Defining parameters
| Level: | \( N \) | \(=\) | \( 9 = 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 12 \) |
| Character orbit: | \([\chi]\) | \(=\) | 9.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(12\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(9))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 13 | 5 | 8 |
| Cusp forms | 9 | 4 | 5 |
| Eisenstein series | 4 | 1 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(7\) | \(2\) | \(5\) | \(5\) | \(2\) | \(3\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(6\) | \(3\) | \(3\) | \(4\) | \(2\) | \(2\) | \(2\) | \(1\) | \(1\) | |||
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(9))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
| 9.12.a.a | $1$ | $6.915$ | \(\Q\) | None | \(-78\) | \(0\) | \(5370\) | \(-27760\) | $-$ | \(q-78q^{2}+4036q^{4}+5370q^{5}-27760q^{7}+\cdots\) | |
| 9.12.a.b | $1$ | $6.915$ | \(\Q\) | None | \(24\) | \(0\) | \(-4830\) | \(-16744\) | $-$ | \(q+24q^{2}-1472q^{4}-4830q^{5}-16744q^{7}+\cdots\) | |
| 9.12.a.c | $2$ | $6.915$ | \(\Q(\sqrt{70}) \) | None | \(0\) | \(0\) | \(0\) | \(116200\) | $+$ | \(q+\beta q^{2}+472q^{4}+224\beta q^{5}+58100q^{7}+\cdots\) | |
Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(9))\) into lower level spaces
\( S_{12}^{\mathrm{old}}(\Gamma_0(9)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)