Newspace parameters
Level: | \( N \) | \(=\) | \( 9 = 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 24 \) |
Character orbit: | \([\chi]\) | \(=\) | 9.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(30.1683633611\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 3) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−1128.00 | 0 | −7.11622e6 | 4.88637e7 | 0 | −1.72369e9 | 1.74895e10 | 0 | −5.51183e10 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 9.24.a.a | 1 | |
3.b | odd | 2 | 1 | 3.24.a.a | ✓ | 1 | |
12.b | even | 2 | 1 | 48.24.a.a | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3.24.a.a | ✓ | 1 | 3.b | odd | 2 | 1 | |
9.24.a.a | 1 | 1.a | even | 1 | 1 | trivial | |
48.24.a.a | 1 | 12.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2} + 1128 \)
acting on \(S_{24}^{\mathrm{new}}(\Gamma_0(9))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T + 1128 \)
$3$
\( T \)
$5$
\( T - 48863730 \)
$7$
\( T + 1723688680 \)
$11$
\( T - 1428263180124 \)
$13$
\( T + 8220964044826 \)
$17$
\( T - 5989210330446 \)
$19$
\( T - 680005481275676 \)
$23$
\( T + 15440648191080 \)
$29$
\( T + 11\!\cdots\!22 \)
$31$
\( T + 90\!\cdots\!00 \)
$37$
\( T + 12\!\cdots\!70 \)
$41$
\( T + 52\!\cdots\!30 \)
$43$
\( T + 24\!\cdots\!08 \)
$47$
\( T - 23\!\cdots\!24 \)
$53$
\( T - 44\!\cdots\!50 \)
$59$
\( T - 32\!\cdots\!76 \)
$61$
\( T + 19\!\cdots\!22 \)
$67$
\( T + 64\!\cdots\!96 \)
$71$
\( T + 35\!\cdots\!12 \)
$73$
\( T - 33\!\cdots\!70 \)
$79$
\( T + 68\!\cdots\!20 \)
$83$
\( T - 11\!\cdots\!44 \)
$89$
\( T - 23\!\cdots\!74 \)
$97$
\( T + 30\!\cdots\!86 \)
show more
show less