Properties

Label 9.14
Level 9
Weight 14
Dimension 29
Nonzero newspaces 2
Newform subspaces 4
Sturm bound 84
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 9 = 3^{2} \)
Weight: \( k \) = \( 14 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 4 \)
Sturm bound: \(84\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_1(9))\).

Total New Old
Modular forms 43 34 9
Cusp forms 35 29 6
Eisenstein series 8 5 3

Trace form

\( 29 q + 129 q^{2} - 732 q^{3} - 33133 q^{4} + 41622 q^{5} - 179433 q^{6} - 146432 q^{7} + 1301802 q^{8} + 247716 q^{9} - 4420656 q^{10} + 15884616 q^{11} + 3110244 q^{12} - 41134274 q^{13} + 107572488 q^{14}+ \cdots - 61452155792808 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_1(9))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
9.14.a \(\chi_{9}(1, \cdot)\) 9.14.a.a 1 1
9.14.a.b 2
9.14.a.c 2
9.14.c \(\chi_{9}(4, \cdot)\) 9.14.c.a 24 2

Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_1(9))\) into lower level spaces

\( S_{14}^{\mathrm{old}}(\Gamma_1(9)) \cong \) \(S_{14}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)