Properties

Label 9.18
Level 9
Weight 18
Dimension 38
Nonzero newspaces 2
Newform subspaces 5
Sturm bound 108
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 9 = 3^{2} \)
Weight: \( k \) = \( 18 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 5 \)
Sturm bound: \(108\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{18}(\Gamma_1(9))\).

Total New Old
Modular forms 55 43 12
Cusp forms 47 38 9
Eisenstein series 8 5 3

Trace form

\( 38 q - 15 q^{2} - 2280 q^{3} - 748333 q^{4} + 1062222 q^{5} - 11973897 q^{6} + 611620 q^{7} - 295342230 q^{8} + 361418022 q^{9} - 374218896 q^{10} + 1371243864 q^{11} - 1042595580 q^{12} - 1280823530 q^{13}+ \cdots - 15\!\cdots\!92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{18}^{\mathrm{new}}(\Gamma_1(9))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
9.18.a \(\chi_{9}(1, \cdot)\) 9.18.a.a 1 1
9.18.a.b 1
9.18.a.c 2
9.18.a.d 2
9.18.c \(\chi_{9}(4, \cdot)\) 9.18.c.a 32 2

Decomposition of \(S_{18}^{\mathrm{old}}(\Gamma_1(9))\) into lower level spaces

\( S_{18}^{\mathrm{old}}(\Gamma_1(9)) \cong \) \(S_{18}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)