Properties

Label 9.10.a
Level $9$
Weight $10$
Character orbit 9.a
Rep. character $\chi_{9}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $3$
Sturm bound $10$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 9.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(10\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(9))\).

Total New Old
Modular forms 11 4 7
Cusp forms 7 3 4
Eisenstein series 4 1 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)Dim
\(+\)\(1\)
\(-\)\(2\)

Trace form

\( 3 q + 18 q^{2} + 84 q^{4} + 2844 q^{5} - 7932 q^{7} + 22392 q^{8} + 19764 q^{10} - 22608 q^{11} - 1938 q^{13} - 325584 q^{14} + 82704 q^{16} + 171180 q^{17} - 239592 q^{19} + 742536 q^{20} + 327240 q^{22}+ \cdots - 1503597438 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(9))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
9.10.a.a 9.a 1.a $1$ $4.635$ \(\Q\) None 3.10.a.b \(-18\) \(0\) \(1530\) \(9128\) $-$ $\mathrm{SU}(2)$ \(q-18q^{2}-188q^{4}+1530q^{5}+9128q^{7}+\cdots\)
9.10.a.b 9.a 1.a $1$ $4.635$ \(\Q\) \(\Q(\sqrt{-3}) \) 9.10.a.b \(0\) \(0\) \(0\) \(-12580\) $+$ $N(\mathrm{U}(1))$ \(q-2^{9}q^{4}-12580q^{7}+118370q^{13}+\cdots\)
9.10.a.c 9.a 1.a $1$ $4.635$ \(\Q\) None 3.10.a.a \(36\) \(0\) \(1314\) \(-4480\) $-$ $\mathrm{SU}(2)$ \(q+6^{2}q^{2}+28^{2}q^{4}+1314q^{5}-4480q^{7}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(9))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(9)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)