i
\(449\) 6888.40 0.724017 0.362008 0.932175i \(-0.382091\pi\)
0.362008 + 0.932175i \(0.382091\pi\)
\(450\) −537.735 + 356.693i −0.0563313 + 0.0373660i
\(451\) −12062.4 −1.25941
\(452\) −4942.22 8560.17i −0.514297 0.890789i
\(453\) 2311.98 + 7667.96i 0.239793 + 0.795302i
\(454\) −2053.80 + 3557.28i −0.212312 + 0.367735i
\(455\) 997.360 1727.48i 0.102763 0.177990i
\(456\) −3826.79 899.070i −0.392995 0.0923307i
\(457\) −2141.80 3709.71i −0.219233 0.379722i 0.735341 0.677697i \(-0.237022\pi\)
−0.954574 + 0.297975i \(0.903689\pi\)
\(458\) 5908.09 0.602766
\(459\) −2554.14 2117.78i −0.259732 0.215359i
\(460\) −4509.29 −0.457058
\(461\) −6889.16 11932.4i −0.696009 1.20552i −0.969840 0.243744i \(-0.921624\pi\)
0.273831 0.961778i \(-0.411709\pi\)
\(462\) −1988.29 467.131i −0.200224 0.0470409i
\(463\) −2867.27 + 4966.25i −0.287804 + 0.498491i −0.973285 0.229599i \(-0.926258\pi\)
0.685481 + 0.728090i \(0.259592\pi\)
\(464\) 317.068 549.178i 0.0317231 0.0549460i
\(465\) 200.442 + 664.790i 0.0199898 + 0.0662987i
\(466\) −3829.59 6633.04i −0.380691 0.659377i
\(467\) −8950.97 −0.886941 −0.443470 0.896289i \(-0.646253\pi\)
−0.443470 + 0.896289i \(0.646253\pi\)
\(468\) 385.138 + 6195.25i 0.0380406 + 0.611914i
\(469\) −1557.72 −0.153366
\(470\) −440.373 762.749i −0.0432189 0.0748574i
\(471\) −11442.4 + 12175.8i −1.11940 + 1.19115i
\(472\) −7648.47 + 13247.5i −0.745867 + 1.29188i
\(473\) −1713.88 + 2968.52i −0.166605 + 0.288568i
\(474\) 6294.56 6698.02i 0.609955 0.649051i
\(475\) 340.057 + 588.996i 0.0328482 + 0.0568947i
\(476\) 740.203 0.0712755
\(477\) 11901.7 + 5919.12i 1.14244 + 0.568172i
\(478\) −1934.41 −0.185100
\(479\) −4840.51 8384.00i −0.461729 0.799739i 0.537318 0.843380i \(-0.319438\pi\)
−0.999047 + 0.0436411i \(0.986104\pi\)
\(480\) −2888.41 9579.78i −0.274661 0.910948i
\(481\) 3384.52 5862.16i 0.320833 0.555699i
\(482\) 429.917 744.637i 0.0406269 0.0703678i
\(483\) 1839.60 + 432.198i 0.173302 + 0.0407157i
\(484\) 5513.00 + 9548.80i 0.517750 + 0.896769i
\(485\) 778.204 0.0728586
\(486\) 3063.25 4199.73i 0.285909 0.391983i
\(487\) 8704.66 0.809950 0.404975 0.914328i \(-0.367280\pi\)
0.404975 + 0.914328i \(0.367280\pi\)
\(488\) −5047.35 8742.26i −0.468202 0.810950i
\(489\) −4793.30 1126.14i −0.443273 0.104143i
\(490\) −2254.74 + 3905.33i −0.207875 + 0.360051i
\(491\) 7797.85 13506.3i 0.716725 1.24140i −0.245565 0.969380i \(-0.578974\pi\)
0.962290 0.272024i \(-0.0876930\pi\)
\(492\) 1977.12 + 6557.36i 0.181170 + 0.600871i
\(493\) 335.495 + 581.094i 0.0306489 + 0.0530855i
\(494\) −2014.13 −0.183441
\(495\) 14036.7 + 6980.92i 1.27455 + 0.633876i
\(496\) 287.945 0.0260668
\(497\) 691.776 + 1198.19i 0.0624354 + 0.108141i
\(498\) −3485.76 + 3709.19i −0.313656 + 0.333761i
\(499\) 4848.14 8397.22i 0.434935 0.753329i −0.562355 0.826896i \(-0.690105\pi\)
0.997290 + 0.0735663i \(0.0234381\pi\)
\(500\) −4517.83 + 7825.11i −0.404087 + 0.699899i
\(501\) 2440.93 2597.39i 0.217670 0.231622i
\(502\) 1170.23 + 2026.90i 0.104044 + 0.180209i
\(503\) 20949.7 1.85706 0.928532 0.371253i \(-0.121072\pi\)
0.928532 + 0.371253i \(0.121072\pi\)
\(504\) 166.061 + 2671.22i 0.0146764 + 0.236082i
\(505\) −11283.8 −0.994300
\(506\) 2729.85 + 4728.24i 0.239835 + 0.415407i
\(507\) −1176.64 3902.47i −0.103070 0.341844i
\(508\) −3688.77 + 6389.14i −0.322171 + 0.558016i
\(509\) −5637.37 + 9764.22i −0.490908 + 0.850278i −0.999945 0.0104668i \(-0.996668\pi\)
0.509037 + 0.860745i \(0.330002\pi\)
\(510\) 1702.76 + 400.048i 0.147842 + 0.0347342i
\(511\) −2367.73 4101.03i −0.204975 0.355027i
\(512\) −7613.21 −0.657148
\(513\) −4217.57 3497.03i −0.362983 0.300970i
\(514\) 4936.62 0.423628
\(515\) 5662.32 + 9807.43i 0.484489 + 0.839159i
\(516\) 1894.67 + 445.135i 0.161644 + 0.0379767i
\(517\) 1731.90 2999.74i 0.147329 0.255181i
\(518\) 632.320 1095.21i 0.0536342 0.0928972i
\(519\) −3319.24 11008.7i −0.280729 0.931074i
\(520\) −3775.99 6540.20i −0.318439 0.551552i
\(521\) 8675.49 0.729520 0.364760 0.931102i \(-0.381151\pi\)
0.364760 + 0.931102i \(0.381151\pi\)
\(522\) −876.032 + 581.094i −0.0734538 + 0.0487237i
\(523\) −4226.14 −0.353339 −0.176670 0.984270i \(-0.556532\pi\)
−0.176670 + 0.984270i \(0.556532\pi\)
\(524\) −3143.62 5444.90i −0.262079 0.453934i
\(525\) 317.105 337.430i 0.0263611 0.0280508i
\(526\) 2838.91 4917.14i 0.235328 0.407599i
\(527\) −152.340 + 263.860i −0.0125921 + 0.0218101i
\(528\) 4452.10 4737.46i 0.366956 0.390477i
\(529\) 3557.79 + 6162.27i 0.292413 + 0.506474i
\(530\) −7007.38 −0.574304
\(531\) −17766.7 + 11785.1i −1.45199 + 0.963143i
\(532\) 1222.27 0.0996095
\(533\) 4049.39 + 7013.75i 0.329078 + 0.569980i
\(534\) 833.258 + 2763.60i 0.0675255 + 0.223957i
\(535\) 5337.34 9244.55i 0.431315 0.747059i
\(536\) −2948.75 + 5107.38i −0.237624 + 0.411577i
\(537\) −15292.7 3592.88i −1.22892 0.288723i
\(538\) 4179.28 + 7238.72i 0.334910 + 0.580081i
\(539\) −17734.9 −1.41725
\(540\) 1494.25 8774.86i 0.119078 0.699277i
\(541\) 13357.8 1.06154 0.530771 0.847515i \(-0.321902\pi\)
0.530771 + 0.847515i \(0.321902\pi\)
\(542\) −2193.33 3798.96i −0.173822 0.301069i
\(543\) −1980.09 465.205i −0.156490 0.0367658i
\(544\) 2195.26 3802.29i 0.173016 0.299673i
\(545\) −9213.26 + 15957.8i −0.724134 + 1.25424i
\(546\) 395.860 + 1312.92i 0.0310280 + 0.102908i
\(547\) −10835.6 18767.7i −0.846974 1.46700i −0.883896 0.467684i \(-0.845089\pi\)
0.0369219 0.999318i \(-0.488245\pi\)
\(548\) 7712.78 0.601229
\(549\) −872.964 14042.3i −0.0678637 1.09164i
\(550\) 1337.84 0.103720
\(551\) 553.991 + 959.541i 0.0428327 + 0.0741884i
\(552\) 4899.42 5213.46i 0.377778 0.401992i
\(553\) −3297.90 + 5712.12i −0.253600 + 0.439248i
\(554\) −2140.32 + 3707.15i −0.164140 + 0.284299i
\(555\) −6647.42 + 7073.50i −0.508410 + 0.540997i
\(556\) 1412.48 + 2446.48i 0.107738 + 0.186608i
\(557\) 7477.63 0.568828 0.284414 0.958702i \(-0.408201\pi\)
0.284414 + 0.958702i \(0.408201\pi\)
\(558\) −427.402 212.561i −0.0324254 0.0161262i
\(559\) 2301.42 0.174132
\(560\) 593.109 + 1027.29i 0.0447561 + 0.0775198i
\(561\) 1985.78 + 6586.10i 0.149447 + 0.495660i
\(562\) 3395.25 5880.75i 0.254840 0.441396i
\(563\) 11652.3 20182.4i 0.872269 1.51082i 0.0126262 0.999920i \(-0.495981\pi\)
0.859643 0.510895i \(-0.170686\pi\)
\(564\) −1914.59 449.816i −0.142941 0.0335827i
\(565\) 8380.48 + 14515.4i 0.624017 + 1.08083i
\(566\) 6236.92 0.463176
\(567\) −1450.63 + 3436.56i −0.107444 + 0.254536i
\(568\) 5238.10 0.386947
\(569\) 7324.54 + 12686.5i 0.539650 + 0.934701i 0.998923 + 0.0464057i \(0.0147767\pi\)
−0.459273 + 0.888295i \(0.651890\pi\)
\(570\) 2811.71 + 660.587i 0.206614 + 0.0485420i
\(571\) −11582.0 + 20060.6i −0.848846 + 1.47025i 0.0333922 + 0.999442i \(0.489369\pi\)
−0.882239 + 0.470803i \(0.843964\pi\)
\(572\) 6434.61 11145.1i 0.470358 0.814683i
\(573\) 5228.38 + 17340.6i 0.381185 + 1.26425i
\(574\) 756.536 + 1310.36i 0.0550125 + 0.0952845i
\(575\) −1237.80 −0.0897735
\(576\) 1836.33 + 913.268i 0.132836 + 0.0660640i
\(577\) 7865.97 0.567529 0.283765 0.958894i \(-0.408417\pi\)
0.283765 + 0.958894i \(0.408417\pi\)
\(578\) −2987.25 5174.07i −0.214971 0.372341i
\(579\) 7882.15 8387.38i 0.565753 0.602016i
\(580\) −900.049 + 1558.93i −0.0644353 + 0.111605i
\(581\) 1826.29 3163.23i 0.130408 0.225874i
\(582\) −366.370 + 389.853i −0.0260937 + 0.0277662i
\(583\) −13779.3 23866.5i −0.978869 1.69545i
\(584\) −17928.4 −1.27034
\(585\) −653.076 10505.2i −0.0461562 0.742459i
\(586\) −9413.99 −0.663632
\(587\) 478.091 + 828.078i 0.0336166 + 0.0582256i 0.882344 0.470605i \(-0.155964\pi\)
−0.848728 + 0.528830i \(0.822631\pi\)
\(588\) 2906.89 + 9641.06i 0.203874 + 0.676174i
\(589\) −251.554 + 435.704i −0.0175978 + 0.0304803i
\(590\) 5619.68 9733.56i 0.392133 0.679194i
\(591\) 20107.8 + 4724.15i 1.39953 + 0.328808i
\(592\) 2012.70 + 3486.10i 0.139732 + 0.242023i
\(593\) −16966.0 −1.17489 −0.587444 0.809265i \(-0.699866\pi\)
−0.587444 + 0.809265i \(0.699866\pi\)
\(594\) −10105.5 + 3745.36i −0.698038 + 0.258710i
\(595\) −1255.16 −0.0864813
\(596\) 4463.22 + 7730.53i 0.306746 + 0.531300i
\(597\) 7867.57 + 1848.42i 0.539361 + 0.126718i
\(598\) 1832.84 3174.58i 0.125335 0.217087i
\(599\) 3095.70 5361.92i 0.211164 0.365746i −0.740915 0.671598i \(-0.765608\pi\)
0.952079 + 0.305852i \(0.0989414\pi\)
\(600\) −506.075 1678.46i −0.0344340 0.114205i
\(601\) 1359.27 + 2354.33i 0.0922559 + 0.159792i 0.908460 0.417972i \(-0.137259\pi\)
−0.816204 + 0.577764i \(0.803926\pi\)
\(602\) 429.968 0.0291099
\(603\) −6849.66 + 4543.55i −0.462587 + 0.306845i
\(604\) −9428.00 −0.635132
\(605\) −9348.35 16191.8i −0.628206 1.08808i
\(606\) 5312.28 5652.78i 0.356100 0.378925i
\(607\) −8412.49 + 14570.9i −0.562524 + 0.974321i 0.434751 + 0.900551i \(0.356836\pi\)
−0.997275 + 0.0737701i \(0.976497\pi\)
\(608\) 3624.95 6278.60i 0.241795 0.418801i
\(609\) 516.599 549.712i 0.0343738 0.0365771i
\(610\) 3708.51 + 6423.33i 0.246153 + 0.426349i
\(611\) −2325.62 −0.153985
\(612\) 3254.85 2159.02i 0.214983 0.142604i
\(613\) −20175.1 −1.32930 −0.664652 0.747153i \(-0.731420\pi\)
−0.664652 + 0.747153i \(0.731420\pi\)
\(614\) 4344.81 + 7525.44i 0.285574 + 0.494629i
\(615\) −3352.58 11119.3i −0.219820 0.729060i
\(616\) 2774.42 4805.44i 0.181468 0.314313i
\(617\) −5655.31 + 9795.29i −0.369002 + 0.639130i −0.989410 0.145149i \(-0.953634\pi\)
0.620408 + 0.784280i \(0.286967\pi\)
\(618\) −7578.94 1780.60i −0.493317 0.115900i
\(619\) 8529.94 + 14774.3i 0.553873 + 0.959336i 0.997990 + 0.0633676i \(0.0201841\pi\)
−0.444117 + 0.895969i \(0.646483\pi\)
\(620\) −817.380 −0.0529464
\(621\) 9349.81 3465.27i 0.604179 0.223924i
\(622\) −9712.56 −0.626106
\(623\) −1035.66 1793.82i −0.0666017 0.115357i
\(624\) −4249.21 998.314i −0.272604 0.0640457i
\(625\) 6572.36 11383.7i 0.420631 0.728554i
\(626\) 947.764 1641.58i 0.0605116 0.104809i
\(627\) 3279.06 + 10875.4i 0.208857 + 0.692699i
\(628\) −9834.58 17034.0i −0.624908 1.08237i
\(629\) −4259.34 −0.270002
\(630\) −122.012 1962.66i −0.00771601 0.124118i
\(631\) −13186.3 −0.831916 −0.415958 0.909384i \(-0.636554\pi\)
−0.415958 + 0.909384i \(0.636554\pi\)
\(632\) 12485.8 + 21626.0i 0.785850 + 1.36113i
\(633\) 6219.16 6617.79i 0.390505 0.415535i
\(634\) −5609.15 + 9715.34i −0.351369 + 0.608589i
\(635\) 6255.02 10834.0i 0.390902 0.677063i
\(636\) −10715.8 + 11402.6i −0.668094 + 0.710917i
\(637\) 5953.68 + 10312.1i 0.370319 + 0.641412i
\(638\) 2179.50 0.135246
\(639\) 6536.79 + 3250.96i 0.404681 + 0.201261i
\(640\) 14323.7 0.884677
\(641\) −8180.99 14169.9i −0.504102 0.873131i −0.999989 0.00474343i \(-0.998490\pi\)
0.495886 0.868387i \(-0.334843\pi\)
\(642\) 2118.43 + 7026.05i 0.130230 + 0.431926i
\(643\) 14022.5 24287.6i 0.860019 1.48960i −0.0118907 0.999929i \(-0.503785\pi\)
0.871910 0.489667i \(-0.162882\pi\)
\(644\) −1112.26 + 1926.49i −0.0680577 + 0.117879i
\(645\) −3212.77 754.811i −0.196128 0.0460786i
\(646\) 633.685 + 1097.57i 0.0385944 + 0.0668475i
\(647\) 21247.7 1.29109 0.645543 0.763724i \(-0.276631\pi\)
0.645543 + 0.763724i \(0.276631\pi\)
\(648\) 8521.61 + 11261.6i 0.516606 + 0.682713i
\(649\) 44202.1 2.67347
\(650\) −449.119 777.897i −0.0271014 0.0469410i
\(651\) 333.457 + 78.3426i 0.0200756 + 0.00471657i
\(652\) 2898.12 5019.69i 0.174079 0.301513i
\(653\) −629.928 + 1091.07i −0.0377504 + 0.0653856i −0.884283 0.466951i \(-0.845353\pi\)
0.846533 + 0.532336i \(0.178686\pi\)
\(654\) −3656.82 12128.3i −0.218644 0.725159i
\(655\) 5330.60 + 9232.87i 0.317991 + 0.550776i
\(656\) −4816.17 −0.286646
\(657\) −22373.3 11127.0i −1.32857 0.660740i
\(658\) −434.489 −0.0257419
\(659\) 6023.35 + 10432.7i 0.356049 + 0.616695i 0.987297 0.158886i \(-0.0507902\pi\)
−0.631248 + 0.775581i \(0.717457\pi\)
\(660\) −12638.0 + 13448.1i −0.745354 + 0.793129i
\(661\) −6554.04 + 11351.9i −0.385662 + 0.667986i −0.991861 0.127327i \(-0.959360\pi\)
0.606199 + 0.795313i \(0.292693\pi\)
\(662\) −6629.00 + 11481.8i −0.389189 + 0.674096i
\(663\) 3162.89 3365.62i 0.185274 0.197149i
\(664\) −6914.30 11975.9i −0.404107 0.699933i
\(665\) −2072.60 −0.120860
\(666\) −414.046 6660.25i −0.0240900 0.387507i
\(667\) −2016.51 −0.117061
\(668\) 2097.95 + 3633.76i 0.121515 + 0.210471i
\(669\) −3812.91 12646.0i −0.220352 0.730826i
\(670\) 2166.58 3752.62i 0.124929 0.216383i
\(671\) −14584.8 + 25261.7i −0.839108 + 1.45338i
\(672\) −4805.19 1128.94i −0.275840 0.0648061i
\(673\) −1371.82 2376.07i −0.0785734 0.136093i 0.824061 0.566501i \(-0.191703\pi\)
−0.902635 + 0.430408i \(0.858370\pi\)
\(674\) 6801.06 0.388675
\(675\) 410.169 2408.69i 0.0233888 0.137349i
\(676\) 4798.21 0.272998
\(677\) −12502.0 21654.1i −0.709735 1.22930i −0.964955 0.262415i \(-0.915481\pi\)
0.255220 0.966883i \(-0.417852\pi\)
\(678\) −11217.2 2635.37i −0.635387 0.149278i
\(679\) 191.952 332.470i 0.0108489 0.0187909i
\(680\) −2376.00 + 4115.35i −0.133993 + 0.232083i
\(681\) −4489.89 14891.3i −0.252648 0.837937i
\(682\) 494.829 + 857.068i 0.0277829 + 0.0481215i
\(683\) −4846.23 −0.271502 −0.135751 0.990743i \(-0.543345\pi\)
−0.135751 + 0.990743i \(0.543345\pi\)
\(684\) 5374.63 3565.13i 0.300445 0.199292i
\(685\) −13078.5 −0.729494
\(686\) 2316.54 + 4012.36i 0.128930 + 0.223313i
\(687\) −15320.1 + 16302.1i −0.850798 + 0.905331i
\(688\) −684.303 + 1185.25i −0.0379198 + 0.0656790i
\(689\) −9251.54 + 16024.1i −0.511546 + 0.886024i
\(690\) −3599.83 + 3830.57i −0.198613 + 0.211344i
\(691\) −1742.29 3017.73i −0.0959187 0.166136i 0.814073 0.580763i \(-0.197246\pi\)
−0.909992 + 0.414627i \(0.863912\pi\)
\(692\) 13535.5 0.743560
\(693\) 6444.72 4274.94i 0.353268 0.234331i
\(694\) 1393.70 0.0762305
\(695\) −2395.12 4148.48i −0.130723 0.226418i
\(696\) −824.454 2734.40i −0.0449006 0.148919i
\(697\) 2548.04 4413.33i 0.138470 0.239837i
\(698\) 8342.49 14449.6i 0.452390 0.783562i
\(699\) 28232.8 + 6633.04i 1.52770 + 0.358919i
\(700\) 272.548 + 472.066i 0.0147162 + 0.0254892i
\(701\) 15701.4 0.845981 0.422991 0.906134i \(-0.360980\pi\)
0.422991 + 0.906134i \(0.360980\pi\)
\(702\) 5570.22 + 4618.58i 0.299479 + 0.248315i
\(703\) −7033.32 −0.377335
\(704\) −2126.03 3682.39i −0.113818 0.197138i
\(705\) 3246.56 + 762.749i 0.173436 + 0.0407472i
\(706\) 2906.55 5034.29i 0.154943 0.268368i
\(707\) −2783.25 + 4820.73i −0.148055 + 0.256439i
\(708\) −7245.07 24029.2i −0.384585 1.27552i
\(709\) −7821.72 13547.6i −0.414317 0.717618i 0.581039 0.813875i \(-0.302646\pi\)
−0.995356 + 0.0962572i \(0.969313\pi\)
\(710\) −3848.67 −0.203434
\(711\) 2159.48 + 34736.9i 0.113905 + 1.83226i
\(712\) −7841.98 −0.412768
\(713\) −457.824 792.975i −0.0240472 0.0416510i
\(714\) 590.914 628.790i 0.0309725 0.0329578i
\(715\) −10911.1 + 18898.6i −0.570703 + 0.988486i
\(716\) 9246.27 16015.0i 0.482611 0.835907i
\(717\) 5016.05 5337.57i 0.261266 0.278013i
\(718\) −355.379 615.535i −0.0184716 0.0319938i
\(719\) −6964.13 −0.361222 −0.180611 0.983555i \(-0.557807\pi\)
−0.180611 + 0.983555i \(0.557807\pi\)
\(720\) 5604.46 + 2787.28i 0.290091 + 0.144272i
\(721\) 5586.66 0.288569
\(722\) −3659.86 6339.06i −0.188651 0.326752i
\(723\) 939.858 + 3117.16i 0.0483454 + 0.160343i
\(724\) 1197.20 2073.62i 0.0614554 0.106444i
\(725\) −247.063 + 427.925i −0.0126561 + 0.0219210i
\(726\) 12512.6 + 2939.73i 0.639652 + 0.150281i
\(727\) 7103.61 + 12303.8i 0.362391 + 0.627680i 0.988354 0.152173i \(-0.0486272\pi\)
−0.625963 + 0.779853i \(0.715294\pi\)
\(728\) −3725.53 −0.189667
\(729\) 3645.00 + 19342.6i 0.185185 + 0.982704i
\(730\) 13172.8 0.667871
\(731\) −724.072 1254.13i −0.0366358 0.0634551i
\(732\) 16123.3 + 3788.03i 0.814120 + 0.191270i
\(733\) −13265.3 + 22976.1i −0.668437 + 1.15777i 0.309905 + 0.950768i \(0.399703\pi\)
−0.978341 + 0.206998i \(0.933630\pi\)
\(734\) −3167.43 + 5486.15i −0.159280 + 0.275882i
\(735\) −4929.19 16348.3i −0.247368 0.820428i
\(736\) 6597.36 + 11427.0i 0.330410 + 0.572288i
\(737\) 17041.4 0.851735
\(738\) 7148.72 + 3555.30i 0.356569 + 0.177334i
\(739\) −5683.47 −0.282909 −0.141455 0.989945i \(-0.545178\pi\)
−0.141455 + 0.989945i \(0.545178\pi\)
\(740\) −5713.38 9895.86i −0.283822 0.491594i
\(741\) 5222.78 5557.55i 0.258925 0.275522i
\(742\) −1728.44 + 2993.74i −0.0855161 + 0.148118i
\(743\) 7784.28 13482.8i 0.384358 0.665727i −0.607322 0.794456i \(-0.707756\pi\)
0.991680 + 0.128729i \(0.0410896\pi\)
\(744\) 888.097 945.022i 0.0437624 0.0465674i
\(745\) −7568.25 13108.6i −0.372187 0.644647i
\(746\) −6539.50 −0.320949
\(747\) −1195.86 19236.4i −0.0585734 0.942199i
\(748\) −8097.82 −0.395836
\(749\) −2633.01 4560.51i −0.128449 0.222480i
\(750\) 3040.65 + 10084.7i 0.148039 + 0.490988i
\(751\) 4130.82 7154.79i 0.200713 0.347646i −0.748045 0.663648i \(-0.769007\pi\)
0.948758 + 0.316002i \(0.102341\pi\)
\(752\) 691.499 1197.71i 0.0335324 0.0580798i
\(753\) −8627.27 2026.90i −0.417523 0.0980933i
\(754\) −731.666 1267.28i −0.0353391 0.0612092i
\(755\) 15987.0 0.770630
\(756\) −3380.29 2802.78i −0.162619 0.134836i
\(757\) −13381.5 −0.642481 −0.321240 0.946998i \(-0.604100\pi\)
−0.321240 + 0.946998i \(0.604100\pi\)
\(758\) −1372.51 2377.25i −0.0657674 0.113913i
\(759\) −20125.2 4728.24i −0.962451 0.226119i
\(760\) −3923.41 + 6795.55i −0.187259 + 0.324343i
\(761\) −2724.92 + 4719.70i −0.129801 + 0.224821i −0.923599 0.383359i \(-0.874767\pi\)
0.793799 + 0.608181i \(0.208100\pi\)
\(762\) 2482.67 + 8234.08i 0.118028 + 0.391456i
\(763\) 4545.08 + 7872.31i 0.215652 + 0.373521i
\(764\) −21320.8 −1.00963
\(765\) −5519.23 + 3661.04i −0.260847 + 0.173026i
\(766\) −1358.96 −0.0641009
\(767\) −14838.8 25701.6i −0.698564 1.20995i
\(768\) −8905.79 + 9476.63i −0.418438 + 0.445258i
\(769\) 9681.98 16769.7i 0.454020 0.786385i −0.544612 0.838688i \(-0.683323\pi\)
0.998631 + 0.0523033i \(0.0166563\pi\)
\(770\) −2038.49 + 3530.77i −0.0954054 + 0.165247i
\(771\) −12801.0 + 13621.5i −0.597946 +