Properties

Label 9.11
Level 9
Weight 11
Dimension 22
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 66
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 9 = 3^{2} \)
Weight: \( k \) = \( 11 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(66\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(\Gamma_1(9))\).

Total New Old
Modular forms 34 26 8
Cusp forms 26 22 4
Eisenstein series 8 4 4

Trace form

\( 22 q - 3 q^{2} + 51 q^{3} - 197 q^{4} + 4956 q^{5} - 5283 q^{6} - 50584 q^{7} - 3951 q^{9} - 288072 q^{10} + 969 q^{11} + 1031514 q^{12} - 33550 q^{13} - 2134578 q^{14} + 1174770 q^{15} + 4548103 q^{16}+ \cdots - 23929366734 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(\Gamma_1(9))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
9.11.b \(\chi_{9}(8, \cdot)\) 9.11.b.a 4 1
9.11.d \(\chi_{9}(2, \cdot)\) 9.11.d.a 18 2

Decomposition of \(S_{11}^{\mathrm{old}}(\Gamma_1(9))\) into lower level spaces

\( S_{11}^{\mathrm{old}}(\Gamma_1(9)) \cong \) \(S_{11}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)