Properties

Label 9.22.a.e.1.1
Level $9$
Weight $22$
Character 9.1
Self dual yes
Analytic conductor $25.153$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9,22,Mod(1,9)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9.1");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 9.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.1529609858\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{649}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 162 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2\cdot 3^{2}\cdot 7 \)
Twist minimal: no (minimal twist has level 3)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(13.2377\) of defining polynomial
Character \(\chi\) \(=\) 9.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1937.96 q^{2} +1.65852e6 q^{4} -2.22745e7 q^{5} +4.78205e7 q^{7} +8.50053e8 q^{8} +O(q^{10})\) \(q-1937.96 q^{2} +1.65852e6 q^{4} -2.22745e7 q^{5} +4.78205e7 q^{7} +8.50053e8 q^{8} +4.31669e10 q^{10} -1.60111e11 q^{11} -7.86968e11 q^{13} -9.26741e10 q^{14} -5.12553e12 q^{16} +2.97477e12 q^{17} -2.99456e13 q^{19} -3.69426e13 q^{20} +3.10287e14 q^{22} +1.91401e14 q^{23} +1.93148e13 q^{25} +1.52511e15 q^{26} +7.93112e13 q^{28} -9.68170e14 q^{29} +2.80459e15 q^{31} +8.15035e15 q^{32} -5.76496e15 q^{34} -1.06518e15 q^{35} +3.05038e16 q^{37} +5.80331e16 q^{38} -1.89345e16 q^{40} +2.22806e16 q^{41} +1.63711e17 q^{43} -2.65546e17 q^{44} -3.70927e17 q^{46} -4.08678e17 q^{47} -5.56259e17 q^{49} -3.74313e16 q^{50} -1.30520e18 q^{52} -4.34009e17 q^{53} +3.56638e18 q^{55} +4.06500e16 q^{56} +1.87627e18 q^{58} +5.14341e18 q^{59} +1.98980e18 q^{61} -5.43517e18 q^{62} -5.04601e18 q^{64} +1.75293e19 q^{65} -1.36361e19 q^{67} +4.93370e18 q^{68} +2.06427e18 q^{70} -7.35641e18 q^{71} +6.81650e19 q^{73} -5.91149e19 q^{74} -4.96652e19 q^{76} -7.65658e18 q^{77} -2.12282e19 q^{79} +1.14168e20 q^{80} -4.31789e19 q^{82} -1.10803e20 q^{83} -6.62613e19 q^{85} -3.17266e20 q^{86} -1.36102e20 q^{88} +7.67205e18 q^{89} -3.76333e19 q^{91} +3.17442e20 q^{92} +7.92000e20 q^{94} +6.67021e20 q^{95} +4.63755e20 q^{97} +1.07801e21 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 666 q^{2} + 1179236 q^{4} - 996876 q^{5} + 679896112 q^{7} - 2427055848 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 666 q^{2} + 1179236 q^{4} - 996876 q^{5} + 679896112 q^{7} - 2427055848 q^{8} + 70231066524 q^{10} - 219869122968 q^{11} - 48468909956 q^{13} + 711297706896 q^{14} - 8288736440560 q^{16} + 11333529041436 q^{17} + 11960585011624 q^{19} - 47140581172824 q^{20} + 234277148563128 q^{22} + 146508390063504 q^{23} - 4786354247074 q^{25} + 24\!\cdots\!16 q^{26}+ \cdots + 87\!\cdots\!14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1937.96 −1.33822 −0.669112 0.743162i \(-0.733325\pi\)
−0.669112 + 0.743162i \(0.733325\pi\)
\(3\) 0 0
\(4\) 1.65852e6 0.790843
\(5\) −2.22745e7 −1.02005 −0.510026 0.860159i \(-0.670364\pi\)
−0.510026 + 0.860159i \(0.670364\pi\)
\(6\) 0 0
\(7\) 4.78205e7 0.0639860 0.0319930 0.999488i \(-0.489815\pi\)
0.0319930 + 0.999488i \(0.489815\pi\)
\(8\) 8.50053e8 0.279899
\(9\) 0 0
\(10\) 4.31669e10 1.36506
\(11\) −1.60111e11 −1.86122 −0.930609 0.366016i \(-0.880722\pi\)
−0.930609 + 0.366016i \(0.880722\pi\)
\(12\) 0 0
\(13\) −7.86968e11 −1.58326 −0.791630 0.611001i \(-0.790767\pi\)
−0.791630 + 0.611001i \(0.790767\pi\)
\(14\) −9.26741e10 −0.0856276
\(15\) 0 0
\(16\) −5.12553e12 −1.16541
\(17\) 2.97477e12 0.357881 0.178941 0.983860i \(-0.442733\pi\)
0.178941 + 0.983860i \(0.442733\pi\)
\(18\) 0 0
\(19\) −2.99456e13 −1.12052 −0.560260 0.828317i \(-0.689299\pi\)
−0.560260 + 0.828317i \(0.689299\pi\)
\(20\) −3.69426e13 −0.806701
\(21\) 0 0
\(22\) 3.10287e14 2.49073
\(23\) 1.91401e14 0.963390 0.481695 0.876339i \(-0.340021\pi\)
0.481695 + 0.876339i \(0.340021\pi\)
\(24\) 0 0
\(25\) 1.93148e13 0.0405061
\(26\) 1.52511e15 2.11876
\(27\) 0 0
\(28\) 7.93112e13 0.0506029
\(29\) −9.68170e14 −0.427339 −0.213670 0.976906i \(-0.568542\pi\)
−0.213670 + 0.976906i \(0.568542\pi\)
\(30\) 0 0
\(31\) 2.80459e15 0.614570 0.307285 0.951618i \(-0.400580\pi\)
0.307285 + 0.951618i \(0.400580\pi\)
\(32\) 8.15035e15 1.27968
\(33\) 0 0
\(34\) −5.76496e15 −0.478925
\(35\) −1.06518e15 −0.0652691
\(36\) 0 0
\(37\) 3.05038e16 1.04288 0.521441 0.853287i \(-0.325395\pi\)
0.521441 + 0.853287i \(0.325395\pi\)
\(38\) 5.80331e16 1.49951
\(39\) 0 0
\(40\) −1.89345e16 −0.285511
\(41\) 2.22806e16 0.259237 0.129618 0.991564i \(-0.458625\pi\)
0.129618 + 0.991564i \(0.458625\pi\)
\(42\) 0 0
\(43\) 1.63711e17 1.15521 0.577604 0.816317i \(-0.303988\pi\)
0.577604 + 0.816317i \(0.303988\pi\)
\(44\) −2.65546e17 −1.47193
\(45\) 0 0
\(46\) −3.70927e17 −1.28923
\(47\) −4.08678e17 −1.13332 −0.566662 0.823951i \(-0.691765\pi\)
−0.566662 + 0.823951i \(0.691765\pi\)
\(48\) 0 0
\(49\) −5.56259e17 −0.995906
\(50\) −3.74313e16 −0.0542063
\(51\) 0 0
\(52\) −1.30520e18 −1.25211
\(53\) −4.34009e17 −0.340881 −0.170440 0.985368i \(-0.554519\pi\)
−0.170440 + 0.985368i \(0.554519\pi\)
\(54\) 0 0
\(55\) 3.56638e18 1.89854
\(56\) 4.06500e16 0.0179096
\(57\) 0 0
\(58\) 1.87627e18 0.571875
\(59\) 5.14341e18 1.31010 0.655051 0.755584i \(-0.272647\pi\)
0.655051 + 0.755584i \(0.272647\pi\)
\(60\) 0 0
\(61\) 1.98980e18 0.357147 0.178573 0.983927i \(-0.442852\pi\)
0.178573 + 0.983927i \(0.442852\pi\)
\(62\) −5.43517e18 −0.822432
\(63\) 0 0
\(64\) −5.04601e18 −0.547089
\(65\) 1.75293e19 1.61501
\(66\) 0 0
\(67\) −1.36361e19 −0.913913 −0.456956 0.889489i \(-0.651060\pi\)
−0.456956 + 0.889489i \(0.651060\pi\)
\(68\) 4.93370e18 0.283028
\(69\) 0 0
\(70\) 2.06427e18 0.0873446
\(71\) −7.35641e18 −0.268196 −0.134098 0.990968i \(-0.542814\pi\)
−0.134098 + 0.990968i \(0.542814\pi\)
\(72\) 0 0
\(73\) 6.81650e19 1.85640 0.928200 0.372081i \(-0.121356\pi\)
0.928200 + 0.372081i \(0.121356\pi\)
\(74\) −5.91149e19 −1.39561
\(75\) 0 0
\(76\) −4.96652e19 −0.886155
\(77\) −7.65658e18 −0.119092
\(78\) 0 0
\(79\) −2.12282e19 −0.252249 −0.126124 0.992014i \(-0.540254\pi\)
−0.126124 + 0.992014i \(0.540254\pi\)
\(80\) 1.14168e20 1.18878
\(81\) 0 0
\(82\) −4.31789e19 −0.346917
\(83\) −1.10803e20 −0.783849 −0.391924 0.919997i \(-0.628191\pi\)
−0.391924 + 0.919997i \(0.628191\pi\)
\(84\) 0 0
\(85\) −6.62613e19 −0.365058
\(86\) −3.17266e20 −1.54593
\(87\) 0 0
\(88\) −1.36102e20 −0.520952
\(89\) 7.67205e18 0.0260805 0.0130403 0.999915i \(-0.495849\pi\)
0.0130403 + 0.999915i \(0.495849\pi\)
\(90\) 0 0
\(91\) −3.76333e19 −0.101306
\(92\) 3.17442e20 0.761890
\(93\) 0 0
\(94\) 7.92000e20 1.51664
\(95\) 6.67021e20 1.14299
\(96\) 0 0
\(97\) 4.63755e20 0.638535 0.319268 0.947665i \(-0.396563\pi\)
0.319268 + 0.947665i \(0.396563\pi\)
\(98\) 1.07801e21 1.33274
\(99\) 0 0
\(100\) 3.20340e19 0.0320340
\(101\) −1.75642e20 −0.158217 −0.0791086 0.996866i \(-0.525207\pi\)
−0.0791086 + 0.996866i \(0.525207\pi\)
\(102\) 0 0
\(103\) −1.29018e21 −0.945933 −0.472967 0.881080i \(-0.656817\pi\)
−0.472967 + 0.881080i \(0.656817\pi\)
\(104\) −6.68965e20 −0.443152
\(105\) 0 0
\(106\) 8.41091e20 0.456175
\(107\) −5.76913e19 −0.0283518 −0.0141759 0.999900i \(-0.504512\pi\)
−0.0141759 + 0.999900i \(0.504512\pi\)
\(108\) 0 0
\(109\) −5.74941e20 −0.232619 −0.116309 0.993213i \(-0.537106\pi\)
−0.116309 + 0.993213i \(0.537106\pi\)
\(110\) −6.91148e21 −2.54067
\(111\) 0 0
\(112\) −2.45106e20 −0.0745700
\(113\) 4.56755e21 1.26578 0.632892 0.774240i \(-0.281868\pi\)
0.632892 + 0.774240i \(0.281868\pi\)
\(114\) 0 0
\(115\) −4.26336e21 −0.982708
\(116\) −1.60573e21 −0.337958
\(117\) 0 0
\(118\) −9.96770e21 −1.75321
\(119\) 1.42255e20 0.0228994
\(120\) 0 0
\(121\) 1.82352e22 2.46413
\(122\) −3.85615e21 −0.477942
\(123\) 0 0
\(124\) 4.65146e21 0.486028
\(125\) 1.01911e22 0.978734
\(126\) 0 0
\(127\) 1.84938e22 1.50344 0.751722 0.659480i \(-0.229224\pi\)
0.751722 + 0.659480i \(0.229224\pi\)
\(128\) −7.31359e21 −0.547553
\(129\) 0 0
\(130\) −3.39710e22 −2.16124
\(131\) 1.25296e22 0.735509 0.367754 0.929923i \(-0.380127\pi\)
0.367754 + 0.929923i \(0.380127\pi\)
\(132\) 0 0
\(133\) −1.43201e21 −0.0716976
\(134\) 2.64261e22 1.22302
\(135\) 0 0
\(136\) 2.52871e21 0.100171
\(137\) −3.84075e22 −1.40880 −0.704402 0.709801i \(-0.748785\pi\)
−0.704402 + 0.709801i \(0.748785\pi\)
\(138\) 0 0
\(139\) −9.58856e21 −0.302063 −0.151032 0.988529i \(-0.548260\pi\)
−0.151032 + 0.988529i \(0.548260\pi\)
\(140\) −1.76662e21 −0.0516176
\(141\) 0 0
\(142\) 1.42564e22 0.358907
\(143\) 1.26002e23 2.94679
\(144\) 0 0
\(145\) 2.15655e22 0.435908
\(146\) −1.32101e23 −2.48428
\(147\) 0 0
\(148\) 5.05911e22 0.824757
\(149\) −3.44428e22 −0.523170 −0.261585 0.965180i \(-0.584245\pi\)
−0.261585 + 0.965180i \(0.584245\pi\)
\(150\) 0 0
\(151\) −3.63152e22 −0.479546 −0.239773 0.970829i \(-0.577073\pi\)
−0.239773 + 0.970829i \(0.577073\pi\)
\(152\) −2.54553e22 −0.313632
\(153\) 0 0
\(154\) 1.48381e22 0.159372
\(155\) −6.24707e22 −0.626893
\(156\) 0 0
\(157\) −9.41986e22 −0.826225 −0.413112 0.910680i \(-0.635558\pi\)
−0.413112 + 0.910680i \(0.635558\pi\)
\(158\) 4.11393e22 0.337565
\(159\) 0 0
\(160\) −1.81545e23 −1.30534
\(161\) 9.15290e21 0.0616435
\(162\) 0 0
\(163\) −1.80771e23 −1.06945 −0.534723 0.845027i \(-0.679584\pi\)
−0.534723 + 0.845027i \(0.679584\pi\)
\(164\) 3.69528e22 0.205016
\(165\) 0 0
\(166\) 2.14732e23 1.04897
\(167\) −3.71934e22 −0.170586 −0.0852929 0.996356i \(-0.527183\pi\)
−0.0852929 + 0.996356i \(0.527183\pi\)
\(168\) 0 0
\(169\) 3.72255e23 1.50671
\(170\) 1.28412e23 0.488529
\(171\) 0 0
\(172\) 2.71518e23 0.913589
\(173\) −2.58398e23 −0.818096 −0.409048 0.912513i \(-0.634139\pi\)
−0.409048 + 0.912513i \(0.634139\pi\)
\(174\) 0 0
\(175\) 9.23645e20 0.00259183
\(176\) 8.20652e23 2.16908
\(177\) 0 0
\(178\) −1.48681e22 −0.0349016
\(179\) 3.35184e23 0.741868 0.370934 0.928659i \(-0.379038\pi\)
0.370934 + 0.928659i \(0.379038\pi\)
\(180\) 0 0
\(181\) −1.92267e23 −0.378687 −0.189343 0.981911i \(-0.560636\pi\)
−0.189343 + 0.981911i \(0.560636\pi\)
\(182\) 7.29316e22 0.135571
\(183\) 0 0
\(184\) 1.62701e23 0.269652
\(185\) −6.79455e23 −1.06379
\(186\) 0 0
\(187\) −4.76292e23 −0.666095
\(188\) −6.77800e23 −0.896281
\(189\) 0 0
\(190\) −1.29266e24 −1.52957
\(191\) 4.60821e23 0.516038 0.258019 0.966140i \(-0.416930\pi\)
0.258019 + 0.966140i \(0.416930\pi\)
\(192\) 0 0
\(193\) 1.29600e24 1.30093 0.650465 0.759536i \(-0.274574\pi\)
0.650465 + 0.759536i \(0.274574\pi\)
\(194\) −8.98736e23 −0.854503
\(195\) 0 0
\(196\) −9.22566e23 −0.787605
\(197\) −2.05711e24 −1.66480 −0.832402 0.554172i \(-0.813035\pi\)
−0.832402 + 0.554172i \(0.813035\pi\)
\(198\) 0 0
\(199\) 5.34557e22 0.0389078 0.0194539 0.999811i \(-0.493807\pi\)
0.0194539 + 0.999811i \(0.493807\pi\)
\(200\) 1.64186e22 0.0113376
\(201\) 0 0
\(202\) 3.40386e23 0.211730
\(203\) −4.62984e22 −0.0273437
\(204\) 0 0
\(205\) −4.96289e23 −0.264435
\(206\) 2.50032e24 1.26587
\(207\) 0 0
\(208\) 4.03363e24 1.84515
\(209\) 4.79460e24 2.08553
\(210\) 0 0
\(211\) −3.16142e24 −1.24427 −0.622137 0.782908i \(-0.713735\pi\)
−0.622137 + 0.782908i \(0.713735\pi\)
\(212\) −7.19813e23 −0.269583
\(213\) 0 0
\(214\) 1.11803e23 0.0379410
\(215\) −3.64659e24 −1.17837
\(216\) 0 0
\(217\) 1.34117e23 0.0393239
\(218\) 1.11421e24 0.311296
\(219\) 0 0
\(220\) 5.91491e24 1.50145
\(221\) −2.34105e24 −0.566619
\(222\) 0 0
\(223\) −3.10623e24 −0.683963 −0.341981 0.939707i \(-0.611098\pi\)
−0.341981 + 0.939707i \(0.611098\pi\)
\(224\) 3.89754e23 0.0818817
\(225\) 0 0
\(226\) −8.85171e24 −1.69390
\(227\) 2.04882e24 0.374310 0.187155 0.982330i \(-0.440073\pi\)
0.187155 + 0.982330i \(0.440073\pi\)
\(228\) 0 0
\(229\) 4.12622e24 0.687512 0.343756 0.939059i \(-0.388301\pi\)
0.343756 + 0.939059i \(0.388301\pi\)
\(230\) 8.26219e24 1.31508
\(231\) 0 0
\(232\) −8.22995e23 −0.119612
\(233\) −3.43270e24 −0.476869 −0.238434 0.971159i \(-0.576634\pi\)
−0.238434 + 0.971159i \(0.576634\pi\)
\(234\) 0 0
\(235\) 9.10308e24 1.15605
\(236\) 8.53044e24 1.03609
\(237\) 0 0
\(238\) −2.75684e23 −0.0306445
\(239\) −8.29149e24 −0.881972 −0.440986 0.897514i \(-0.645371\pi\)
−0.440986 + 0.897514i \(0.645371\pi\)
\(240\) 0 0
\(241\) −1.30526e25 −1.27209 −0.636045 0.771652i \(-0.719431\pi\)
−0.636045 + 0.771652i \(0.719431\pi\)
\(242\) −3.53389e25 −3.29756
\(243\) 0 0
\(244\) 3.30012e24 0.282447
\(245\) 1.23904e25 1.01588
\(246\) 0 0
\(247\) 2.35662e25 1.77407
\(248\) 2.38405e24 0.172017
\(249\) 0 0
\(250\) −1.97498e25 −1.30976
\(251\) 1.77630e25 1.12965 0.564823 0.825212i \(-0.308944\pi\)
0.564823 + 0.825212i \(0.308944\pi\)
\(252\) 0 0
\(253\) −3.06453e25 −1.79308
\(254\) −3.58402e25 −2.01194
\(255\) 0 0
\(256\) 2.47557e25 1.27984
\(257\) 5.70058e24 0.282893 0.141446 0.989946i \(-0.454825\pi\)
0.141446 + 0.989946i \(0.454825\pi\)
\(258\) 0 0
\(259\) 1.45871e24 0.0667299
\(260\) 2.90727e25 1.27722
\(261\) 0 0
\(262\) −2.42818e25 −0.984275
\(263\) −9.73572e23 −0.0379169 −0.0189584 0.999820i \(-0.506035\pi\)
−0.0189584 + 0.999820i \(0.506035\pi\)
\(264\) 0 0
\(265\) 9.66733e24 0.347716
\(266\) 2.77518e24 0.0959474
\(267\) 0 0
\(268\) −2.26157e25 −0.722761
\(269\) 5.78587e25 1.77816 0.889078 0.457756i \(-0.151347\pi\)
0.889078 + 0.457756i \(0.151347\pi\)
\(270\) 0 0
\(271\) 4.29033e25 1.21987 0.609934 0.792452i \(-0.291196\pi\)
0.609934 + 0.792452i \(0.291196\pi\)
\(272\) −1.52473e25 −0.417079
\(273\) 0 0
\(274\) 7.44321e25 1.88530
\(275\) −3.09251e24 −0.0753907
\(276\) 0 0
\(277\) 6.39000e25 1.44366 0.721828 0.692073i \(-0.243302\pi\)
0.721828 + 0.692073i \(0.243302\pi\)
\(278\) 1.85822e25 0.404228
\(279\) 0 0
\(280\) −9.05457e23 −0.0182687
\(281\) −3.23104e25 −0.627951 −0.313976 0.949431i \(-0.601661\pi\)
−0.313976 + 0.949431i \(0.601661\pi\)
\(282\) 0 0
\(283\) −1.00627e25 −0.181534 −0.0907668 0.995872i \(-0.528932\pi\)
−0.0907668 + 0.995872i \(0.528932\pi\)
\(284\) −1.22007e25 −0.212101
\(285\) 0 0
\(286\) −2.44186e26 −3.94346
\(287\) 1.06547e24 0.0165875
\(288\) 0 0
\(289\) −6.02427e25 −0.871921
\(290\) −4.17929e25 −0.583343
\(291\) 0 0
\(292\) 1.13053e26 1.46812
\(293\) −4.93011e25 −0.617656 −0.308828 0.951118i \(-0.599937\pi\)
−0.308828 + 0.951118i \(0.599937\pi\)
\(294\) 0 0
\(295\) −1.14567e26 −1.33637
\(296\) 2.59298e25 0.291902
\(297\) 0 0
\(298\) 6.67487e25 0.700119
\(299\) −1.50627e26 −1.52530
\(300\) 0 0
\(301\) 7.82877e24 0.0739172
\(302\) 7.03772e25 0.641740
\(303\) 0 0
\(304\) 1.53487e26 1.30587
\(305\) −4.43218e25 −0.364308
\(306\) 0 0
\(307\) −1.49828e25 −0.114985 −0.0574925 0.998346i \(-0.518311\pi\)
−0.0574925 + 0.998346i \(0.518311\pi\)
\(308\) −1.26986e25 −0.0941830
\(309\) 0 0
\(310\) 1.21065e26 0.838924
\(311\) 1.48794e26 0.996786 0.498393 0.866951i \(-0.333924\pi\)
0.498393 + 0.866951i \(0.333924\pi\)
\(312\) 0 0
\(313\) −1.10961e26 −0.694951 −0.347476 0.937689i \(-0.612961\pi\)
−0.347476 + 0.937689i \(0.612961\pi\)
\(314\) 1.82553e26 1.10567
\(315\) 0 0
\(316\) −3.52074e25 −0.199489
\(317\) −7.14805e25 −0.391801 −0.195900 0.980624i \(-0.562763\pi\)
−0.195900 + 0.980624i \(0.562763\pi\)
\(318\) 0 0
\(319\) 1.55014e26 0.795371
\(320\) 1.12397e26 0.558060
\(321\) 0 0
\(322\) −1.77379e25 −0.0824928
\(323\) −8.90810e25 −0.401013
\(324\) 0 0
\(325\) −1.52002e25 −0.0641317
\(326\) 3.50326e26 1.43116
\(327\) 0 0
\(328\) 1.89397e25 0.0725601
\(329\) −1.95432e25 −0.0725168
\(330\) 0 0
\(331\) −5.05668e26 −1.76065 −0.880323 0.474375i \(-0.842674\pi\)
−0.880323 + 0.474375i \(0.842674\pi\)
\(332\) −1.83769e26 −0.619901
\(333\) 0 0
\(334\) 7.20791e25 0.228282
\(335\) 3.03737e26 0.932238
\(336\) 0 0
\(337\) 3.50546e26 1.01072 0.505360 0.862909i \(-0.331360\pi\)
0.505360 + 0.862909i \(0.331360\pi\)
\(338\) −7.21413e26 −2.01632
\(339\) 0 0
\(340\) −1.09896e26 −0.288703
\(341\) −4.49044e26 −1.14385
\(342\) 0 0
\(343\) −5.33106e25 −0.127710
\(344\) 1.39163e26 0.323341
\(345\) 0 0
\(346\) 5.00763e26 1.09480
\(347\) 3.51664e26 0.745879 0.372940 0.927856i \(-0.378350\pi\)
0.372940 + 0.927856i \(0.378350\pi\)
\(348\) 0 0
\(349\) 5.74285e26 1.14673 0.573364 0.819300i \(-0.305638\pi\)
0.573364 + 0.819300i \(0.305638\pi\)
\(350\) −1.78998e24 −0.00346844
\(351\) 0 0
\(352\) −1.30496e27 −2.38176
\(353\) −1.85373e25 −0.0328406 −0.0164203 0.999865i \(-0.505227\pi\)
−0.0164203 + 0.999865i \(0.505227\pi\)
\(354\) 0 0
\(355\) 1.63860e26 0.273574
\(356\) 1.27242e25 0.0206256
\(357\) 0 0
\(358\) −6.49572e26 −0.992785
\(359\) 3.41606e26 0.507030 0.253515 0.967331i \(-0.418413\pi\)
0.253515 + 0.967331i \(0.418413\pi\)
\(360\) 0 0
\(361\) 1.82527e26 0.255565
\(362\) 3.72605e26 0.506768
\(363\) 0 0
\(364\) −6.24154e25 −0.0801175
\(365\) −1.51834e27 −1.89362
\(366\) 0 0
\(367\) 5.79162e26 0.682034 0.341017 0.940057i \(-0.389229\pi\)
0.341017 + 0.940057i \(0.389229\pi\)
\(368\) −9.81031e26 −1.12274
\(369\) 0 0
\(370\) 1.31675e27 1.42360
\(371\) −2.07546e25 −0.0218116
\(372\) 0 0
\(373\) −1.74513e27 −1.73335 −0.866673 0.498877i \(-0.833746\pi\)
−0.866673 + 0.498877i \(0.833746\pi\)
\(374\) 9.23032e26 0.891384
\(375\) 0 0
\(376\) −3.47398e26 −0.317216
\(377\) 7.61919e26 0.676588
\(378\) 0 0
\(379\) 1.08818e27 0.914093 0.457046 0.889443i \(-0.348907\pi\)
0.457046 + 0.889443i \(0.348907\pi\)
\(380\) 1.10627e27 0.903925
\(381\) 0 0
\(382\) −8.93050e26 −0.690575
\(383\) 2.35974e27 1.77532 0.887661 0.460498i \(-0.152329\pi\)
0.887661 + 0.460498i \(0.152329\pi\)
\(384\) 0 0
\(385\) 1.70546e26 0.121480
\(386\) −2.51159e27 −1.74094
\(387\) 0 0
\(388\) 7.69145e26 0.504981
\(389\) 2.72162e27 1.73923 0.869616 0.493729i \(-0.164367\pi\)
0.869616 + 0.493729i \(0.164367\pi\)
\(390\) 0 0
\(391\) 5.69373e26 0.344779
\(392\) −4.72850e26 −0.278753
\(393\) 0 0
\(394\) 3.98660e27 2.22788
\(395\) 4.72847e26 0.257307
\(396\) 0 0
\(397\) −2.20086e27 −1.13577 −0.567887 0.823106i \(-0.692239\pi\)
−0.567887 + 0.823106i \(0.692239\pi\)
\(398\) −1.03595e26 −0.0520673
\(399\) 0 0
\(400\) −9.89987e25 −0.0472063
\(401\) −2.61699e27 −1.21559 −0.607793 0.794096i \(-0.707945\pi\)
−0.607793 + 0.794096i \(0.707945\pi\)
\(402\) 0 0
\(403\) −2.20712e27 −0.973023
\(404\) −2.91305e26 −0.125125
\(405\) 0 0
\(406\) 8.97242e25 0.0365920
\(407\) −4.88398e27 −1.94103
\(408\) 0 0
\(409\) −8.92474e26 −0.336900 −0.168450 0.985710i \(-0.553876\pi\)
−0.168450 + 0.985710i \(0.553876\pi\)
\(410\) 9.61786e26 0.353874
\(411\) 0 0
\(412\) −2.13979e27 −0.748085
\(413\) 2.45961e26 0.0838282
\(414\) 0 0
\(415\) 2.46808e27 0.799567
\(416\) −6.41407e27 −2.02607
\(417\) 0 0
\(418\) −9.29172e27 −2.79091
\(419\) 2.48238e27 0.727144 0.363572 0.931566i \(-0.381557\pi\)
0.363572 + 0.931566i \(0.381557\pi\)
\(420\) 0 0
\(421\) 4.09797e27 1.14184 0.570922 0.821004i \(-0.306586\pi\)
0.570922 + 0.821004i \(0.306586\pi\)
\(422\) 6.12669e27 1.66512
\(423\) 0 0
\(424\) −3.68931e26 −0.0954121
\(425\) 5.74571e25 0.0144964
\(426\) 0 0
\(427\) 9.51534e25 0.0228524
\(428\) −9.56820e25 −0.0224218
\(429\) 0 0
\(430\) 7.06692e27 1.57693
\(431\) 4.89793e27 1.06660 0.533299 0.845927i \(-0.320952\pi\)
0.533299 + 0.845927i \(0.320952\pi\)
\(432\) 0 0
\(433\) −2.06118e27 −0.427557 −0.213778 0.976882i \(-0.568577\pi\)
−0.213778 + 0.976882i \(0.568577\pi\)
\(434\) −2.59913e26 −0.0526242
\(435\) 0 0
\(436\) −9.53549e26 −0.183965
\(437\) −5.73161e27 −1.07950
\(438\) 0 0
\(439\) 1.00358e28 1.80167 0.900835 0.434161i \(-0.142955\pi\)
0.900835 + 0.434161i \(0.142955\pi\)
\(440\) 3.03161e27 0.531399
\(441\) 0 0
\(442\) 4.53684e27 0.758263
\(443\) −4.23345e27 −0.690964 −0.345482 0.938425i \(-0.612285\pi\)
−0.345482 + 0.938425i \(0.612285\pi\)
\(444\) 0 0
\(445\) −1.70891e26 −0.0266035
\(446\) 6.01973e27 0.915295
\(447\) 0 0
\(448\) −2.41303e26 −0.0350061
\(449\) 6.74432e27 0.955766 0.477883 0.878424i \(-0.341404\pi\)
0.477883 + 0.878424i \(0.341404\pi\)
\(450\) 0 0
\(451\) −3.56737e27 −0.482496
\(452\) 7.57537e27 1.00104
\(453\) 0 0
\(454\) −3.97052e27 −0.500911
\(455\) 8.38261e26 0.103338
\(456\) 0 0
\(457\) −1.13821e28 −1.34000 −0.669998 0.742362i \(-0.733705\pi\)
−0.669998 + 0.742362i \(0.733705\pi\)
\(458\) −7.99644e27 −0.920045
\(459\) 0 0
\(460\) −7.07085e27 −0.777167
\(461\) −6.24175e27 −0.670574 −0.335287 0.942116i \(-0.608833\pi\)
−0.335287 + 0.942116i \(0.608833\pi\)
\(462\) 0 0
\(463\) −2.31855e27 −0.238021 −0.119011 0.992893i \(-0.537972\pi\)
−0.119011 + 0.992893i \(0.537972\pi\)
\(464\) 4.96238e27 0.498025
\(465\) 0 0
\(466\) 6.65242e27 0.638157
\(467\) 9.47846e26 0.0889018 0.0444509 0.999012i \(-0.485846\pi\)
0.0444509 + 0.999012i \(0.485846\pi\)
\(468\) 0 0
\(469\) −6.52086e26 −0.0584776
\(470\) −1.76414e28 −1.54705
\(471\) 0 0
\(472\) 4.37217e27 0.366696
\(473\) −2.62120e28 −2.15009
\(474\) 0 0
\(475\) −5.78393e26 −0.0453879
\(476\) 2.35932e26 0.0181098
\(477\) 0 0
\(478\) 1.60685e28 1.18028
\(479\) 1.76996e28 1.27186 0.635932 0.771745i \(-0.280616\pi\)
0.635932 + 0.771745i \(0.280616\pi\)
\(480\) 0 0
\(481\) −2.40055e28 −1.65115
\(482\) 2.52954e28 1.70234
\(483\) 0 0
\(484\) 3.02434e28 1.94874
\(485\) −1.03299e28 −0.651339
\(486\) 0 0
\(487\) 1.99209e28 1.20297 0.601484 0.798885i \(-0.294576\pi\)
0.601484 + 0.798885i \(0.294576\pi\)
\(488\) 1.69144e27 0.0999649
\(489\) 0 0
\(490\) −2.40120e28 −1.35947
\(491\) 5.71237e27 0.316563 0.158282 0.987394i \(-0.449405\pi\)
0.158282 + 0.987394i \(0.449405\pi\)
\(492\) 0 0
\(493\) −2.88008e27 −0.152937
\(494\) −4.56702e28 −2.37411
\(495\) 0 0
\(496\) −1.43750e28 −0.716226
\(497\) −3.51787e26 −0.0171608
\(498\) 0 0
\(499\) −1.17032e28 −0.547332 −0.273666 0.961825i \(-0.588236\pi\)
−0.273666 + 0.961825i \(0.588236\pi\)
\(500\) 1.69021e28 0.774025
\(501\) 0 0
\(502\) −3.44239e28 −1.51172
\(503\) 3.15184e28 1.35550 0.677750 0.735292i \(-0.262955\pi\)
0.677750 + 0.735292i \(0.262955\pi\)
\(504\) 0 0
\(505\) 3.91233e27 0.161390
\(506\) 5.93893e28 2.39954
\(507\) 0 0
\(508\) 3.06723e28 1.18899
\(509\) −4.58029e28 −1.73923 −0.869613 0.493733i \(-0.835632\pi\)
−0.869613 + 0.493733i \(0.835632\pi\)
\(510\) 0 0
\(511\) 3.25969e27 0.118784
\(512\) −3.26377e28 −1.16516
\(513\) 0 0
\(514\) −1.10475e28 −0.378574
\(515\) 2.87382e28 0.964901
\(516\) 0 0
\(517\) 6.54337e28 2.10936
\(518\) −2.82691e27 −0.0892996
\(519\) 0 0
\(520\) 1.49008e28 0.452038
\(521\) 5.19044e27 0.154315 0.0771575 0.997019i \(-0.475416\pi\)
0.0771575 + 0.997019i \(0.475416\pi\)
\(522\) 0 0
\(523\) −2.08282e27 −0.0594817 −0.0297408 0.999558i \(-0.509468\pi\)
−0.0297408 + 0.999558i \(0.509468\pi\)
\(524\) 2.07805e28 0.581672
\(525\) 0 0
\(526\) 1.88674e27 0.0507413
\(527\) 8.34299e27 0.219943
\(528\) 0 0
\(529\) −2.83724e27 −0.0718805
\(530\) −1.87349e28 −0.465322
\(531\) 0 0
\(532\) −2.37502e27 −0.0567016
\(533\) −1.75342e28 −0.410439
\(534\) 0 0
\(535\) 1.28504e27 0.0289203
\(536\) −1.15914e28 −0.255803
\(537\) 0 0
\(538\) −1.12128e29 −2.37957
\(539\) 8.90630e28 1.85360
\(540\) 0 0
\(541\) −1.25240e28 −0.250710 −0.125355 0.992112i \(-0.540007\pi\)
−0.125355 + 0.992112i \(0.540007\pi\)
\(542\) −8.31446e28 −1.63246
\(543\) 0 0
\(544\) 2.42454e28 0.457974
\(545\) 1.28065e28 0.237283
\(546\) 0 0
\(547\) 5.63104e28 1.00397 0.501987 0.864875i \(-0.332603\pi\)
0.501987 + 0.864875i \(0.332603\pi\)
\(548\) −6.36996e28 −1.11414
\(549\) 0 0
\(550\) 5.99314e27 0.100890
\(551\) 2.89924e28 0.478842
\(552\) 0 0
\(553\) −1.01514e27 −0.0161404
\(554\) −1.23835e29 −1.93193
\(555\) 0 0
\(556\) −1.59028e28 −0.238885
\(557\) −4.80914e28 −0.708904 −0.354452 0.935074i \(-0.615333\pi\)
−0.354452 + 0.935074i \(0.615333\pi\)
\(558\) 0 0
\(559\) −1.28836e29 −1.82899
\(560\) 5.45960e27 0.0760652
\(561\) 0 0
\(562\) 6.26161e28 0.840339
\(563\) 1.81812e28 0.239488 0.119744 0.992805i \(-0.461793\pi\)
0.119744 + 0.992805i \(0.461793\pi\)
\(564\) 0 0
\(565\) −1.01740e29 −1.29117
\(566\) 1.95011e28 0.242933
\(567\) 0 0
\(568\) −6.25333e27 −0.0750679
\(569\) −1.75144e28 −0.206403 −0.103201 0.994660i \(-0.532909\pi\)
−0.103201 + 0.994660i \(0.532909\pi\)
\(570\) 0 0
\(571\) 1.67794e29 1.90589 0.952946 0.303140i \(-0.0980350\pi\)
0.952946 + 0.303140i \(0.0980350\pi\)
\(572\) 2.08977e29 2.33045
\(573\) 0 0
\(574\) −2.06484e27 −0.0221978
\(575\) 3.69688e27 0.0390232
\(576\) 0 0
\(577\) 7.49346e28 0.762669 0.381335 0.924437i \(-0.375465\pi\)
0.381335 + 0.924437i \(0.375465\pi\)
\(578\) 1.16748e29 1.16683
\(579\) 0 0
\(580\) 3.57667e28 0.344735
\(581\) −5.29867e27 −0.0501554
\(582\) 0 0
\(583\) 6.94895e28 0.634453
\(584\) 5.79439e28 0.519604
\(585\) 0 0
\(586\) 9.55433e28 0.826562
\(587\) −1.69908e29 −1.44382 −0.721912 0.691985i \(-0.756736\pi\)
−0.721912 + 0.691985i \(0.756736\pi\)
\(588\) 0 0
\(589\) −8.39849e28 −0.688638
\(590\) 2.22025e29 1.78837
\(591\) 0 0
\(592\) −1.56348e29 −1.21539
\(593\) 1.26592e29 0.966787 0.483394 0.875403i \(-0.339404\pi\)
0.483394 + 0.875403i \(0.339404\pi\)
\(594\) 0 0
\(595\) −3.16865e27 −0.0233586
\(596\) −5.71241e28 −0.413746
\(597\) 0 0
\(598\) 2.91907e29 2.04119
\(599\) −1.73983e29 −1.19544 −0.597718 0.801706i \(-0.703926\pi\)
−0.597718 + 0.801706i \(0.703926\pi\)
\(600\) 0 0
\(601\) −2.58691e29 −1.71633 −0.858164 0.513376i \(-0.828395\pi\)
−0.858164 + 0.513376i \(0.828395\pi\)
\(602\) −1.51718e28 −0.0989178
\(603\) 0 0
\(604\) −6.02294e28 −0.379246
\(605\) −4.06179e29 −2.51354
\(606\) 0 0
\(607\) −1.61646e29 −0.966238 −0.483119 0.875555i \(-0.660496\pi\)
−0.483119 + 0.875555i \(0.660496\pi\)
\(608\) −2.44067e29 −1.43391
\(609\) 0 0
\(610\) 8.58936e28 0.487526
\(611\) 3.21617e29 1.79434
\(612\) 0 0
\(613\) 8.86426e28 0.477868 0.238934 0.971036i \(-0.423202\pi\)
0.238934 + 0.971036i \(0.423202\pi\)
\(614\) 2.90361e28 0.153876
\(615\) 0 0
\(616\) −6.50850e27 −0.0333337
\(617\) 7.14976e28 0.359996 0.179998 0.983667i \(-0.442391\pi\)
0.179998 + 0.983667i \(0.442391\pi\)
\(618\) 0 0
\(619\) −3.79378e28 −0.184638 −0.0923188 0.995730i \(-0.529428\pi\)
−0.0923188 + 0.995730i \(0.529428\pi\)
\(620\) −1.03609e29 −0.495774
\(621\) 0 0
\(622\) −2.88356e29 −1.33392
\(623\) 3.66882e26 0.00166879
\(624\) 0 0
\(625\) −2.36211e29 −1.03887
\(626\) 2.15037e29 0.930000
\(627\) 0 0
\(628\) −1.56230e29 −0.653414
\(629\) 9.07416e28 0.373228
\(630\) 0 0
\(631\) 4.22002e29 1.67883 0.839415 0.543491i \(-0.182898\pi\)
0.839415 + 0.543491i \(0.182898\pi\)
\(632\) −1.80451e28 −0.0706041
\(633\) 0 0
\(634\) 1.38526e29 0.524317
\(635\) −4.11940e29 −1.53359
\(636\) 0 0
\(637\) 4.37758e29 1.57678
\(638\) −3.00411e29 −1.06438
\(639\) 0 0
\(640\) 1.62906e29 0.558533
\(641\) 2.45898e29 0.829364 0.414682 0.909966i \(-0.363893\pi\)
0.414682 + 0.909966i \(0.363893\pi\)
\(642\) 0 0
\(643\) 3.81795e29 1.24628 0.623139 0.782111i \(-0.285857\pi\)
0.623139 + 0.782111i \(0.285857\pi\)
\(644\) 1.51803e28 0.0487503
\(645\) 0 0
\(646\) 1.72635e29 0.536646
\(647\) 3.01566e29 0.922332 0.461166 0.887314i \(-0.347431\pi\)
0.461166 + 0.887314i \(0.347431\pi\)
\(648\) 0 0
\(649\) −8.23515e29 −2.43839
\(650\) 2.94572e28 0.0858226
\(651\) 0 0
\(652\) −2.99812e29 −0.845764
\(653\) −2.27685e29 −0.632042 −0.316021 0.948752i \(-0.602347\pi\)
−0.316021 + 0.948752i \(0.602347\pi\)
\(654\) 0 0
\(655\) −2.79090e29 −0.750257
\(656\) −1.14200e29 −0.302117
\(657\) 0 0
\(658\) 3.78738e28 0.0970437
\(659\) 4.45804e29 1.12421 0.562104 0.827066i \(-0.309992\pi\)
0.562104 + 0.827066i \(0.309992\pi\)
\(660\) 0 0
\(661\) 4.54039e29 1.10912 0.554559 0.832144i \(-0.312887\pi\)
0.554559 + 0.832144i \(0.312887\pi\)
\(662\) 9.79963e29 2.35614
\(663\) 0 0
\(664\) −9.41886e28 −0.219398
\(665\) 3.18973e28 0.0731353
\(666\) 0 0
\(667\) −1.85309e29 −0.411694
\(668\) −6.16859e28 −0.134907
\(669\) 0 0
\(670\) −5.88628e29 −1.24754
\(671\) −3.18588e29 −0.664727
\(672\) 0 0
\(673\) 5.05512e28 0.102229 0.0511144 0.998693i \(-0.483723\pi\)
0.0511144 + 0.998693i \(0.483723\pi\)
\(674\) −6.79342e29 −1.35257
\(675\) 0 0
\(676\) 6.17391e29 1.19157
\(677\) 3.44673e29 0.654977 0.327489 0.944855i \(-0.393798\pi\)
0.327489 + 0.944855i \(0.393798\pi\)
\(678\) 0 0
\(679\) 2.21770e28 0.0408573
\(680\) −5.63256e28 −0.102179
\(681\) 0 0
\(682\) 8.70228e29 1.53072
\(683\) −3.07293e29 −0.532273 −0.266137 0.963935i \(-0.585747\pi\)
−0.266137 + 0.963935i \(0.585747\pi\)
\(684\) 0 0
\(685\) 8.55508e29 1.43705
\(686\) 1.03314e29 0.170905
\(687\) 0 0
\(688\) −8.39108e29 −1.34629
\(689\) 3.41552e29 0.539703
\(690\) 0 0
\(691\) 7.85532e28 0.120405 0.0602025 0.998186i \(-0.480825\pi\)
0.0602025 + 0.998186i \(0.480825\pi\)
\(692\) −4.28557e29 −0.646986
\(693\) 0 0
\(694\) −6.81509e29 −0.998153
\(695\) 2.13580e29 0.308120
\(696\) 0 0
\(697\) 6.62797e28 0.0927761
\(698\) −1.11294e30 −1.53458
\(699\) 0 0
\(700\) 1.53188e27 0.00204973
\(701\) −7.75849e29 −1.02268 −0.511338 0.859380i \(-0.670850\pi\)
−0.511338 + 0.859380i \(0.670850\pi\)
\(702\) 0 0
\(703\) −9.13453e29 −1.16857
\(704\) 8.07920e29 1.01825
\(705\) 0 0
\(706\) 3.59244e28 0.0439481
\(707\) −8.39929e27 −0.0101237
\(708\) 0 0
\(709\) 1.53428e30 1.79523 0.897613 0.440785i \(-0.145300\pi\)
0.897613 + 0.440785i \(0.145300\pi\)
\(710\) −3.17553e29 −0.366104
\(711\) 0 0
\(712\) 6.52165e27 0.00729991
\(713\) 5.36801e29 0.592070
\(714\) 0 0
\(715\) −2.80663e30 −3.00588
\(716\) 5.55909e29 0.586701
\(717\) 0 0
\(718\) −6.62017e29 −0.678520
\(719\) −5.56901e29 −0.562503 −0.281252 0.959634i \(-0.590750\pi\)
−0.281252 + 0.959634i \(0.590750\pi\)
\(720\) 0 0
\(721\) −6.16973e28 −0.0605265
\(722\) −3.53729e29 −0.342003
\(723\) 0 0
\(724\) −3.18879e29 −0.299482
\(725\) −1.87000e28 −0.0173098
\(726\) 0 0
\(727\) −1.43096e29 −0.128681 −0.0643407 0.997928i \(-0.520494\pi\)
−0.0643407 + 0.997928i \(0.520494\pi\)
\(728\) −3.19902e28 −0.0283556
\(729\) 0 0
\(730\) 2.94247e30 2.53409
\(731\) 4.87003e29 0.413428
\(732\) 0 0
\(733\) −6.81141e29 −0.561882 −0.280941 0.959725i \(-0.590647\pi\)
−0.280941 + 0.959725i \(0.590647\pi\)
\(734\) −1.12239e30 −0.912714
\(735\) 0 0
\(736\) 1.55999e30 1.23283
\(737\) 2.18328e30 1.70099
\(738\) 0 0
\(739\) 2.16993e30 1.64315 0.821577 0.570097i \(-0.193094\pi\)
0.821577 + 0.570097i \(0.193094\pi\)
\(740\) −1.12689e30 −0.841295
\(741\) 0 0
\(742\) 4.02214e28 0.0291888
\(743\) 1.40097e29 0.100241 0.0501206 0.998743i \(-0.484039\pi\)
0.0501206 + 0.998743i \(0.484039\pi\)
\(744\) 0 0
\(745\) 7.67196e29 0.533661
\(746\) 3.38199e30 2.31960
\(747\) 0 0
\(748\) −7.89939e29 −0.526777
\(749\) −2.75883e27 −0.00181412
\(750\) 0 0
\(751\) 8.06099e29 0.515429 0.257715 0.966221i \(-0.417031\pi\)
0.257715 + 0.966221i \(0.417031\pi\)
\(752\) 2.09469e30 1.32079
\(753\) 0 0
\(754\) −1.47656e30 −0.905427
\(755\) 8.08901e29 0.489162
\(756\) 0 0
\(757\) −1.54959e30 −0.911401 −0.455700 0.890133i \(-0.650611\pi\)
−0.455700 + 0.890133i \(0.650611\pi\)
\(758\) −2.10885e30 −1.22326
\(759\) 0 0
\(760\) 5.67003e29 0.319921
\(761\) −2.04061e29 −0.113559 −0.0567793 0.998387i \(-0.518083\pi\)
−0.0567793 + 0.998387i \(0.518083\pi\)
\(762\) 0 0
\(763\) −2.74940e28 −0.0148843
\(764\) 7.64280e29 0.408105
\(765\) 0 0
\(766\) −4.57307e30 −2.37578
\(767\) −4.04770e30 −2.07423
\(768\) 0 0
\(769\) 1.27880e30 0.637641 0.318821 0.947815i \(-0.396713\pi\)
0.318821 + 0.947815i \(0.396713\pi\)
\(770\) −3.30511e29 −0.162567
\(771\) 0 0
\(772\) 2.14944e30 1.02883
\(773\) −3.43774e30 −1.62326 −0.811630 0.584172i \(-0.801419\pi\)
−0.811630 + 0.584172i \(0.801419\pi\)
\(774\) 0 0
\(775\) 5.41701e28 0.0248938
\(776\) 3.94216e29 0.178725
\(777\) 0 0
\(778\) −5.27439e30 −2.32748
\(779\) −6.67206e29 −0.290480
\(780\) 0 0
\(781\) 1.17784e30 0.499172
\(782\) −1.10342e30 −0.461392
\(783\) 0 0
\(784\) 2.85112e30 1.16064
\(785\) 2.09822e30 0.842792
\(786\) 0 0
\(787\) 1.06317e30 0.415784 0.207892 0.978152i \(-0.433340\pi\)
0.207892 + 0.978152i \(0.433340\pi\)
\(788\) −3.41176e30 −1.31660
\(789\) 0 0
\(790\) −9.16357e29 −0.344334
\(791\) 2.18423e29 0.0809925
\(792\) 0 0
\(793\) −1.56591e30 −0.565456
\(794\) 4.26517e30 1.51992
\(795\) 0 0
\(796\) 8.86572e28 0.0307699
\(797\) 2.59470e30 0.888742 0.444371 0.895843i \(-0.353427\pi\)
0.444371 + 0.895843i \(0.353427\pi\)
\(798\) 0 0
\(799\) −1.21572e30 −0.405595
\(800\) 1.57423e29 0.0518349
\(801\) 0 0
\(802\) 5.07160e30 1.62672
\(803\) −1.09139e31 −3.45516
\(804\) 0 0
\(805\) −2.03876e29 −0.0628795
\(806\) 4.27730e30 1.30212
\(807\) 0 0
\(808\) −1.49305e29 −0.0442848
\(809\) 4.54632e30 1.33107 0.665534 0.746367i \(-0.268204\pi\)
0.665534 + 0.746367i \(0.268204\pi\)
\(810\) 0 0
\(811\) −5.33885e30 −1.52310 −0.761550 0.648106i \(-0.775561\pi\)
−0.761550 + 0.648106i \(0.775561\pi\)
\(812\) −7.67867e28 −0.0216246
\(813\) 0 0
\(814\) 9.46493e30 2.59753
\(815\) 4.02658e30 1.09089
\(816\) 0 0
\(817\) −4.90243e30 −1.29443
\(818\) 1.72957e30 0.450847
\(819\) 0 0
\(820\) −8.23105e29 −0.209127
\(821\) 6.77652e30 1.69982 0.849911 0.526926i \(-0.176656\pi\)
0.849911 + 0.526926i \(0.176656\pi\)
\(822\) 0 0
\(823\) 2.32096e30 0.567506 0.283753 0.958897i \(-0.408420\pi\)
0.283753 + 0.958897i \(0.408420\pi\)
\(824\) −1.09672e30 −0.264766
\(825\) 0 0
\(826\) −4.76661e29 −0.112181
\(827\) −3.93890e30 −0.915307 −0.457654 0.889131i \(-0.651310\pi\)
−0.457654 + 0.889131i \(0.651310\pi\)
\(828\) 0 0
\(829\) 3.15777e30 0.715415 0.357708 0.933834i \(-0.383558\pi\)
0.357708 + 0.933834i \(0.383558\pi\)
\(830\) −4.78303e30 −1.07000
\(831\) 0 0
\(832\) 3.97105e30 0.866184
\(833\) −1.65474e30 −0.356416
\(834\) 0 0
\(835\) 8.28463e29 0.174006
\(836\) 7.95194e30 1.64933
\(837\) 0 0
\(838\) −4.81074e30 −0.973082
\(839\) 1.71221e28 0.00342024 0.00171012 0.999999i \(-0.499456\pi\)
0.00171012 + 0.999999i \(0.499456\pi\)
\(840\) 0 0
\(841\) −4.19549e30 −0.817381
\(842\) −7.94168e30 −1.52804
\(843\) 0 0
\(844\) −5.24327e30 −0.984026
\(845\) −8.29177e30 −1.53692
\(846\) 0 0
\(847\) 8.72016e29 0.157670
\(848\) 2.22453e30 0.397266
\(849\) 0 0
\(850\) −1.11349e29 −0.0193994
\(851\) 5.83845e30 1.00470
\(852\) 0 0
\(853\) 2.27930e30 0.382680 0.191340 0.981524i \(-0.438717\pi\)
0.191340 + 0.981524i \(0.438717\pi\)
\(854\) −1.84403e29 −0.0305816
\(855\) 0 0
\(856\) −4.90406e28 −0.00793563
\(857\) 1.06629e31 1.70441 0.852207 0.523204i \(-0.175263\pi\)
0.852207 + 0.523204i \(0.175263\pi\)
\(858\) 0 0
\(859\) −8.93547e29 −0.139376 −0.0696882 0.997569i \(-0.522200\pi\)
−0.0696882 + 0.997569i \(0.522200\pi\)
\(860\) −6.04793e30 −0.931908
\(861\) 0 0
\(862\) −9.49196e30 −1.42735
\(863\) −2.82417e30 −0.419543 −0.209772 0.977750i \(-0.567272\pi\)
−0.209772 + 0.977750i \(0.567272\pi\)
\(864\) 0 0
\(865\) 5.75567e30 0.834501
\(866\) 3.99448e30 0.572167
\(867\) 0 0
\(868\) 2.22435e29 0.0310990
\(869\) 3.39886e30 0.469490
\(870\) 0 0
\(871\) 1.07312e31 1.44696
\(872\) −4.88730e29 −0.0651097
\(873\) 0 0
\(874\) 1.11076e31 1.44461
\(875\) 4.87342e29 0.0626253
\(876\) 0 0
\(877\) 9.06575e30 1.13739 0.568693 0.822550i \(-0.307449\pi\)
0.568693 + 0.822550i \(0.307449\pi\)
\(878\) −1.94490e31 −2.41104
\(879\) 0 0
\(880\) −1.82796e31 −2.21258
\(881\) −1.51630e31 −1.81359 −0.906794 0.421574i \(-0.861478\pi\)
−0.906794 + 0.421574i \(0.861478\pi\)
\(882\) 0 0
\(883\) −1.16543e31 −1.36113 −0.680565 0.732688i \(-0.738265\pi\)
−0.680565 + 0.732688i \(0.738265\pi\)
\(884\) −3.88267e30 −0.448107
\(885\) 0 0
\(886\) 8.20424e30 0.924664
\(887\) 7.76908e30 0.865309 0.432655 0.901560i \(-0.357577\pi\)
0.432655 + 0.901560i \(0.357577\pi\)
\(888\) 0 0
\(889\) 8.84384e29 0.0961994
\(890\) 3.31179e29 0.0356014
\(891\) 0 0
\(892\) −5.15174e30 −0.540907
\(893\) 1.22381e31 1.26991
\(894\) 0 0
\(895\) −7.46605e30 −0.756744
\(896\) −3.49740e29 −0.0350357
\(897\) 0 0
\(898\) −1.30702e31 −1.27903
\(899\) −2.71532e30 −0.262630
\(900\) 0 0
\(901\) −1.29108e30 −0.121995
\(902\) 6.91340e30 0.645688
\(903\) 0 0
\(904\) 3.88266e30 0.354292
\(905\) 4.28265e30 0.386280
\(906\) 0 0
\(907\) 5.71533e30 0.503692 0.251846 0.967767i \(-0.418962\pi\)
0.251846 + 0.967767i \(0.418962\pi\)
\(908\) 3.39800e30 0.296021
\(909\) 0 0
\(910\) −1.62451e30 −0.138289
\(911\) −2.22259e30 −0.187032 −0.0935160 0.995618i \(-0.529811\pi\)
−0.0935160 + 0.995618i \(0.529811\pi\)
\(912\) 0 0
\(913\) 1.77408e31 1.45891
\(914\) 2.20581e31 1.79322
\(915\) 0 0
\(916\) 6.84342e30 0.543714
\(917\) 5.99171e29 0.0470623
\(918\) 0 0
\(919\) −9.94638e30 −0.763576 −0.381788 0.924250i \(-0.624692\pi\)
−0.381788 + 0.924250i \(0.624692\pi\)
\(920\) −3.62408e30 −0.275059
\(921\) 0 0
\(922\) 1.20962e31 0.897378
\(923\) 5.78926e30 0.424624
\(924\) 0 0
\(925\) 5.89175e29 0.0422431
\(926\) 4.49324e30 0.318526
\(927\) 0 0
\(928\) −7.89093e30 −0.546858
\(929\) −6.57341e30 −0.450429 −0.225214 0.974309i \(-0.572308\pi\)
−0.225214 + 0.974309i \(0.572308\pi\)
\(930\) 0 0
\(931\) 1.66575e31 1.11593
\(932\) −5.69320e30 −0.377128
\(933\) 0 0
\(934\) −1.83688e30 −0.118970
\(935\) 1.06091e31 0.679452
\(936\) 0 0
\(937\) −9.88672e30 −0.619137 −0.309568 0.950877i \(-0.600185\pi\)
−0.309568 + 0.950877i \(0.600185\pi\)
\(938\) 1.26371e30 0.0782561
\(939\) 0 0
\(940\) 1.50976e31 0.914253
\(941\) −1.35253e31 −0.809947 −0.404973 0.914328i \(-0.632719\pi\)
−0.404973 + 0.914328i \(0.632719\pi\)
\(942\) 0 0
\(943\) 4.26454e30 0.249746
\(944\) −2.63627e31 −1.52681
\(945\) 0 0
\(946\) 5.07976e31 2.87731
\(947\) 2.26830e31 1.27065 0.635325 0.772245i \(-0.280866\pi\)
0.635325 + 0.772245i \(0.280866\pi\)
\(948\) 0 0
\(949\) −5.36437e31 −2.93916
\(950\) 1.12090e30 0.0607392
\(951\) 0 0
\(952\) 1.20924e29 0.00640952
\(953\) −3.45875e31 −1.81319 −0.906595 0.422002i \(-0.861327\pi\)
−0.906595 + 0.422002i \(0.861327\pi\)
\(954\) 0 0
\(955\) −1.02645e31 −0.526386
\(956\) −1.37516e31 −0.697501
\(957\) 0 0
\(958\) −3.43011e31 −1.70204
\(959\) −1.83667e30 −0.0901438
\(960\) 0 0
\(961\) −1.29598e31 −0.622304
\(962\) 4.65216e31 2.20961
\(963\) 0 0
\(964\) −2.16480e31 −1.00602
\(965\) −2.88678e31 −1.32702
\(966\) 0 0
\(967\) −1.92820e31 −0.867311 −0.433655 0.901079i \(-0.642776\pi\)
−0.433655 + 0.901079i \(0.642776\pi\)
\(968\) 1.55009e31 0.689707
\(969\) 0 0
\(970\) 2.00189e31 0.871638
\(971\) 2.95793e31 1.27405 0.637024 0.770844i \(-0.280165\pi\)
0.637024 + 0.770844i \(0.280165\pi\)
\(972\) 0 0
\(973\) −4.58530e29 −0.0193278
\(974\) −3.86058e31 −1.60984
\(975\) 0 0
\(976\) −1.01988e31 −0.416222
\(977\) −4.86581e31 −1.96455 −0.982274 0.187453i \(-0.939977\pi\)
−0.982274 + 0.187453i \(0.939977\pi\)
\(978\) 0 0
\(979\) −1.22838e30 −0.0485415
\(980\) 2.05497e31 0.803398
\(981\) 0 0
\(982\) −1.10703e31 −0.423633
\(983\) −4.31738e31 −1.63459 −0.817294 0.576220i \(-0.804527\pi\)
−0.817294 + 0.576220i \(0.804527\pi\)
\(984\) 0 0
\(985\) 4.58211e31 1.69819
\(986\) 5.58146e30 0.204664
\(987\) 0 0
\(988\) 3.90850e31 1.40301
\(989\) 3.13345e31 1.11292
\(990\) 0 0
\(991\) 3.44591e31 1.19820 0.599101 0.800673i \(-0.295525\pi\)
0.599101 + 0.800673i \(0.295525\pi\)
\(992\) 2.28584e31 0.786453
\(993\) 0 0
\(994\) 6.81748e29 0.0229650
\(995\) −1.19070e30 −0.0396880
\(996\) 0 0
\(997\) 3.62353e31 1.18259 0.591293 0.806457i \(-0.298618\pi\)
0.591293 + 0.806457i \(0.298618\pi\)
\(998\) 2.26804e31 0.732452
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9.22.a.e.1.1 2
3.2 odd 2 3.22.a.c.1.2 2
12.11 even 2 48.22.a.g.1.2 2
15.2 even 4 75.22.b.d.49.4 4
15.8 even 4 75.22.b.d.49.1 4
15.14 odd 2 75.22.a.d.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3.22.a.c.1.2 2 3.2 odd 2
9.22.a.e.1.1 2 1.1 even 1 trivial
48.22.a.g.1.2 2 12.11 even 2
75.22.a.d.1.1 2 15.14 odd 2
75.22.b.d.49.1 4 15.8 even 4
75.22.b.d.49.4 4 15.2 even 4