Properties

Label 9.24.a.d
Level $9$
Weight $24$
Character orbit 9.a
Self dual yes
Analytic conductor $30.168$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9,24,Mod(1,9)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 24, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9.1");
 
S:= CuspForms(chi, 24);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 24 \)
Character orbit: \([\chi]\) \(=\) 9.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.1683633611\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 29258x^{2} + 97377280 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{9}\cdot 3^{10}\cdot 5^{4} \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{3} + 4777492) q^{4} + (\beta_{2} + 17070 \beta_1) q^{5} + (448 \beta_{3} + 2140359620) q^{7} + (200 \beta_{2} + 3564184 \beta_1) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + (\beta_{3} + 4777492) q^{4} + (\beta_{2} + 17070 \beta_1) q^{5} + (448 \beta_{3} + 2140359620) q^{7} + (200 \beta_{2} + 3564184 \beta_1) q^{8} + (47024 \beta_{3} + 224744702400) q^{10} + ( - 6700 \beta_{2} - 52068840 \beta_1) q^{11} + ( - 712448 \beta_{3} - 3383642499670) q^{13} + (89600 \beta_{2} + 5354894020 \beta_1) q^{14} + (1166376 \beta_{3} + 6849770431264) q^{16} + ( - 587150 \beta_{2} + 56834260348 \beta_1) q^{17} + (35757696 \beta_{3} + 205778476850456) q^{19} + (1016192 \beta_{2} + 418962471040 \beta_1) q^{20} + ( - 252760640 \beta_{3} - 685539369504000) q^{22} + (14763800 \beta_{2} + 515525395024 \beta_1) q^{23} + (239366656 \beta_{3} + 60\!\cdots\!75) q^{25}+ \cdots + (383552443904000 \beta_{2} + 99\!\cdots\!57 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 19109968 q^{4} + 8561438480 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 19109968 q^{4} + 8561438480 q^{7} + 898978809600 q^{10} - 13534569998680 q^{13} + 27399081725056 q^{16} + 823113907401824 q^{19} - 27\!\cdots\!00 q^{22}+ \cdots + 61\!\cdots\!80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 29258x^{2} + 97377280 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 30\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 135\nu^{3} - 3051210\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 900\nu^{2} - 13166100 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 30 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 13166100 ) / 900 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{2} + 101707\beta_1 ) / 135 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−159.463
−61.8825
61.8825
159.463
−4783.90 0 1.44971e7 −1.42520e8 0 6.49474e9 −2.92224e10 0 6.81799e11
1.2 −1856.48 0 −4.94211e6 1.25135e8 0 −2.21402e9 2.47481e10 0 −2.32310e11
1.3 1856.48 0 −4.94211e6 −1.25135e8 0 −2.21402e9 −2.47481e10 0 −2.32310e11
1.4 4783.90 0 1.44971e7 1.42520e8 0 6.49474e9 2.92224e10 0 6.81799e11
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9.24.a.d 4
3.b odd 2 1 inner 9.24.a.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.24.a.d 4 1.a even 1 1 trivial
9.24.a.d 4 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 26332200T_{2}^{2} + 78875596800000 \) acting on \(S_{24}^{\mathrm{new}}(\Gamma_0(9))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + \cdots + 78875596800000 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 31\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( (T^{2} + \cdots - 14\!\cdots\!00)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 39\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( (T^{2} + \cdots - 36\!\cdots\!00)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 21\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( (T^{2} + \cdots - 78\!\cdots\!64)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 20\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( (T^{2} + \cdots - 42\!\cdots\!36)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + \cdots + 23\!\cdots\!00)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 46\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T^{2} + \cdots - 28\!\cdots\!00)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 20\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 47\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 24\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots - 40\!\cdots\!76)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + \cdots + 26\!\cdots\!00)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots - 35\!\cdots\!00)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots - 13\!\cdots\!44)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 78\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 43\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots + 28\!\cdots\!00)^{2} \) Copy content Toggle raw display
show more
show less