Defining parameters
Level: | \( N \) | = | \( 9 = 3^{2} \) |
Weight: | \( k \) | = | \( 18 \) |
Nonzero newspaces: | \( 2 \) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{18}(\Gamma_1(9))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 55 | 43 | 12 |
Cusp forms | 47 | 38 | 9 |
Eisenstein series | 8 | 5 | 3 |
Trace form
Decomposition of \(S_{18}^{\mathrm{new}}(\Gamma_1(9))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
9.18.a | \(\chi_{9}(1, \cdot)\) | 9.18.a.a | 1 | 1 |
9.18.a.b | 1 | |||
9.18.a.c | 2 | |||
9.18.a.d | 2 | |||
9.18.c | \(\chi_{9}(4, \cdot)\) | 9.18.c.a | 32 | 2 |
Decomposition of \(S_{18}^{\mathrm{old}}(\Gamma_1(9))\) into lower level spaces
\( S_{18}^{\mathrm{old}}(\Gamma_1(9)) \cong \) \(S_{18}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)