Properties

Label 9.4.c
Level $9$
Weight $4$
Character orbit 9.c
Rep. character $\chi_{9}(4,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $4$
Newform subspaces $1$
Sturm bound $4$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 9.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(4\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(9, [\chi])\).

Total New Old
Modular forms 8 8 0
Cusp forms 4 4 0
Eisenstein series 4 4 0

Trace form

\( 4 q - 3 q^{2} - 3 q^{3} - 5 q^{4} - 15 q^{5} + 9 q^{6} - 7 q^{7} + 66 q^{8} + 45 q^{9} + 12 q^{10} - 66 q^{11} - 156 q^{12} + 11 q^{13} - 60 q^{14} + 27 q^{15} + 7 q^{16} + 198 q^{17} + 216 q^{18} - 154 q^{19}+ \cdots + 297 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(9, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
9.4.c.a 9.c 9.c $4$ $0.531$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 9.4.c.a \(-3\) \(-3\) \(-15\) \(-7\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}-\beta _{3})q^{2}+(-1+\beta _{1}+\beta _{2}+\cdots)q^{3}+\cdots\)