Defining parameters
Level: | \( N \) | \(=\) | \( 9 = 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 9.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(10\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(9))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 11 | 4 | 7 |
Cusp forms | 7 | 3 | 4 |
Eisenstein series | 4 | 1 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | Dim |
---|---|
\(+\) | \(1\) |
\(-\) | \(2\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(9))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
9.10.a.a | $1$ | $4.635$ | \(\Q\) | None | \(-18\) | \(0\) | \(1530\) | \(9128\) | $-$ | \(q-18q^{2}-188q^{4}+1530q^{5}+9128q^{7}+\cdots\) | |
9.10.a.b | $1$ | $4.635$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-12580\) | $+$ | \(q-2^{9}q^{4}-12580q^{7}+118370q^{13}+\cdots\) | |
9.10.a.c | $1$ | $4.635$ | \(\Q\) | None | \(36\) | \(0\) | \(1314\) | \(-4480\) | $-$ | \(q+6^{2}q^{2}+28^{2}q^{4}+1314q^{5}-4480q^{7}+\cdots\) |
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(9))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(9)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)