Properties

Label 9.22.a.d
Level $9$
Weight $22$
Character orbit 9.a
Self dual yes
Analytic conductor $25.153$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 9.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(25.1529609858\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2844 q^{2} + 5991184 q^{4} - 3109950 q^{5} + 363303920 q^{7} + 11074627008 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + 2844 q^{2} + 5991184 q^{4} - 3109950 q^{5} + 363303920 q^{7} + 11074627008 q^{8} - 8844697800 q^{10} - 14581833156 q^{11} + 113350790702 q^{13} + 1033236348480 q^{14} + 18931815702784 q^{16} + 8589389597982 q^{17} - 29202939273796 q^{19} - 18632282680800 q^{20} - 41470733495664 q^{22} + 155899214954280 q^{23} - 467165369200625 q^{25} + 322369648756488 q^{26} + 21\!\cdots\!80 q^{28}+ \cdots - 12\!\cdots\!08 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2844.00 0 5.99118e6 −3.10995e6 0 3.63304e8 1.10746e10 0 −8.84470e9
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9.22.a.d 1
3.b odd 2 1 3.22.a.a 1
12.b even 2 1 48.22.a.e 1
15.d odd 2 1 75.22.a.c 1
15.e even 4 2 75.22.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3.22.a.a 1 3.b odd 2 1
9.22.a.d 1 1.a even 1 1 trivial
48.22.a.e 1 12.b even 2 1
75.22.a.c 1 15.d odd 2 1
75.22.b.a 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 2844 \) acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(9))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2844 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 3109950 \) Copy content Toggle raw display
$7$ \( T - 363303920 \) Copy content Toggle raw display
$11$ \( T + 14581833156 \) Copy content Toggle raw display
$13$ \( T - 113350790702 \) Copy content Toggle raw display
$17$ \( T - 8589389597982 \) Copy content Toggle raw display
$19$ \( T + 29202939273796 \) Copy content Toggle raw display
$23$ \( T - 155899214954280 \) Copy content Toggle raw display
$29$ \( T + 2400788707090758 \) Copy content Toggle raw display
$31$ \( T - 2239820676947000 \) Copy content Toggle raw display
$37$ \( T + 30\!\cdots\!90 \) Copy content Toggle raw display
$41$ \( T - 10\!\cdots\!30 \) Copy content Toggle raw display
$43$ \( T + 16\!\cdots\!24 \) Copy content Toggle raw display
$47$ \( T - 66\!\cdots\!08 \) Copy content Toggle raw display
$53$ \( T + 43\!\cdots\!30 \) Copy content Toggle raw display
$59$ \( T + 55\!\cdots\!16 \) Copy content Toggle raw display
$61$ \( T + 71\!\cdots\!02 \) Copy content Toggle raw display
$67$ \( T + 15\!\cdots\!12 \) Copy content Toggle raw display
$71$ \( T + 26\!\cdots\!32 \) Copy content Toggle raw display
$73$ \( T - 13\!\cdots\!50 \) Copy content Toggle raw display
$79$ \( T + 16\!\cdots\!40 \) Copy content Toggle raw display
$83$ \( T - 17\!\cdots\!72 \) Copy content Toggle raw display
$89$ \( T - 31\!\cdots\!86 \) Copy content Toggle raw display
$97$ \( T - 94\!\cdots\!18 \) Copy content Toggle raw display
show more
show less