Newspace parameters
Level: | \( N \) | \(=\) | \( 9 = 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 22 \) |
Character orbit: | \([\chi]\) | \(=\) | 9.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(25.1529609858\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 1) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
288.000 | 0 | −2.01421e6 | −2.16410e7 | 0 | −7.68079e8 | −1.18407e9 | 0 | −6.23259e9 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 9.22.a.c | 1 | |
3.b | odd | 2 | 1 | 1.22.a.a | ✓ | 1 | |
12.b | even | 2 | 1 | 16.22.a.c | 1 | ||
15.d | odd | 2 | 1 | 25.22.a.a | 1 | ||
15.e | even | 4 | 2 | 25.22.b.a | 2 | ||
21.c | even | 2 | 1 | 49.22.a.a | 1 | ||
24.f | even | 2 | 1 | 64.22.a.a | 1 | ||
24.h | odd | 2 | 1 | 64.22.a.g | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1.22.a.a | ✓ | 1 | 3.b | odd | 2 | 1 | |
9.22.a.c | 1 | 1.a | even | 1 | 1 | trivial | |
16.22.a.c | 1 | 12.b | even | 2 | 1 | ||
25.22.a.a | 1 | 15.d | odd | 2 | 1 | ||
25.22.b.a | 2 | 15.e | even | 4 | 2 | ||
49.22.a.a | 1 | 21.c | even | 2 | 1 | ||
64.22.a.a | 1 | 24.f | even | 2 | 1 | ||
64.22.a.g | 1 | 24.h | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2} - 288 \)
acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(9))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T - 288 \)
$3$
\( T \)
$5$
\( T + 21640950 \)
$7$
\( T + 768078808 \)
$11$
\( T - 94724929188 \)
$13$
\( T + 80621789794 \)
$17$
\( T + 3052282930002 \)
$19$
\( T + 7920788351740 \)
$23$
\( T - 73845437470344 \)
$29$
\( T - 4253031736469010 \)
$31$
\( T - 1900541176310432 \)
$37$
\( T - 22\!\cdots\!22 \)
$41$
\( T - 20\!\cdots\!58 \)
$43$
\( T + 19\!\cdots\!44 \)
$47$
\( T + 14\!\cdots\!32 \)
$53$
\( T + 20\!\cdots\!06 \)
$59$
\( T - 59\!\cdots\!20 \)
$61$
\( T - 61\!\cdots\!62 \)
$67$
\( T - 16\!\cdots\!52 \)
$71$
\( T - 56\!\cdots\!28 \)
$73$
\( T + 43\!\cdots\!94 \)
$79$
\( T + 51\!\cdots\!60 \)
$83$
\( T + 48\!\cdots\!56 \)
$89$
\( T - 50\!\cdots\!30 \)
$97$
\( T - 80\!\cdots\!82 \)
show more
show less