Properties

Label 896.2.z.b.31.4
Level $896$
Weight $2$
Character 896.31
Analytic conductor $7.155$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [896,2,Mod(31,896)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("896.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(896, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.15459602111\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 31.4
Character \(\chi\) \(=\) 896.31
Dual form 896.2.z.b.607.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.449868 - 1.67893i) q^{3} +(-0.731029 - 0.195879i) q^{5} +(2.52163 - 0.800849i) q^{7} +(-0.0183525 + 0.0105958i) q^{9} +(-1.18531 - 4.42364i) q^{11} +(2.89529 + 2.89529i) q^{13} +1.31547i q^{15} +(-2.28427 - 1.31882i) q^{17} +(5.38016 + 1.44161i) q^{19} +(-2.47897 - 3.87337i) q^{21} +(1.01143 + 1.75184i) q^{23} +(-3.83409 - 2.21361i) q^{25} +(-3.66114 - 3.66114i) q^{27} +(0.209526 - 0.209526i) q^{29} +(3.33052 - 5.76864i) q^{31} +(-6.89376 + 3.98011i) q^{33} +(-2.00026 + 0.0915096i) q^{35} +(-1.02406 + 3.82183i) q^{37} +(3.55850 - 6.16350i) q^{39} -5.04472 q^{41} +(3.79454 - 3.79454i) q^{43} +(0.0154917 - 0.00415099i) q^{45} +(-2.53993 - 4.39928i) q^{47} +(5.71728 - 4.03890i) q^{49} +(-1.18659 + 4.42843i) q^{51} +(-10.7333 + 2.87599i) q^{53} +3.46599i q^{55} -9.68145i q^{57} +(5.23198 - 1.40190i) q^{59} +(1.56694 - 5.84791i) q^{61} +(-0.0377926 + 0.0414163i) q^{63} +(-1.54942 - 2.68367i) q^{65} +(-9.24005 + 2.47586i) q^{67} +(2.48621 - 2.48621i) q^{69} -7.25507 q^{71} +(3.29633 - 5.70940i) q^{73} +(-1.99167 + 7.43301i) q^{75} +(-6.53159 - 10.2056i) q^{77} +(-13.0615 + 7.54108i) q^{79} +(-4.53156 + 7.84890i) q^{81} +(8.00548 - 8.00548i) q^{83} +(1.41154 + 1.41154i) q^{85} +(-0.446039 - 0.257521i) q^{87} +(3.92536 + 6.79892i) q^{89} +(9.61956 + 4.98218i) q^{91} +(-11.1834 - 2.99659i) q^{93} +(-3.65067 - 2.10772i) q^{95} +8.79532i q^{97} +(0.0686254 + 0.0686254i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{3} + 6 q^{5} - 8 q^{7} - 2 q^{11} - 12 q^{17} + 6 q^{19} + 10 q^{21} - 12 q^{23} + 24 q^{29} - 12 q^{33} + 2 q^{35} - 6 q^{37} - 4 q^{39} - 12 q^{45} - 8 q^{49} + 34 q^{51} - 6 q^{53} - 42 q^{59}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.449868 1.67893i −0.259732 0.969331i −0.965397 0.260786i \(-0.916018\pi\)
0.705665 0.708546i \(-0.250648\pi\)
\(4\) 0 0
\(5\) −0.731029 0.195879i −0.326926 0.0875996i 0.0916229 0.995794i \(-0.470795\pi\)
−0.418549 + 0.908194i \(0.637461\pi\)
\(6\) 0 0
\(7\) 2.52163 0.800849i 0.953088 0.302693i
\(8\) 0 0
\(9\) −0.0183525 + 0.0105958i −0.00611749 + 0.00353194i
\(10\) 0 0
\(11\) −1.18531 4.42364i −0.357385 1.33378i −0.877457 0.479656i \(-0.840762\pi\)
0.520072 0.854122i \(-0.325905\pi\)
\(12\) 0 0
\(13\) 2.89529 + 2.89529i 0.803010 + 0.803010i 0.983565 0.180555i \(-0.0577895\pi\)
−0.180555 + 0.983565i \(0.557789\pi\)
\(14\) 0 0
\(15\) 1.31547i 0.339652i
\(16\) 0 0
\(17\) −2.28427 1.31882i −0.554017 0.319862i 0.196724 0.980459i \(-0.436970\pi\)
−0.750740 + 0.660597i \(0.770303\pi\)
\(18\) 0 0
\(19\) 5.38016 + 1.44161i 1.23429 + 0.330728i 0.816249 0.577700i \(-0.196049\pi\)
0.418043 + 0.908427i \(0.362716\pi\)
\(20\) 0 0
\(21\) −2.47897 3.87337i −0.540956 0.845240i
\(22\) 0 0
\(23\) 1.01143 + 1.75184i 0.210897 + 0.365284i 0.951995 0.306112i \(-0.0990283\pi\)
−0.741099 + 0.671396i \(0.765695\pi\)
\(24\) 0 0
\(25\) −3.83409 2.21361i −0.766818 0.442723i
\(26\) 0 0
\(27\) −3.66114 3.66114i −0.704587 0.704587i
\(28\) 0 0
\(29\) 0.209526 0.209526i 0.0389080 0.0389080i −0.687385 0.726293i \(-0.741242\pi\)
0.726293 + 0.687385i \(0.241242\pi\)
\(30\) 0 0
\(31\) 3.33052 5.76864i 0.598180 1.03608i −0.394910 0.918720i \(-0.629224\pi\)
0.993090 0.117358i \(-0.0374424\pi\)
\(32\) 0 0
\(33\) −6.89376 + 3.98011i −1.20005 + 0.692849i
\(34\) 0 0
\(35\) −2.00026 + 0.0915096i −0.338105 + 0.0154679i
\(36\) 0 0
\(37\) −1.02406 + 3.82183i −0.168354 + 0.628305i 0.829235 + 0.558900i \(0.188777\pi\)
−0.997589 + 0.0694046i \(0.977890\pi\)
\(38\) 0 0
\(39\) 3.55850 6.16350i 0.569815 0.986949i
\(40\) 0 0
\(41\) −5.04472 −0.787853 −0.393926 0.919142i \(-0.628883\pi\)
−0.393926 + 0.919142i \(0.628883\pi\)
\(42\) 0 0
\(43\) 3.79454 3.79454i 0.578662 0.578662i −0.355873 0.934534i \(-0.615816\pi\)
0.934534 + 0.355873i \(0.115816\pi\)
\(44\) 0 0
\(45\) 0.0154917 0.00415099i 0.00230936 0.000618792i
\(46\) 0 0
\(47\) −2.53993 4.39928i −0.370486 0.641701i 0.619154 0.785270i \(-0.287476\pi\)
−0.989640 + 0.143568i \(0.954142\pi\)
\(48\) 0 0
\(49\) 5.71728 4.03890i 0.816754 0.576985i
\(50\) 0 0
\(51\) −1.18659 + 4.42843i −0.166156 + 0.620104i
\(52\) 0 0
\(53\) −10.7333 + 2.87599i −1.47434 + 0.395047i −0.904416 0.426652i \(-0.859693\pi\)
−0.569921 + 0.821699i \(0.693026\pi\)
\(54\) 0 0
\(55\) 3.46599i 0.467354i
\(56\) 0 0
\(57\) 9.68145i 1.28234i
\(58\) 0 0
\(59\) 5.23198 1.40190i 0.681145 0.182512i 0.0983751 0.995149i \(-0.468635\pi\)
0.582770 + 0.812637i \(0.301969\pi\)
\(60\) 0 0
\(61\) 1.56694 5.84791i 0.200626 0.748748i −0.790112 0.612962i \(-0.789978\pi\)
0.990738 0.135785i \(-0.0433557\pi\)
\(62\) 0 0
\(63\) −0.0377926 + 0.0414163i −0.00476142 + 0.00521796i
\(64\) 0 0
\(65\) −1.54942 2.68367i −0.192182 0.332868i
\(66\) 0 0
\(67\) −9.24005 + 2.47586i −1.12885 + 0.302475i −0.774461 0.632622i \(-0.781979\pi\)
−0.354392 + 0.935097i \(0.615312\pi\)
\(68\) 0 0
\(69\) 2.48621 2.48621i 0.299305 0.299305i
\(70\) 0 0
\(71\) −7.25507 −0.861018 −0.430509 0.902586i \(-0.641666\pi\)
−0.430509 + 0.902586i \(0.641666\pi\)
\(72\) 0 0
\(73\) 3.29633 5.70940i 0.385806 0.668235i −0.606075 0.795408i \(-0.707257\pi\)
0.991881 + 0.127172i \(0.0405901\pi\)
\(74\) 0 0
\(75\) −1.99167 + 7.43301i −0.229978 + 0.858290i
\(76\) 0 0
\(77\) −6.53159 10.2056i −0.744344 1.16303i
\(78\) 0 0
\(79\) −13.0615 + 7.54108i −1.46954 + 0.848437i −0.999416 0.0341648i \(-0.989123\pi\)
−0.470121 + 0.882602i \(0.655790\pi\)
\(80\) 0 0
\(81\) −4.53156 + 7.84890i −0.503507 + 0.872100i
\(82\) 0 0
\(83\) 8.00548 8.00548i 0.878715 0.878715i −0.114687 0.993402i \(-0.536586\pi\)
0.993402 + 0.114687i \(0.0365864\pi\)
\(84\) 0 0
\(85\) 1.41154 + 1.41154i 0.153103 + 0.153103i
\(86\) 0 0
\(87\) −0.446039 0.257521i −0.0478204 0.0276091i
\(88\) 0 0
\(89\) 3.92536 + 6.79892i 0.416087 + 0.720684i 0.995542 0.0943203i \(-0.0300678\pi\)
−0.579455 + 0.815004i \(0.696734\pi\)
\(90\) 0 0
\(91\) 9.61956 + 4.98218i 1.00840 + 0.522274i
\(92\) 0 0
\(93\) −11.1834 2.99659i −1.15967 0.310732i
\(94\) 0 0
\(95\) −3.65067 2.10772i −0.374551 0.216247i
\(96\) 0 0
\(97\) 8.79532i 0.893029i 0.894776 + 0.446514i \(0.147335\pi\)
−0.894776 + 0.446514i \(0.852665\pi\)
\(98\) 0 0
\(99\) 0.0686254 + 0.0686254i 0.00689712 + 0.00689712i
\(100\) 0 0
\(101\) −0.597042 2.22819i −0.0594079 0.221713i 0.929839 0.367966i \(-0.119946\pi\)
−0.989247 + 0.146252i \(0.953279\pi\)
\(102\) 0 0
\(103\) 11.8007 6.81315i 1.16276 0.671319i 0.210795 0.977530i \(-0.432395\pi\)
0.951964 + 0.306211i \(0.0990613\pi\)
\(104\) 0 0
\(105\) 1.05349 + 3.31713i 0.102810 + 0.323719i
\(106\) 0 0
\(107\) −4.56363 1.22282i −0.441183 0.118215i 0.0313881 0.999507i \(-0.490007\pi\)
−0.472571 + 0.881293i \(0.656674\pi\)
\(108\) 0 0
\(109\) 2.13269 + 7.95931i 0.204275 + 0.762364i 0.989669 + 0.143368i \(0.0457934\pi\)
−0.785395 + 0.618995i \(0.787540\pi\)
\(110\) 0 0
\(111\) 6.87728 0.652763
\(112\) 0 0
\(113\) 18.4851 1.73893 0.869467 0.493990i \(-0.164462\pi\)
0.869467 + 0.493990i \(0.164462\pi\)
\(114\) 0 0
\(115\) −0.396233 1.47876i −0.0369490 0.137895i
\(116\) 0 0
\(117\) −0.0838137 0.0224578i −0.00774858 0.00207623i
\(118\) 0 0
\(119\) −6.81627 1.49624i −0.624847 0.137160i
\(120\) 0 0
\(121\) −8.63736 + 4.98678i −0.785215 + 0.453344i
\(122\) 0 0
\(123\) 2.26946 + 8.46974i 0.204630 + 0.763690i
\(124\) 0 0
\(125\) 5.04499 + 5.04499i 0.451237 + 0.451237i
\(126\) 0 0
\(127\) 13.0667i 1.15948i 0.814802 + 0.579739i \(0.196846\pi\)
−0.814802 + 0.579739i \(0.803154\pi\)
\(128\) 0 0
\(129\) −8.07781 4.66373i −0.711212 0.410618i
\(130\) 0 0
\(131\) 8.29942 + 2.22382i 0.725124 + 0.194296i 0.602457 0.798152i \(-0.294189\pi\)
0.122667 + 0.992448i \(0.460855\pi\)
\(132\) 0 0
\(133\) 14.7213 0.673483i 1.27650 0.0583984i
\(134\) 0 0
\(135\) 1.95926 + 3.39354i 0.168626 + 0.292070i
\(136\) 0 0
\(137\) 19.9938 + 11.5434i 1.70818 + 0.986221i 0.936809 + 0.349841i \(0.113764\pi\)
0.771376 + 0.636380i \(0.219569\pi\)
\(138\) 0 0
\(139\) −6.09369 6.09369i −0.516860 0.516860i 0.399760 0.916620i \(-0.369093\pi\)
−0.916620 + 0.399760i \(0.869093\pi\)
\(140\) 0 0
\(141\) −6.24346 + 6.24346i −0.525794 + 0.525794i
\(142\) 0 0
\(143\) 9.37591 16.2396i 0.784053 1.35802i
\(144\) 0 0
\(145\) −0.194211 + 0.112128i −0.0161284 + 0.00931173i
\(146\) 0 0
\(147\) −9.35305 7.78195i −0.771427 0.641844i
\(148\) 0 0
\(149\) 3.12680 11.6694i 0.256157 0.955992i −0.711286 0.702903i \(-0.751887\pi\)
0.967443 0.253089i \(-0.0814466\pi\)
\(150\) 0 0
\(151\) −0.813682 + 1.40934i −0.0662165 + 0.114690i −0.897233 0.441557i \(-0.854426\pi\)
0.831016 + 0.556248i \(0.187759\pi\)
\(152\) 0 0
\(153\) 0.0558960 0.00451892
\(154\) 0 0
\(155\) −3.56466 + 3.56466i −0.286321 + 0.286321i
\(156\) 0 0
\(157\) 23.2350 6.22579i 1.85435 0.496872i 0.854604 0.519281i \(-0.173800\pi\)
0.999749 + 0.0224085i \(0.00713343\pi\)
\(158\) 0 0
\(159\) 9.65717 + 16.7267i 0.765864 + 1.32651i
\(160\) 0 0
\(161\) 3.95341 + 3.60750i 0.311572 + 0.284311i
\(162\) 0 0
\(163\) −2.36008 + 8.80794i −0.184856 + 0.689891i 0.809806 + 0.586698i \(0.199573\pi\)
−0.994661 + 0.103193i \(0.967094\pi\)
\(164\) 0 0
\(165\) 5.81916 1.55924i 0.453021 0.121387i
\(166\) 0 0
\(167\) 3.18749i 0.246656i 0.992366 + 0.123328i \(0.0393566\pi\)
−0.992366 + 0.123328i \(0.960643\pi\)
\(168\) 0 0
\(169\) 3.76544i 0.289649i
\(170\) 0 0
\(171\) −0.114014 + 0.0305500i −0.00871888 + 0.00233622i
\(172\) 0 0
\(173\) −4.98693 + 18.6115i −0.379149 + 1.41500i 0.468038 + 0.883708i \(0.344961\pi\)
−0.847187 + 0.531295i \(0.821706\pi\)
\(174\) 0 0
\(175\) −11.4409 2.51140i −0.864854 0.189844i
\(176\) 0 0
\(177\) −4.70740 8.15345i −0.353830 0.612851i
\(178\) 0 0
\(179\) 7.03090 1.88392i 0.525514 0.140811i 0.0136980 0.999906i \(-0.495640\pi\)
0.511816 + 0.859095i \(0.328973\pi\)
\(180\) 0 0
\(181\) −5.59617 + 5.59617i −0.415960 + 0.415960i −0.883809 0.467849i \(-0.845029\pi\)
0.467849 + 0.883809i \(0.345029\pi\)
\(182\) 0 0
\(183\) −10.5231 −0.777894
\(184\) 0 0
\(185\) 1.49723 2.59328i 0.110079 0.190662i
\(186\) 0 0
\(187\) −3.12643 + 11.6680i −0.228627 + 0.853249i
\(188\) 0 0
\(189\) −12.1641 6.30004i −0.884807 0.458261i
\(190\) 0 0
\(191\) 4.12735 2.38292i 0.298644 0.172422i −0.343189 0.939266i \(-0.611507\pi\)
0.641834 + 0.766844i \(0.278174\pi\)
\(192\) 0 0
\(193\) 2.67050 4.62543i 0.192226 0.332946i −0.753761 0.657148i \(-0.771763\pi\)
0.945988 + 0.324202i \(0.105096\pi\)
\(194\) 0 0
\(195\) −3.80866 + 3.80866i −0.272744 + 0.272744i
\(196\) 0 0
\(197\) 11.6754 + 11.6754i 0.831838 + 0.831838i 0.987768 0.155930i \(-0.0498374\pi\)
−0.155930 + 0.987768i \(0.549837\pi\)
\(198\) 0 0
\(199\) −9.02919 5.21301i −0.640062 0.369540i 0.144576 0.989494i \(-0.453818\pi\)
−0.784639 + 0.619953i \(0.787151\pi\)
\(200\) 0 0
\(201\) 8.31361 + 14.3996i 0.586397 + 1.01567i
\(202\) 0 0
\(203\) 0.360549 0.696147i 0.0253056 0.0488599i
\(204\) 0 0
\(205\) 3.68784 + 0.988153i 0.257570 + 0.0690156i
\(206\) 0 0
\(207\) −0.0371243 0.0214337i −0.00258032 0.00148975i
\(208\) 0 0
\(209\) 25.5086i 1.76447i
\(210\) 0 0
\(211\) 0.716512 + 0.716512i 0.0493267 + 0.0493267i 0.731340 0.682013i \(-0.238895\pi\)
−0.682013 + 0.731340i \(0.738895\pi\)
\(212\) 0 0
\(213\) 3.26383 + 12.1808i 0.223634 + 0.834612i
\(214\) 0 0
\(215\) −3.51719 + 2.03065i −0.239870 + 0.138489i
\(216\) 0 0
\(217\) 3.77856 17.2136i 0.256505 1.16854i
\(218\) 0 0
\(219\) −11.0686 2.96583i −0.747947 0.200412i
\(220\) 0 0
\(221\) −2.79525 10.4320i −0.188029 0.701733i
\(222\) 0 0
\(223\) 12.9181 0.865062 0.432531 0.901619i \(-0.357621\pi\)
0.432531 + 0.901619i \(0.357621\pi\)
\(224\) 0 0
\(225\) 0.0938201 0.00625467
\(226\) 0 0
\(227\) −4.02569 15.0241i −0.267195 0.997184i −0.960893 0.276919i \(-0.910687\pi\)
0.693699 0.720265i \(-0.255980\pi\)
\(228\) 0 0
\(229\) 13.3759 + 3.58406i 0.883903 + 0.236841i 0.672090 0.740469i \(-0.265397\pi\)
0.211813 + 0.977310i \(0.432063\pi\)
\(230\) 0 0
\(231\) −14.1961 + 15.5572i −0.934032 + 1.02359i
\(232\) 0 0
\(233\) −10.6523 + 6.15010i −0.697854 + 0.402906i −0.806548 0.591169i \(-0.798667\pi\)
0.108694 + 0.994075i \(0.465333\pi\)
\(234\) 0 0
\(235\) 0.995035 + 3.71352i 0.0649089 + 0.242243i
\(236\) 0 0
\(237\) 18.5369 + 18.5369i 1.20410 + 1.20410i
\(238\) 0 0
\(239\) 7.20218i 0.465870i −0.972492 0.232935i \(-0.925167\pi\)
0.972492 0.232935i \(-0.0748329\pi\)
\(240\) 0 0
\(241\) 20.7383 + 11.9733i 1.33587 + 0.771265i 0.986192 0.165605i \(-0.0529577\pi\)
0.349678 + 0.936870i \(0.386291\pi\)
\(242\) 0 0
\(243\) 0.212722 + 0.0569986i 0.0136461 + 0.00365646i
\(244\) 0 0
\(245\) −4.97063 + 1.83266i −0.317562 + 0.117084i
\(246\) 0 0
\(247\) 11.4032 + 19.7510i 0.725571 + 1.25673i
\(248\) 0 0
\(249\) −17.0421 9.83923i −1.08000 0.623536i
\(250\) 0 0
\(251\) 6.11266 + 6.11266i 0.385828 + 0.385828i 0.873196 0.487369i \(-0.162043\pi\)
−0.487369 + 0.873196i \(0.662043\pi\)
\(252\) 0 0
\(253\) 6.55066 6.55066i 0.411837 0.411837i
\(254\) 0 0
\(255\) 1.73487 3.00488i 0.108642 0.188173i
\(256\) 0 0
\(257\) −19.7315 + 11.3920i −1.23082 + 0.710613i −0.967200 0.254015i \(-0.918249\pi\)
−0.263617 + 0.964627i \(0.584915\pi\)
\(258\) 0 0
\(259\) 0.478413 + 10.4574i 0.0297272 + 0.649790i
\(260\) 0 0
\(261\) −0.00162522 + 0.00606542i −0.000100599 + 0.000375440i
\(262\) 0 0
\(263\) −5.28788 + 9.15888i −0.326065 + 0.564761i −0.981727 0.190293i \(-0.939056\pi\)
0.655662 + 0.755054i \(0.272389\pi\)
\(264\) 0 0
\(265\) 8.40973 0.516605
\(266\) 0 0
\(267\) 9.64903 9.64903i 0.590511 0.590511i
\(268\) 0 0
\(269\) −10.0057 + 2.68103i −0.610061 + 0.163465i −0.550605 0.834766i \(-0.685603\pi\)
−0.0594553 + 0.998231i \(0.518936\pi\)
\(270\) 0 0
\(271\) 12.3322 + 21.3601i 0.749131 + 1.29753i 0.948240 + 0.317555i \(0.102862\pi\)
−0.199109 + 0.979977i \(0.563805\pi\)
\(272\) 0 0
\(273\) 4.03720 18.3919i 0.244342 1.11313i
\(274\) 0 0
\(275\) −5.24764 + 19.5845i −0.316445 + 1.18099i
\(276\) 0 0
\(277\) 10.3610 2.77622i 0.622531 0.166807i 0.0662529 0.997803i \(-0.478896\pi\)
0.556278 + 0.830996i \(0.312229\pi\)
\(278\) 0 0
\(279\) 0.141158i 0.00845093i
\(280\) 0 0
\(281\) 6.46396i 0.385608i 0.981237 + 0.192804i \(0.0617581\pi\)
−0.981237 + 0.192804i \(0.938242\pi\)
\(282\) 0 0
\(283\) −19.0327 + 5.09979i −1.13138 + 0.303151i −0.775478 0.631374i \(-0.782491\pi\)
−0.355897 + 0.934525i \(0.615825\pi\)
\(284\) 0 0
\(285\) −1.89639 + 7.07742i −0.112332 + 0.419230i
\(286\) 0 0
\(287\) −12.7209 + 4.04006i −0.750893 + 0.238477i
\(288\) 0 0
\(289\) −5.02141 8.69734i −0.295377 0.511608i
\(290\) 0 0
\(291\) 14.7667 3.95673i 0.865641 0.231948i
\(292\) 0 0
\(293\) −2.96394 + 2.96394i −0.173155 + 0.173155i −0.788364 0.615209i \(-0.789072\pi\)
0.615209 + 0.788364i \(0.289072\pi\)
\(294\) 0 0
\(295\) −4.09933 −0.238672
\(296\) 0 0
\(297\) −11.8560 + 20.5352i −0.687954 + 1.19157i
\(298\) 0 0
\(299\) −2.14372 + 8.00046i −0.123974 + 0.462679i
\(300\) 0 0
\(301\) 6.52959 12.6073i 0.376359 0.726672i
\(302\) 0 0
\(303\) −3.47239 + 2.00479i −0.199484 + 0.115172i
\(304\) 0 0
\(305\) −2.29096 + 3.96806i −0.131180 + 0.227210i
\(306\) 0 0
\(307\) −8.60981 + 8.60981i −0.491388 + 0.491388i −0.908743 0.417356i \(-0.862957\pi\)
0.417356 + 0.908743i \(0.362957\pi\)
\(308\) 0 0
\(309\) −16.7476 16.7476i −0.952736 0.952736i
\(310\) 0 0
\(311\) 4.98997 + 2.88096i 0.282955 + 0.163364i 0.634760 0.772709i \(-0.281099\pi\)
−0.351805 + 0.936073i \(0.614432\pi\)
\(312\) 0 0
\(313\) −4.01618 6.95623i −0.227008 0.393190i 0.729912 0.683541i \(-0.239561\pi\)
−0.956920 + 0.290352i \(0.906228\pi\)
\(314\) 0 0
\(315\) 0.0357401 0.0228738i 0.00201372 0.00128879i
\(316\) 0 0
\(317\) −9.01190 2.41473i −0.506159 0.135625i −0.00330181 0.999995i \(-0.501051\pi\)
−0.502857 + 0.864370i \(0.667718\pi\)
\(318\) 0 0
\(319\) −1.17522 0.678515i −0.0657998 0.0379895i
\(320\) 0 0
\(321\) 8.21213i 0.458356i
\(322\) 0 0
\(323\) −10.3885 10.3885i −0.578031 0.578031i
\(324\) 0 0
\(325\) −4.69176 17.5099i −0.260252 0.971273i
\(326\) 0 0
\(327\) 12.4037 7.16128i 0.685926 0.396020i
\(328\) 0 0
\(329\) −9.92793 9.05928i −0.547344 0.499454i
\(330\) 0 0
\(331\) −4.96046 1.32915i −0.272652 0.0730568i 0.119903 0.992786i \(-0.461742\pi\)
−0.392554 + 0.919729i \(0.628408\pi\)
\(332\) 0 0
\(333\) −0.0217014 0.0809907i −0.00118923 0.00443827i
\(334\) 0 0
\(335\) 7.23972 0.395548
\(336\) 0 0
\(337\) 1.50446 0.0819532 0.0409766 0.999160i \(-0.486953\pi\)
0.0409766 + 0.999160i \(0.486953\pi\)
\(338\) 0 0
\(339\) −8.31587 31.0353i −0.451656 1.68560i
\(340\) 0 0
\(341\) −29.4661 7.89541i −1.59568 0.427561i
\(342\) 0 0
\(343\) 11.1823 14.7633i 0.603790 0.797143i
\(344\) 0 0
\(345\) −2.30449 + 1.33050i −0.124070 + 0.0716316i
\(346\) 0 0
\(347\) −2.24815 8.39020i −0.120687 0.450410i 0.878962 0.476891i \(-0.158236\pi\)
−0.999649 + 0.0264814i \(0.991570\pi\)
\(348\) 0 0
\(349\) −15.6677 15.6677i −0.838672 0.838672i 0.150012 0.988684i \(-0.452069\pi\)
−0.988684 + 0.150012i \(0.952069\pi\)
\(350\) 0 0
\(351\) 21.2002i 1.13158i
\(352\) 0 0
\(353\) 21.5439 + 12.4384i 1.14666 + 0.662027i 0.948072 0.318056i \(-0.103030\pi\)
0.198592 + 0.980082i \(0.436363\pi\)
\(354\) 0 0
\(355\) 5.30367 + 1.42111i 0.281490 + 0.0754249i
\(356\) 0 0
\(357\) 0.554347 + 12.1172i 0.0293391 + 0.641308i
\(358\) 0 0
\(359\) −4.32864 7.49742i −0.228457 0.395699i 0.728894 0.684626i \(-0.240035\pi\)
−0.957351 + 0.288928i \(0.906701\pi\)
\(360\) 0 0
\(361\) 10.4134 + 6.01216i 0.548072 + 0.316429i
\(362\) 0 0
\(363\) 12.2581 + 12.2581i 0.643386 + 0.643386i
\(364\) 0 0
\(365\) −3.52806 + 3.52806i −0.184667 + 0.184667i
\(366\) 0 0
\(367\) −11.9671 + 20.7276i −0.624676 + 1.08197i 0.363928 + 0.931427i \(0.381436\pi\)
−0.988603 + 0.150543i \(0.951898\pi\)
\(368\) 0 0
\(369\) 0.0925831 0.0534529i 0.00481968 0.00278264i
\(370\) 0 0
\(371\) −24.7623 + 15.8480i −1.28560 + 0.822786i
\(372\) 0 0
\(373\) −0.612436 + 2.28564i −0.0317107 + 0.118346i −0.979967 0.199160i \(-0.936179\pi\)
0.948256 + 0.317506i \(0.102845\pi\)
\(374\) 0 0
\(375\) 6.20061 10.7398i 0.320198 0.554599i
\(376\) 0 0
\(377\) 1.21328 0.0624870
\(378\) 0 0
\(379\) 5.34619 5.34619i 0.274615 0.274615i −0.556340 0.830955i \(-0.687795\pi\)
0.830955 + 0.556340i \(0.187795\pi\)
\(380\) 0 0
\(381\) 21.9380 5.87828i 1.12392 0.301153i
\(382\) 0 0
\(383\) −12.5700 21.7718i −0.642296 1.11249i −0.984919 0.173016i \(-0.944649\pi\)
0.342623 0.939473i \(-0.388685\pi\)
\(384\) 0 0
\(385\) 2.77573 + 8.73996i 0.141464 + 0.445429i
\(386\) 0 0
\(387\) −0.0294330 + 0.109845i −0.00149616 + 0.00558375i
\(388\) 0 0
\(389\) 6.08010 1.62916i 0.308273 0.0826016i −0.101366 0.994849i \(-0.532321\pi\)
0.409639 + 0.912248i \(0.365655\pi\)
\(390\) 0 0
\(391\) 5.33557i 0.269831i
\(392\) 0 0
\(393\) 14.9346i 0.753350i
\(394\) 0 0
\(395\) 11.0255 2.95427i 0.554753 0.148646i
\(396\) 0 0
\(397\) −4.67347 + 17.4416i −0.234555 + 0.875371i 0.743794 + 0.668409i \(0.233024\pi\)
−0.978349 + 0.206962i \(0.933642\pi\)
\(398\) 0 0
\(399\) −7.75338 24.4131i −0.388154 1.22218i
\(400\) 0 0
\(401\) −7.88832 13.6630i −0.393924 0.682296i 0.599039 0.800720i \(-0.295549\pi\)
−0.992963 + 0.118423i \(0.962216\pi\)
\(402\) 0 0
\(403\) 26.3447 7.05905i 1.31232 0.351636i
\(404\) 0 0
\(405\) 4.85014 4.85014i 0.241005 0.241005i
\(406\) 0 0
\(407\) 18.1202 0.898186
\(408\) 0 0
\(409\) 14.9850 25.9548i 0.740963 1.28338i −0.211095 0.977466i \(-0.567703\pi\)
0.952057 0.305919i \(-0.0989637\pi\)
\(410\) 0 0
\(411\) 10.3860 38.7612i 0.512305 1.91195i
\(412\) 0 0
\(413\) 12.0704 7.72511i 0.593946 0.380128i
\(414\) 0 0
\(415\) −7.42034 + 4.28413i −0.364250 + 0.210300i
\(416\) 0 0
\(417\) −7.48953 + 12.9722i −0.366764 + 0.635253i
\(418\) 0 0
\(419\) 19.0681 19.0681i 0.931537 0.931537i −0.0662653 0.997802i \(-0.521108\pi\)
0.997802 + 0.0662653i \(0.0211084\pi\)
\(420\) 0 0
\(421\) −1.12116 1.12116i −0.0546418 0.0546418i 0.679258 0.733900i \(-0.262302\pi\)
−0.733900 + 0.679258i \(0.762302\pi\)
\(422\) 0 0
\(423\) 0.0932279 + 0.0538251i 0.00453289 + 0.00261707i
\(424\) 0 0
\(425\) 5.83873 + 10.1130i 0.283220 + 0.490552i
\(426\) 0 0
\(427\) −0.732036 16.0012i −0.0354257 0.774351i
\(428\) 0 0
\(429\) −31.4830 8.43585i −1.52001 0.407287i
\(430\) 0 0
\(431\) 14.2383 + 8.22048i 0.685834 + 0.395966i 0.802049 0.597258i \(-0.203743\pi\)
−0.116216 + 0.993224i \(0.537076\pi\)
\(432\) 0 0
\(433\) 34.3709i 1.65176i 0.563847 + 0.825879i \(0.309321\pi\)
−0.563847 + 0.825879i \(0.690679\pi\)
\(434\) 0 0
\(435\) 0.275625 + 0.275625i 0.0132152 + 0.0132152i
\(436\) 0 0
\(437\) 2.91616 + 10.8833i 0.139499 + 0.520617i
\(438\) 0 0
\(439\) 8.37299 4.83415i 0.399621 0.230721i −0.286699 0.958021i \(-0.592558\pi\)
0.686321 + 0.727299i \(0.259225\pi\)
\(440\) 0 0
\(441\) −0.0621309 + 0.134703i −0.00295861 + 0.00641443i
\(442\) 0 0
\(443\) 33.5974 + 9.00239i 1.59626 + 0.427717i 0.943910 0.330202i \(-0.107117\pi\)
0.652350 + 0.757918i \(0.273783\pi\)
\(444\) 0 0
\(445\) −1.53779 5.73910i −0.0728982 0.272060i
\(446\) 0 0
\(447\) −20.9987 −0.993205
\(448\) 0 0
\(449\) −35.5072 −1.67569 −0.837844 0.545910i \(-0.816184\pi\)
−0.837844 + 0.545910i \(0.816184\pi\)
\(450\) 0 0
\(451\) 5.97956 + 22.3160i 0.281567 + 1.05082i
\(452\) 0 0
\(453\) 2.73223 + 0.732100i 0.128372 + 0.0343970i
\(454\) 0 0
\(455\) −6.05628 5.52638i −0.283923 0.259081i
\(456\) 0 0
\(457\) 26.0860 15.0607i 1.22025 0.704512i 0.255279 0.966867i \(-0.417833\pi\)
0.964971 + 0.262356i \(0.0844993\pi\)
\(458\) 0 0
\(459\) 3.53464 + 13.1914i 0.164983 + 0.615724i
\(460\) 0 0
\(461\) −2.37946 2.37946i −0.110822 0.110822i 0.649521 0.760344i \(-0.274969\pi\)
−0.760344 + 0.649521i \(0.774969\pi\)
\(462\) 0 0
\(463\) 1.23324i 0.0573136i −0.999589 0.0286568i \(-0.990877\pi\)
0.999589 0.0286568i \(-0.00912299\pi\)
\(464\) 0 0
\(465\) 7.58845 + 4.38120i 0.351906 + 0.203173i
\(466\) 0 0
\(467\) 30.7990 + 8.25258i 1.42521 + 0.381884i 0.887329 0.461137i \(-0.152558\pi\)
0.537881 + 0.843021i \(0.319225\pi\)
\(468\) 0 0
\(469\) −21.3172 + 13.6431i −0.984339 + 0.629980i
\(470\) 0 0
\(471\) −20.9054 36.2091i −0.963268 1.66843i
\(472\) 0 0
\(473\) −21.2834 12.2880i −0.978611 0.565001i
\(474\) 0 0
\(475\) −17.4368 17.4368i −0.800057 0.800057i
\(476\) 0 0
\(477\) 0.166510 0.166510i 0.00762396 0.00762396i
\(478\) 0 0
\(479\) −6.64611 + 11.5114i −0.303668 + 0.525969i −0.976964 0.213404i \(-0.931545\pi\)
0.673296 + 0.739373i \(0.264878\pi\)
\(480\) 0 0
\(481\) −14.0303 + 8.10037i −0.639725 + 0.369345i
\(482\) 0 0
\(483\) 4.27824 8.26040i 0.194667 0.375861i
\(484\) 0 0
\(485\) 1.72281 6.42963i 0.0782290 0.291955i
\(486\) 0 0
\(487\) 0.642044 1.11205i 0.0290938 0.0503919i −0.851112 0.524984i \(-0.824071\pi\)
0.880206 + 0.474592i \(0.157405\pi\)
\(488\) 0 0
\(489\) 15.8497 0.716746
\(490\) 0 0
\(491\) −7.08341 + 7.08341i −0.319670 + 0.319670i −0.848640 0.528970i \(-0.822578\pi\)
0.528970 + 0.848640i \(0.322578\pi\)
\(492\) 0 0
\(493\) −0.754942 + 0.202286i −0.0340009 + 0.00911051i
\(494\) 0 0
\(495\) −0.0367249 0.0636095i −0.00165066 0.00285903i
\(496\) 0 0
\(497\) −18.2946 + 5.81022i −0.820627 + 0.260624i
\(498\) 0 0
\(499\) −5.87786 + 21.9365i −0.263129 + 0.982011i 0.700256 + 0.713891i \(0.253069\pi\)
−0.963386 + 0.268120i \(0.913598\pi\)
\(500\) 0 0
\(501\) 5.35158 1.43395i 0.239091 0.0640642i
\(502\) 0 0
\(503\) 36.0928i 1.60930i −0.593751 0.804649i \(-0.702354\pi\)
0.593751 0.804649i \(-0.297646\pi\)
\(504\) 0 0
\(505\) 1.74582i 0.0776880i
\(506\) 0 0
\(507\) 6.32191 1.69395i 0.280766 0.0752310i
\(508\) 0 0
\(509\) 1.40903 5.25856i 0.0624540 0.233081i −0.927643 0.373469i \(-0.878168\pi\)
0.990097 + 0.140388i \(0.0448349\pi\)
\(510\) 0 0
\(511\) 3.73976 17.0369i 0.165437 0.753668i
\(512\) 0 0
\(513\) −14.4196 24.9755i −0.636640 1.10269i
\(514\) 0 0
\(515\) −9.96122 + 2.66910i −0.438944 + 0.117615i
\(516\) 0 0
\(517\) −16.4502 + 16.4502i −0.723481 + 0.723481i
\(518\) 0 0
\(519\) 33.4908 1.47008
\(520\) 0 0
\(521\) 2.57861 4.46629i 0.112971 0.195672i −0.803996 0.594635i \(-0.797297\pi\)
0.916967 + 0.398963i \(0.130630\pi\)
\(522\) 0 0
\(523\) −1.98945 + 7.42474i −0.0869928 + 0.324661i −0.995684 0.0928072i \(-0.970416\pi\)
0.908691 + 0.417469i \(0.137083\pi\)
\(524\) 0 0
\(525\) 0.930458 + 20.3384i 0.0406085 + 0.887639i
\(526\) 0 0
\(527\) −15.2156 + 8.78475i −0.662803 + 0.382670i
\(528\) 0 0
\(529\) 9.45404 16.3749i 0.411045 0.711951i
\(530\) 0 0
\(531\) −0.0811654 + 0.0811654i −0.00352228 + 0.00352228i
\(532\) 0 0
\(533\) −14.6059 14.6059i −0.632653 0.632653i
\(534\) 0 0
\(535\) 3.09662 + 1.78784i 0.133879 + 0.0772949i
\(536\) 0 0
\(537\) −6.32595 10.9569i −0.272985 0.472824i
\(538\) 0 0
\(539\) −24.6434 20.5039i −1.06147 0.883163i
\(540\) 0 0
\(541\) −7.55039 2.02312i −0.324617 0.0869808i 0.0928305 0.995682i \(-0.470409\pi\)
−0.417447 + 0.908701i \(0.637075\pi\)
\(542\) 0 0
\(543\) 11.9131 + 6.87805i 0.511241 + 0.295165i
\(544\) 0 0
\(545\) 6.23624i 0.267131i
\(546\) 0 0
\(547\) −3.45431 3.45431i −0.147696 0.147696i 0.629392 0.777088i \(-0.283304\pi\)
−0.777088 + 0.629392i \(0.783304\pi\)
\(548\) 0 0
\(549\) 0.0332060 + 0.123927i 0.00141720 + 0.00528906i
\(550\) 0 0
\(551\) 1.42934 0.825229i 0.0608918 0.0351559i
\(552\) 0 0
\(553\) −26.8971 + 29.4762i −1.14378 + 1.25345i
\(554\) 0 0
\(555\) −5.02749 1.34711i −0.213405 0.0571817i
\(556\) 0 0
\(557\) 7.47554 + 27.8991i 0.316749 + 1.18212i 0.922350 + 0.386354i \(0.126266\pi\)
−0.605602 + 0.795768i \(0.707067\pi\)
\(558\) 0 0
\(559\) 21.9726 0.929342
\(560\) 0 0
\(561\) 20.9963 0.886463
\(562\) 0 0
\(563\) −0.243342 0.908166i −0.0102557 0.0382746i 0.960608 0.277906i \(-0.0896402\pi\)
−0.970864 + 0.239631i \(0.922974\pi\)
\(564\) 0 0
\(565\) −13.5132 3.62084i −0.568503 0.152330i
\(566\) 0 0
\(567\) −5.14116 + 23.4211i −0.215909 + 0.983596i
\(568\) 0 0
\(569\) −11.5141 + 6.64769i −0.482698 + 0.278686i −0.721540 0.692373i \(-0.756565\pi\)
0.238842 + 0.971058i \(0.423232\pi\)
\(570\) 0 0
\(571\) −2.11813 7.90497i −0.0886410 0.330813i 0.907338 0.420402i \(-0.138111\pi\)
−0.995979 + 0.0895898i \(0.971444\pi\)
\(572\) 0 0
\(573\) −5.85753 5.85753i −0.244702 0.244702i
\(574\) 0 0
\(575\) 8.95562i 0.373475i
\(576\) 0 0
\(577\) 23.0378 + 13.3009i 0.959077 + 0.553724i 0.895889 0.444278i \(-0.146540\pi\)
0.0631883 + 0.998002i \(0.479873\pi\)
\(578\) 0 0
\(579\) −8.96716 2.40274i −0.372662 0.0998546i
\(580\) 0 0
\(581\) 13.7757 26.5981i 0.571513 1.10347i
\(582\) 0 0
\(583\) 25.4447 + 44.0715i 1.05381 + 1.82525i
\(584\) 0 0
\(585\) 0.0568713 + 0.0328347i 0.00235134 + 0.00135755i
\(586\) 0 0
\(587\) 9.30074 + 9.30074i 0.383883 + 0.383883i 0.872499 0.488616i \(-0.162498\pi\)
−0.488616 + 0.872499i \(0.662498\pi\)
\(588\) 0 0
\(589\) 26.2349 26.2349i 1.08099 1.08099i
\(590\) 0 0
\(591\) 14.3498 24.8546i 0.590272 1.02238i
\(592\) 0 0
\(593\) 12.2162 7.05302i 0.501659 0.289633i −0.227739 0.973722i \(-0.573133\pi\)
0.729398 + 0.684089i \(0.239800\pi\)
\(594\) 0 0
\(595\) 4.68981 + 2.42895i 0.192264 + 0.0995774i
\(596\) 0 0
\(597\) −4.69033 + 17.5046i −0.191963 + 0.716414i
\(598\) 0 0
\(599\) −14.7397 + 25.5299i −0.602247 + 1.04312i 0.390233 + 0.920716i \(0.372394\pi\)
−0.992480 + 0.122406i \(0.960939\pi\)
\(600\) 0 0
\(601\) −23.6858 −0.966164 −0.483082 0.875575i \(-0.660483\pi\)
−0.483082 + 0.875575i \(0.660483\pi\)
\(602\) 0 0
\(603\) 0.143344 0.143344i 0.00583742 0.00583742i
\(604\) 0 0
\(605\) 7.29097 1.95361i 0.296420 0.0794255i
\(606\) 0 0
\(607\) −2.86300 4.95886i −0.116206 0.201274i 0.802055 0.597250i \(-0.203740\pi\)
−0.918261 + 0.395976i \(0.870407\pi\)
\(608\) 0 0
\(609\) −1.33098 0.292163i −0.0539341 0.0118391i
\(610\) 0 0
\(611\) 5.38338 20.0910i 0.217788 0.812796i
\(612\) 0 0
\(613\) −2.17496 + 0.582780i −0.0878459 + 0.0235383i −0.302474 0.953158i \(-0.597813\pi\)
0.214628 + 0.976696i \(0.431146\pi\)
\(614\) 0 0
\(615\) 6.63616i 0.267596i
\(616\) 0 0
\(617\) 12.2572i 0.493457i −0.969085 0.246729i \(-0.920644\pi\)
0.969085 0.246729i \(-0.0793556\pi\)
\(618\) 0 0
\(619\) 7.21445 1.93311i 0.289973 0.0776981i −0.110900 0.993832i \(-0.535373\pi\)
0.400873 + 0.916133i \(0.368707\pi\)
\(620\) 0 0
\(621\) 2.71077 10.1167i 0.108779 0.405970i
\(622\) 0 0
\(623\) 15.3432 + 14.0008i 0.614714 + 0.560929i
\(624\) 0 0
\(625\) 8.36824 + 14.4942i 0.334730 + 0.579769i
\(626\) 0 0
\(627\) −42.8272 + 11.4755i −1.71036 + 0.458288i
\(628\) 0 0
\(629\) 7.37954 7.37954i 0.294241 0.294241i
\(630\) 0 0
\(631\) −10.1046 −0.402257 −0.201129 0.979565i \(-0.564461\pi\)
−0.201129 + 0.979565i \(0.564461\pi\)
\(632\) 0 0
\(633\) 0.880639 1.52531i 0.0350022 0.0606257i
\(634\) 0 0
\(635\) 2.55948 9.55211i 0.101570 0.379064i
\(636\) 0 0
\(637\) 28.2470 + 4.85941i 1.11919 + 0.192537i
\(638\) 0 0
\(639\) 0.133148 0.0768733i 0.00526727 0.00304106i
\(640\) 0 0
\(641\) 11.1392 19.2937i 0.439973 0.762056i −0.557713 0.830034i \(-0.688321\pi\)
0.997687 + 0.0679772i \(0.0216545\pi\)
\(642\) 0 0
\(643\) −2.94059 + 2.94059i −0.115965 + 0.115965i −0.762708 0.646743i \(-0.776131\pi\)
0.646743 + 0.762708i \(0.276131\pi\)
\(644\) 0 0
\(645\) 4.99159 + 4.99159i 0.196544 + 0.196544i
\(646\) 0 0
\(647\) −13.6596 7.88639i −0.537015 0.310046i 0.206853 0.978372i \(-0.433678\pi\)
−0.743869 + 0.668326i \(0.767011\pi\)
\(648\) 0 0
\(649\) −12.4030 21.4827i −0.486862 0.843269i
\(650\) 0 0
\(651\) −30.6004 + 1.39993i −1.19932 + 0.0548677i
\(652\) 0 0
\(653\) 11.8827 + 3.18397i 0.465007 + 0.124598i 0.483713 0.875227i \(-0.339288\pi\)
−0.0187058 + 0.999825i \(0.505955\pi\)
\(654\) 0 0
\(655\) −5.63152 3.25136i −0.220042 0.127041i
\(656\) 0 0
\(657\) 0.139709i 0.00545056i
\(658\) 0 0
\(659\) −22.1996 22.1996i −0.864775 0.864775i 0.127114 0.991888i \(-0.459429\pi\)
−0.991888 + 0.127114i \(0.959429\pi\)
\(660\) 0 0
\(661\) 0.253956 + 0.947777i 0.00987774 + 0.0368642i 0.970689 0.240340i \(-0.0772589\pi\)
−0.960811 + 0.277204i \(0.910592\pi\)
\(662\) 0 0
\(663\) −16.2571 + 9.38606i −0.631375 + 0.364524i
\(664\) 0 0
\(665\) −10.8936 2.39125i −0.422436 0.0927288i
\(666\) 0 0
\(667\) 0.578976 + 0.155136i 0.0224181 + 0.00600690i
\(668\) 0 0
\(669\) −5.81146 21.6887i −0.224684 0.838532i
\(670\) 0 0
\(671\) −27.7264 −1.07036
\(672\) 0 0
\(673\) −28.5560 −1.10075 −0.550376 0.834917i \(-0.685516\pi\)
−0.550376 + 0.834917i \(0.685516\pi\)
\(674\) 0 0
\(675\) 5.93280 + 22.1415i 0.228354 + 0.852227i
\(676\) 0 0
\(677\) −7.13755 1.91250i −0.274318 0.0735033i 0.119037 0.992890i \(-0.462019\pi\)
−0.393356 + 0.919386i \(0.628686\pi\)
\(678\) 0 0
\(679\) 7.04372 + 22.1786i 0.270313 + 0.851135i
\(680\) 0 0
\(681\) −23.4134 + 13.5177i −0.897203 + 0.518001i
\(682\) 0 0
\(683\) −0.510463 1.90507i −0.0195323 0.0728956i 0.955472 0.295083i \(-0.0953472\pi\)
−0.975004 + 0.222187i \(0.928680\pi\)
\(684\) 0 0
\(685\) −12.3549 12.3549i −0.472058 0.472058i
\(686\) 0 0
\(687\) 24.0695i 0.918310i
\(688\) 0 0
\(689\) −39.4030 22.7493i −1.50113 0.866680i
\(690\) 0 0
\(691\) 0.216289 + 0.0579544i 0.00822801 + 0.00220469i 0.262931 0.964815i \(-0.415311\pi\)
−0.254703 + 0.967019i \(0.581978\pi\)
\(692\) 0 0
\(693\) 0.228007 + 0.118090i 0.00866127 + 0.00448586i
\(694\) 0 0
\(695\) 3.26104 + 5.64829i 0.123698 + 0.214252i
\(696\) 0 0
\(697\) 11.5235 + 6.65309i 0.436484 + 0.252004i
\(698\) 0 0
\(699\) 15.1177 + 15.1177i 0.571804 + 0.571804i
\(700\) 0 0
\(701\) −18.2761 + 18.2761i −0.690279 + 0.690279i −0.962293 0.272014i \(-0.912310\pi\)
0.272014 + 0.962293i \(0.412310\pi\)
\(702\) 0 0
\(703\) −11.0192 + 19.0858i −0.415596 + 0.719833i
\(704\) 0 0
\(705\) 5.78711 3.34119i 0.217955 0.125837i
\(706\) 0 0
\(707\) −3.28997 5.14054i −0.123732 0.193330i
\(708\) 0 0
\(709\) −0.446105 + 1.66489i −0.0167538 + 0.0625261i −0.973797 0.227420i \(-0.926971\pi\)
0.957043 + 0.289946i \(0.0936375\pi\)
\(710\) 0 0
\(711\) 0.159808 0.276795i 0.00599325 0.0103806i
\(712\) 0 0
\(713\) 13.4743 0.504617
\(714\) 0 0
\(715\) −10.0351 + 10.0351i −0.375290 + 0.375290i
\(716\) 0 0
\(717\) −12.0920 + 3.24003i −0.451582 + 0.121001i
\(718\) 0 0
\(719\) 25.5064 + 44.1784i 0.951229 + 1.64758i 0.742771 + 0.669545i \(0.233511\pi\)
0.208457 + 0.978031i \(0.433156\pi\)
\(720\) 0 0
\(721\) 24.3008 26.6309i 0.905009 0.991785i
\(722\) 0 0
\(723\) 10.7728 40.2045i 0.400644 1.49522i
\(724\) 0 0
\(725\) −1.26715 + 0.339532i −0.0470609 + 0.0126099i
\(726\) 0 0
\(727\) 31.5017i 1.16833i 0.811634 + 0.584166i \(0.198578\pi\)
−0.811634 + 0.584166i \(0.801422\pi\)
\(728\) 0 0
\(729\) 26.8066i 0.992837i
\(730\) 0 0
\(731\) −13.6721 + 3.66342i −0.505680 + 0.135496i
\(732\) 0 0
\(733\) −10.8083 + 40.3371i −0.399213 + 1.48988i 0.415271 + 0.909698i \(0.363687\pi\)
−0.814484 + 0.580186i \(0.802980\pi\)
\(734\) 0 0
\(735\) 5.31304 + 7.52090i 0.195974 + 0.277413i
\(736\) 0 0
\(737\) 21.9047 + 37.9400i 0.806869 + 1.39754i
\(738\) 0 0
\(739\) 17.3991 4.66207i 0.640036 0.171497i 0.0758162 0.997122i \(-0.475844\pi\)
0.564220 + 0.825625i \(0.309177\pi\)
\(740\) 0 0
\(741\) 28.0306 28.0306i 1.02973 1.02973i
\(742\) 0 0
\(743\) −23.0128 −0.844256 −0.422128 0.906536i \(-0.638717\pi\)
−0.422128 + 0.906536i \(0.638717\pi\)
\(744\) 0 0
\(745\) −4.57156 + 7.91818i −0.167489 + 0.290100i
\(746\) 0 0
\(747\) −0.0620958 + 0.231745i −0.00227197 + 0.00847910i
\(748\) 0 0
\(749\) −12.4871 + 0.571271i −0.456269 + 0.0208738i
\(750\) 0 0
\(751\) 0.399765 0.230804i 0.0145876 0.00842217i −0.492688 0.870206i \(-0.663986\pi\)
0.507276 + 0.861784i \(0.330652\pi\)
\(752\) 0 0
\(753\) 7.51284 13.0126i 0.273783 0.474206i
\(754\) 0 0
\(755\) 0.870885 0.870885i 0.0316947 0.0316947i
\(756\) 0 0
\(757\) 5.23204 + 5.23204i 0.190162 + 0.190162i 0.795766 0.605604i \(-0.207069\pi\)
−0.605604 + 0.795766i \(0.707069\pi\)
\(758\) 0 0
\(759\) −13.9450 8.05117i −0.506173 0.292239i
\(760\) 0 0
\(761\) 10.6052 + 18.3687i 0.384437 + 0.665864i 0.991691 0.128644i \(-0.0410623\pi\)
−0.607254 + 0.794508i \(0.707729\pi\)
\(762\) 0 0
\(763\) 11.7521 + 18.3625i 0.425454 + 0.664767i
\(764\) 0 0
\(765\) −0.0408616 0.0109488i −0.00147735 0.000395856i
\(766\) 0 0
\(767\) 19.2070 + 11.0892i 0.693525 + 0.400407i
\(768\) 0 0
\(769\) 10.8533i 0.391379i −0.980666 0.195689i \(-0.937306\pi\)
0.980666 0.195689i \(-0.0626944\pi\)
\(770\) 0 0
\(771\) 28.0029 + 28.0029i 1.00850 + 1.00850i
\(772\) 0 0
\(773\) 12.5926 + 46.9962i 0.452924 + 1.69034i 0.694120 + 0.719859i \(0.255794\pi\)
−0.241196 + 0.970476i \(0.577540\pi\)
\(774\) 0 0
\(775\) −25.5391 + 14.7450i −0.917390 + 0.529656i
\(776\) 0 0
\(777\) 17.3420 5.50766i 0.622140 0.197586i
\(778\) 0 0
\(779\) −27.1414 7.27251i −0.972441 0.260565i
\(780\) 0 0
\(781\) 8.59952 + 32.0938i 0.307715 + 1.14841i
\(782\) 0 0
\(783\) −1.53421 −0.0548282
\(784\) 0 0
\(785\) −18.2049 −0.649762
\(786\) 0 0
\(787\) 3.47299 + 12.9614i 0.123799 + 0.462023i 0.999794 0.0202968i \(-0.00646112\pi\)
−0.875995 + 0.482319i \(0.839794\pi\)
\(788\) 0 0
\(789\) 17.7560 + 4.75770i 0.632130 + 0.169379i
\(790\) 0 0
\(791\) 46.6127 14.8038i 1.65736 0.526363i
\(792\) 0 0
\(793\) 21.4682 12.3946i 0.762356 0.440147i
\(794\) 0 0
\(795\) −3.78327 14.1194i −0.134179 0.500762i
\(796\) 0 0
\(797\) 6.22856 + 6.22856i 0.220627 + 0.220627i 0.808762 0.588135i \(-0.200138\pi\)
−0.588135 + 0.808762i \(0.700138\pi\)
\(798\) 0 0
\(799\) 13.3989i 0.474017i
\(800\) 0 0
\(801\) −0.144080 0.0831847i −0.00509082 0.00293919i
\(802\) 0 0
\(803\) −29.1635 7.81434i −1.02916 0.275762i
\(804\) 0 0
\(805\) −2.18342 3.41158i −0.0769555 0.120242i
\(806\) 0 0
\(807\) 9.00253 + 15.5928i 0.316904 + 0.548894i
\(808\) 0 0
\(809\) 1.49336 + 0.862190i 0.0525036 + 0.0303130i 0.526022 0.850471i \(-0.323683\pi\)
−0.473518 + 0.880784i \(0.657016\pi\)
\(810\) 0 0
\(811\) 29.5809 + 29.5809i 1.03872 + 1.03872i 0.999219 + 0.0395050i \(0.0125781\pi\)
0.0395050 + 0.999219i \(0.487422\pi\)
\(812\) 0 0
\(813\) 30.3142 30.3142i 1.06317 1.06317i
\(814\) 0 0
\(815\) 3.45058 5.97657i 0.120868 0.209350i
\(816\) 0 0
\(817\) 25.8854 14.9450i 0.905617 0.522858i
\(818\) 0 0
\(819\) −0.229333 + 0.0104917i −0.00801354 + 0.000366611i
\(820\) 0 0
\(821\) 9.77105 36.4661i 0.341012 1.27267i −0.556190 0.831055i \(-0.687737\pi\)
0.897202 0.441620i \(-0.145596\pi\)
\(822\) 0 0
\(823\) 18.3778 31.8313i 0.640609 1.10957i −0.344688 0.938717i \(-0.612015\pi\)
0.985297 0.170850i \(-0.0546515\pi\)
\(824\) 0 0
\(825\) 35.2417 1.22696
\(826\) 0 0
\(827\) −25.1791 + 25.1791i −0.875565 + 0.875565i −0.993072 0.117507i \(-0.962510\pi\)
0.117507 + 0.993072i \(0.462510\pi\)
\(828\) 0 0
\(829\) −22.7086 + 6.08475i −0.788702 + 0.211332i −0.630618 0.776094i \(-0.717198\pi\)
−0.158084 + 0.987426i \(0.550532\pi\)
\(830\) 0 0
\(831\) −9.32215 16.1464i −0.323382 0.560114i
\(832\) 0 0
\(833\) −18.3864 + 1.68584i −0.637051 + 0.0584110i
\(834\) 0 0
\(835\) 0.624362 2.33015i 0.0216069 0.0806382i
\(836\) 0 0
\(837\) −33.3133 + 8.92628i −1.15148 + 0.308537i
\(838\) 0 0
\(839\) 13.7267i 0.473899i −0.971522 0.236949i \(-0.923852\pi\)
0.971522 0.236949i \(-0.0761475\pi\)
\(840\) 0 0
\(841\) 28.9122i 0.996972i
\(842\) 0 0
\(843\) 10.8525 2.90793i 0.373782 0.100154i
\(844\) 0 0
\(845\) 0.737569 2.75264i 0.0253731 0.0946938i
\(846\) 0 0
\(847\) −17.7866 + 19.4921i −0.611155 + 0.669755i
\(848\) 0 0
\(849\) 17.1244 + 29.6603i 0.587708 + 1.01794i
\(850\) 0 0
\(851\) −7.73099 + 2.07151i −0.265015 + 0.0710106i
\(852\) 0 0
\(853\) 2.88131 2.88131i 0.0986542 0.0986542i −0.656057 0.754711i \(-0.727777\pi\)
0.754711 + 0.656057i \(0.227777\pi\)
\(854\) 0 0
\(855\) 0.0893318 0.00305508
\(856\) 0 0
\(857\) 7.75242 13.4276i 0.264817 0.458677i −0.702698 0.711488i \(-0.748022\pi\)
0.967516 + 0.252811i \(0.0813550\pi\)
\(858\) 0 0
\(859\) −6.34616 + 23.6842i −0.216528 + 0.808094i 0.769095 + 0.639135i \(0.220707\pi\)
−0.985623 + 0.168960i \(0.945959\pi\)
\(860\) 0 0
\(861\) 12.5057 + 19.5401i 0.426194 + 0.665924i
\(862\) 0 0
\(863\) 40.7734 23.5405i 1.38794 0.801329i 0.394860 0.918741i \(-0.370793\pi\)
0.993083 + 0.117412i \(0.0374598\pi\)
\(864\) 0 0
\(865\) 7.29118 12.6287i 0.247907 0.429388i
\(866\) 0 0
\(867\) −12.3433 + 12.3433i −0.419199 + 0.419199i
\(868\) 0 0
\(869\) 48.8410 + 48.8410i 1.65682 + 1.65682i
\(870\) 0 0
\(871\) −33.9210 19.5843i −1.14937 0.663589i
\(872\) 0 0
\(873\) −0.0931935 0.161416i −0.00315412 0.00546310i
\(874\) 0 0
\(875\) 16.7619 + 8.68134i 0.566655 + 0.293483i
\(876\) 0 0
\(877\) 19.5661 + 5.24273i 0.660701 + 0.177034i 0.573563 0.819162i \(-0.305561\pi\)
0.0871389 + 0.996196i \(0.472228\pi\)
\(878\) 0 0
\(879\) 6.30964 + 3.64287i 0.212819 + 0.122871i
\(880\) 0 0
\(881\) 29.7191i 1.00126i 0.865660 + 0.500632i \(0.166899\pi\)
−0.865660 + 0.500632i \(0.833101\pi\)
\(882\) 0 0
\(883\) 10.1351 + 10.1351i 0.341074 + 0.341074i 0.856771 0.515697i \(-0.172467\pi\)
−0.515697 + 0.856771i \(0.672467\pi\)
\(884\) 0 0
\(885\) 1.84416 + 6.88249i 0.0619907 + 0.231352i
\(886\) 0 0
\(887\) −29.8863 + 17.2549i −1.00348 + 0.579362i −0.909277 0.416191i \(-0.863365\pi\)
−0.0942069 + 0.995553i \(0.530032\pi\)
\(888\) 0 0
\(889\) 10.4644 + 32.9494i 0.350966 + 1.10509i
\(890\) 0 0
\(891\) 40.0920 + 10.7426i 1.34313 + 0.359891i
\(892\) 0 0
\(893\) −7.32316 27.3304i −0.245060 0.914577i
\(894\) 0 0
\(895\) −5.50881 −0.184139
\(896\) 0 0
\(897\) 14.3966 0.480689
\(898\) 0 0
\(899\) −0.510848 1.90651i −0.0170377 0.0635857i
\(900\) 0 0
\(901\) 28.3107 + 7.58584i 0.943168 + 0.252721i
\(902\) 0 0
\(903\) −24.1042 5.29111i −0.802138 0.176077i
\(904\) 0 0
\(905\) 5.18714 2.99479i 0.172426 0.0995503i
\(906\) 0 0
\(907\) −2.16076 8.06405i −0.0717467 0.267762i 0.920729 0.390202i \(-0.127595\pi\)
−0.992476 + 0.122440i \(0.960928\pi\)
\(908\) 0 0
\(909\) 0.0345667 + 0.0345667i 0.00114650 + 0.00114650i
\(910\) 0 0
\(911\) 8.93090i 0.295894i −0.988995 0.147947i \(-0.952734\pi\)
0.988995 0.147947i \(-0.0472665\pi\)
\(912\) 0 0
\(913\) −44.9023 25.9244i −1.48605 0.857972i
\(914\) 0 0
\(915\) 7.69273 + 2.06126i 0.254314 + 0.0681432i
\(916\) 0 0
\(917\) 22.7091 1.03891i 0.749919 0.0343080i
\(918\) 0 0
\(919\) −26.6631 46.1818i −0.879533 1.52340i −0.851854 0.523779i \(-0.824522\pi\)
−0.0276794 0.999617i \(-0.508812\pi\)
\(920\) 0 0
\(921\) 18.3286 + 10.5820i 0.603946 + 0.348689i
\(922\) 0 0
\(923\) −21.0055 21.0055i −0.691406 0.691406i
\(924\) 0 0
\(925\) 12.3864 12.3864i 0.407262 0.407262i
\(926\) 0 0
\(927\) −0.144382 + 0.250076i −0.00474211 + 0.00821358i
\(928\) 0 0
\(929\) 33.5814 19.3882i 1.10177 0.636107i 0.165084 0.986280i \(-0.447211\pi\)
0.936685 + 0.350173i \(0.113877\pi\)
\(930\) 0 0
\(931\) 36.5824 13.4878i 1.19894 0.442045i
\(932\) 0 0
\(933\) 2.59210 9.67386i 0.0848617 0.316708i
\(934\) 0 0
\(935\) 4.57103 7.91725i 0.149489 0.258922i
\(936\) 0 0
\(937\) 14.3493 0.468771 0.234385 0.972144i \(-0.424692\pi\)
0.234385 + 0.972144i \(0.424692\pi\)
\(938\) 0 0
\(939\) −9.87228 + 9.87228i −0.322170 + 0.322170i
\(940\) 0 0
\(941\) −31.7588 + 8.50975i −1.03531 + 0.277410i −0.736168 0.676799i \(-0.763367\pi\)
−0.299141 + 0.954209i \(0.596700\pi\)
\(942\) 0 0
\(943\) −5.10236 8.83754i −0.166156 0.287790i
\(944\) 0 0
\(945\) 7.65826 + 6.98820i 0.249123 + 0.227326i
\(946\) 0 0
\(947\) −13.0783 + 48.8089i −0.424988 + 1.58608i 0.338962 + 0.940800i \(0.389924\pi\)
−0.763950 + 0.645276i \(0.776742\pi\)
\(948\) 0 0
\(949\) 26.0742 6.98657i 0.846405 0.226794i
\(950\) 0 0
\(951\) 16.2167i 0.525861i
\(952\) 0 0
\(953\) 12.5441i 0.406345i 0.979143 + 0.203172i \(0.0651252\pi\)
−0.979143 + 0.203172i \(0.934875\pi\)
\(954\) 0 0
\(955\) −3.48398 + 0.933528i −0.112739 + 0.0302083i
\(956\) 0 0
\(957\) −0.610485 + 2.27836i −0.0197342 + 0.0736489i
\(958\) 0 0
\(959\) 59.6616 + 13.0963i 1.92657 + 0.422901i
\(960\) 0 0
\(961\) −6.68477 11.5784i −0.215638 0.373496i
\(962\) 0 0
\(963\) 0.0967106 0.0259135i 0.00311646 0.000835052i
\(964\) 0 0
\(965\) −2.85823 + 2.85823i −0.0920098 + 0.0920098i
\(966\) 0 0
\(967\) −19.7015 −0.633559 −0.316779 0.948499i \(-0.602601\pi\)
−0.316779 + 0.948499i \(0.602601\pi\)
\(968\) 0 0
\(969\) −12.7681 + 22.1150i −0.410171 + 0.710437i
\(970\) 0 0
\(971\) 5.14459 19.1999i 0.165098 0.616153i −0.832930 0.553378i \(-0.813338\pi\)
0.998028 0.0627745i \(-0.0199949\pi\)
\(972\) 0 0
\(973\) −20.2462 10.4859i −0.649063 0.336163i
\(974\) 0 0
\(975\) −27.2872 + 15.7543i −0.873890 + 0.504541i
\(976\) 0 0
\(977\) −22.0366 + 38.1686i −0.705015 + 1.22112i 0.261671 + 0.965157i \(0.415726\pi\)
−0.966686 + 0.255965i \(0.917607\pi\)
\(978\) 0 0
\(979\) 25.4232 25.4232i 0.812530 0.812530i
\(980\) 0 0
\(981\) −0.123475 0.123475i −0.00394227 0.00394227i
\(982\) 0 0
\(983\) 38.9733 + 22.5013i 1.24306 + 0.717678i 0.969715 0.244239i \(-0.0785381\pi\)
0.273340 + 0.961917i \(0.411871\pi\)
\(984\) 0 0
\(985\) −6.24810 10.8220i −0.199081 0.344818i
\(986\) 0 0
\(987\) −10.7437 + 20.7438i −0.341974 + 0.660282i
\(988\) 0 0
\(989\) 10.4853 + 2.80953i 0.333414 + 0.0893379i
\(990\) 0 0
\(991\) −32.1531 18.5636i −1.02138 0.589693i −0.106875 0.994272i \(-0.534085\pi\)
−0.914503 + 0.404579i \(0.867418\pi\)
\(992\) 0 0
\(993\) 8.92622i 0.283265i
\(994\) 0 0
\(995\) 5.57949 + 5.57949i 0.176882 + 0.176882i
\(996\) 0 0
\(997\) −14.9373 55.7466i −0.473067 1.76551i −0.628649 0.777689i \(-0.716392\pi\)
0.155582 0.987823i \(-0.450275\pi\)
\(998\) 0 0
\(999\) 17.7415 10.2430i 0.561316 0.324076i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 896.2.z.b.31.4 56
4.3 odd 2 896.2.z.a.31.11 56
7.5 odd 6 inner 896.2.z.b.159.4 56
8.3 odd 2 448.2.z.a.143.4 56
8.5 even 2 112.2.v.a.59.6 yes 56
16.3 odd 4 inner 896.2.z.b.479.4 56
16.5 even 4 448.2.z.a.367.4 56
16.11 odd 4 112.2.v.a.3.5 56
16.13 even 4 896.2.z.a.479.11 56
28.19 even 6 896.2.z.a.159.11 56
56.5 odd 6 112.2.v.a.75.5 yes 56
56.13 odd 2 784.2.w.f.619.6 56
56.19 even 6 448.2.z.a.271.4 56
56.37 even 6 784.2.w.f.411.5 56
56.45 odd 6 784.2.j.a.587.25 56
56.53 even 6 784.2.j.a.587.26 56
112.5 odd 12 448.2.z.a.47.4 56
112.11 odd 12 784.2.j.a.195.25 56
112.19 even 12 inner 896.2.z.b.607.4 56
112.27 even 4 784.2.w.f.227.5 56
112.59 even 12 784.2.j.a.195.26 56
112.61 odd 12 896.2.z.a.607.11 56
112.75 even 12 112.2.v.a.19.6 yes 56
112.107 odd 12 784.2.w.f.19.6 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.5 56 16.11 odd 4
112.2.v.a.19.6 yes 56 112.75 even 12
112.2.v.a.59.6 yes 56 8.5 even 2
112.2.v.a.75.5 yes 56 56.5 odd 6
448.2.z.a.47.4 56 112.5 odd 12
448.2.z.a.143.4 56 8.3 odd 2
448.2.z.a.271.4 56 56.19 even 6
448.2.z.a.367.4 56 16.5 even 4
784.2.j.a.195.25 56 112.11 odd 12
784.2.j.a.195.26 56 112.59 even 12
784.2.j.a.587.25 56 56.45 odd 6
784.2.j.a.587.26 56 56.53 even 6
784.2.w.f.19.6 56 112.107 odd 12
784.2.w.f.227.5 56 112.27 even 4
784.2.w.f.411.5 56 56.37 even 6
784.2.w.f.619.6 56 56.13 odd 2
896.2.z.a.31.11 56 4.3 odd 2
896.2.z.a.159.11 56 28.19 even 6
896.2.z.a.479.11 56 16.13 even 4
896.2.z.a.607.11 56 112.61 odd 12
896.2.z.b.31.4 56 1.1 even 1 trivial
896.2.z.b.159.4 56 7.5 odd 6 inner
896.2.z.b.479.4 56 16.3 odd 4 inner
896.2.z.b.607.4 56 112.19 even 12 inner