Properties

Label 896.2.z.b.159.13
Level $896$
Weight $2$
Character 896.159
Analytic conductor $7.155$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [896,2,Mod(31,896)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("896.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(896, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.15459602111\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 159.13
Character \(\chi\) \(=\) 896.159
Dual form 896.2.z.b.479.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.61463 + 0.700587i) q^{3} +(-0.120751 - 0.450647i) q^{5} +(-2.37326 + 1.16946i) q^{7} +(3.74737 + 2.16355i) q^{9} +(1.93537 + 0.518581i) q^{11} +(4.51607 + 4.51607i) q^{13} -1.26287i q^{15} +(-4.68066 + 2.70238i) q^{17} +(0.510379 + 1.90476i) q^{19} +(-7.02450 + 1.39503i) q^{21} +(0.951245 - 1.64761i) q^{23} +(4.14162 - 2.39117i) q^{25} +(2.54010 + 2.54010i) q^{27} +(1.12415 - 1.12415i) q^{29} +(-0.434075 - 0.751840i) q^{31} +(4.69696 + 2.71179i) q^{33} +(0.813586 + 0.928290i) q^{35} +(7.90732 - 2.11876i) q^{37} +(8.64394 + 14.9717i) q^{39} +3.24226 q^{41} +(-6.35727 + 6.35727i) q^{43} +(0.522499 - 1.94999i) q^{45} +(-1.49266 + 2.58536i) q^{47} +(4.26473 - 5.55087i) q^{49} +(-14.1314 + 3.78650i) q^{51} +(1.81663 - 6.77976i) q^{53} -0.934789i q^{55} +5.33780i q^{57} +(2.22228 - 8.29366i) q^{59} +(-0.469703 + 0.125856i) q^{61} +(-11.4237 - 0.752254i) q^{63} +(1.48984 - 2.58047i) q^{65} +(1.03224 - 3.85238i) q^{67} +(3.64144 - 3.64144i) q^{69} -12.1916 q^{71} +(-7.79109 - 13.4946i) q^{73} +(12.5040 - 3.35044i) q^{75} +(-5.19960 + 1.03261i) q^{77} +(-1.07130 - 0.618516i) q^{79} +(-1.62878 - 2.82113i) q^{81} +(-9.03560 + 9.03560i) q^{83} +(1.78301 + 1.78301i) q^{85} +(3.72680 - 2.15167i) q^{87} +(-1.16364 + 2.01548i) q^{89} +(-15.9992 - 5.43644i) q^{91} +(-0.608215 - 2.26989i) q^{93} +(0.796746 - 0.460002i) q^{95} +4.69704i q^{97} +(6.13058 + 6.13058i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{3} + 6 q^{5} - 8 q^{7} - 2 q^{11} - 12 q^{17} + 6 q^{19} + 10 q^{21} - 12 q^{23} + 24 q^{29} - 12 q^{33} + 2 q^{35} - 6 q^{37} - 4 q^{39} - 12 q^{45} - 8 q^{49} + 34 q^{51} - 6 q^{53} - 42 q^{59}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.61463 + 0.700587i 1.50955 + 0.404484i 0.916287 0.400521i \(-0.131171\pi\)
0.593268 + 0.805005i \(0.297838\pi\)
\(4\) 0 0
\(5\) −0.120751 0.450647i −0.0540013 0.201536i 0.933655 0.358175i \(-0.116601\pi\)
−0.987656 + 0.156639i \(0.949934\pi\)
\(6\) 0 0
\(7\) −2.37326 + 1.16946i −0.897008 + 0.442014i
\(8\) 0 0
\(9\) 3.74737 + 2.16355i 1.24912 + 0.721182i
\(10\) 0 0
\(11\) 1.93537 + 0.518581i 0.583536 + 0.156358i 0.538497 0.842627i \(-0.318992\pi\)
0.0450390 + 0.998985i \(0.485659\pi\)
\(12\) 0 0
\(13\) 4.51607 + 4.51607i 1.25253 + 1.25253i 0.954581 + 0.297952i \(0.0963035\pi\)
0.297952 + 0.954581i \(0.403696\pi\)
\(14\) 0 0
\(15\) 1.26287i 0.326072i
\(16\) 0 0
\(17\) −4.68066 + 2.70238i −1.13523 + 0.655424i −0.945244 0.326364i \(-0.894177\pi\)
−0.189983 + 0.981787i \(0.560843\pi\)
\(18\) 0 0
\(19\) 0.510379 + 1.90476i 0.117089 + 0.436982i 0.999435 0.0336198i \(-0.0107035\pi\)
−0.882346 + 0.470602i \(0.844037\pi\)
\(20\) 0 0
\(21\) −7.02450 + 1.39503i −1.53287 + 0.304420i
\(22\) 0 0
\(23\) 0.951245 1.64761i 0.198348 0.343549i −0.749645 0.661841i \(-0.769776\pi\)
0.947993 + 0.318291i \(0.103109\pi\)
\(24\) 0 0
\(25\) 4.14162 2.39117i 0.828325 0.478234i
\(26\) 0 0
\(27\) 2.54010 + 2.54010i 0.488843 + 0.488843i
\(28\) 0 0
\(29\) 1.12415 1.12415i 0.208749 0.208749i −0.594986 0.803736i \(-0.702843\pi\)
0.803736 + 0.594986i \(0.202843\pi\)
\(30\) 0 0
\(31\) −0.434075 0.751840i −0.0779622 0.135035i 0.824408 0.565995i \(-0.191508\pi\)
−0.902371 + 0.430961i \(0.858175\pi\)
\(32\) 0 0
\(33\) 4.69696 + 2.71179i 0.817636 + 0.472062i
\(34\) 0 0
\(35\) 0.813586 + 0.928290i 0.137521 + 0.156910i
\(36\) 0 0
\(37\) 7.90732 2.11876i 1.29996 0.348322i 0.458522 0.888683i \(-0.348379\pi\)
0.841433 + 0.540361i \(0.181712\pi\)
\(38\) 0 0
\(39\) 8.64394 + 14.9717i 1.38414 + 2.39740i
\(40\) 0 0
\(41\) 3.24226 0.506356 0.253178 0.967420i \(-0.418524\pi\)
0.253178 + 0.967420i \(0.418524\pi\)
\(42\) 0 0
\(43\) −6.35727 + 6.35727i −0.969475 + 0.969475i −0.999548 0.0300731i \(-0.990426\pi\)
0.0300731 + 0.999548i \(0.490426\pi\)
\(44\) 0 0
\(45\) 0.522499 1.94999i 0.0778895 0.290688i
\(46\) 0 0
\(47\) −1.49266 + 2.58536i −0.217727 + 0.377114i −0.954113 0.299448i \(-0.903198\pi\)
0.736386 + 0.676562i \(0.236531\pi\)
\(48\) 0 0
\(49\) 4.26473 5.55087i 0.609246 0.792981i
\(50\) 0 0
\(51\) −14.1314 + 3.78650i −1.97880 + 0.530217i
\(52\) 0 0
\(53\) 1.81663 6.77976i 0.249533 0.931272i −0.721517 0.692397i \(-0.756555\pi\)
0.971050 0.238875i \(-0.0767786\pi\)
\(54\) 0 0
\(55\) 0.934789i 0.126047i
\(56\) 0 0
\(57\) 5.33780i 0.707009i
\(58\) 0 0
\(59\) 2.22228 8.29366i 0.289316 1.07974i −0.656311 0.754491i \(-0.727884\pi\)
0.945627 0.325253i \(-0.105449\pi\)
\(60\) 0 0
\(61\) −0.469703 + 0.125856i −0.0601393 + 0.0161143i −0.288763 0.957401i \(-0.593244\pi\)
0.228624 + 0.973515i \(0.426577\pi\)
\(62\) 0 0
\(63\) −11.4237 0.752254i −1.43925 0.0947751i
\(64\) 0 0
\(65\) 1.48984 2.58047i 0.184792 0.320068i
\(66\) 0 0
\(67\) 1.03224 3.85238i 0.126108 0.470643i −0.873768 0.486342i \(-0.838331\pi\)
0.999877 + 0.0156996i \(0.00499753\pi\)
\(68\) 0 0
\(69\) 3.64144 3.64144i 0.438378 0.438378i
\(70\) 0 0
\(71\) −12.1916 −1.44687 −0.723437 0.690390i \(-0.757439\pi\)
−0.723437 + 0.690390i \(0.757439\pi\)
\(72\) 0 0
\(73\) −7.79109 13.4946i −0.911878 1.57942i −0.811408 0.584480i \(-0.801299\pi\)
−0.100470 0.994940i \(-0.532035\pi\)
\(74\) 0 0
\(75\) 12.5040 3.35044i 1.44384 0.386876i
\(76\) 0 0
\(77\) −5.19960 + 1.03261i −0.592549 + 0.117677i
\(78\) 0 0
\(79\) −1.07130 0.618516i −0.120531 0.0695885i 0.438522 0.898720i \(-0.355502\pi\)
−0.559053 + 0.829132i \(0.688835\pi\)
\(80\) 0 0
\(81\) −1.62878 2.82113i −0.180976 0.313459i
\(82\) 0 0
\(83\) −9.03560 + 9.03560i −0.991786 + 0.991786i −0.999967 0.00818066i \(-0.997396\pi\)
0.00818066 + 0.999967i \(0.497396\pi\)
\(84\) 0 0
\(85\) 1.78301 + 1.78301i 0.193395 + 0.193395i
\(86\) 0 0
\(87\) 3.72680 2.15167i 0.399554 0.230683i
\(88\) 0 0
\(89\) −1.16364 + 2.01548i −0.123345 + 0.213640i −0.921085 0.389362i \(-0.872696\pi\)
0.797740 + 0.603002i \(0.206029\pi\)
\(90\) 0 0
\(91\) −15.9992 5.43644i −1.67717 0.569894i
\(92\) 0 0
\(93\) −0.608215 2.26989i −0.0630689 0.235376i
\(94\) 0 0
\(95\) 0.796746 0.460002i 0.0817444 0.0471952i
\(96\) 0 0
\(97\) 4.69704i 0.476912i 0.971153 + 0.238456i \(0.0766414\pi\)
−0.971153 + 0.238456i \(0.923359\pi\)
\(98\) 0 0
\(99\) 6.13058 + 6.13058i 0.616146 + 0.616146i
\(100\) 0 0
\(101\) −5.35584 1.43509i −0.532926 0.142797i −0.0176866 0.999844i \(-0.505630\pi\)
−0.515239 + 0.857047i \(0.672297\pi\)
\(102\) 0 0
\(103\) −0.958115 0.553168i −0.0944059 0.0545053i 0.452054 0.891991i \(-0.350692\pi\)
−0.546460 + 0.837485i \(0.684025\pi\)
\(104\) 0 0
\(105\) 1.47688 + 2.99712i 0.144128 + 0.292489i
\(106\) 0 0
\(107\) 1.60020 + 5.97202i 0.154697 + 0.577337i 0.999131 + 0.0416773i \(0.0132702\pi\)
−0.844434 + 0.535659i \(0.820063\pi\)
\(108\) 0 0
\(109\) 10.5236 + 2.81979i 1.00798 + 0.270087i 0.724785 0.688975i \(-0.241939\pi\)
0.283194 + 0.959063i \(0.408606\pi\)
\(110\) 0 0
\(111\) 22.1591 2.10324
\(112\) 0 0
\(113\) −2.81872 −0.265163 −0.132582 0.991172i \(-0.542327\pi\)
−0.132582 + 0.991172i \(0.542327\pi\)
\(114\) 0 0
\(115\) −0.857352 0.229727i −0.0799485 0.0214221i
\(116\) 0 0
\(117\) 7.15267 + 26.6941i 0.661264 + 2.46787i
\(118\) 0 0
\(119\) 7.94810 11.8873i 0.728601 1.08971i
\(120\) 0 0
\(121\) −6.04954 3.49271i −0.549958 0.317519i
\(122\) 0 0
\(123\) 8.47731 + 2.27149i 0.764373 + 0.204813i
\(124\) 0 0
\(125\) −3.22716 3.22716i −0.288646 0.288646i
\(126\) 0 0
\(127\) 9.34725i 0.829434i 0.909950 + 0.414717i \(0.136119\pi\)
−0.909950 + 0.414717i \(0.863881\pi\)
\(128\) 0 0
\(129\) −21.0757 + 12.1681i −1.85561 + 1.07134i
\(130\) 0 0
\(131\) −4.80174 17.9203i −0.419530 1.56571i −0.775586 0.631242i \(-0.782545\pi\)
0.356056 0.934465i \(-0.384121\pi\)
\(132\) 0 0
\(133\) −3.43880 3.92362i −0.298182 0.340221i
\(134\) 0 0
\(135\) 0.837971 1.45141i 0.0721211 0.124917i
\(136\) 0 0
\(137\) 13.1541 7.59453i 1.12383 0.648844i 0.181455 0.983399i \(-0.441919\pi\)
0.942376 + 0.334555i \(0.108586\pi\)
\(138\) 0 0
\(139\) −1.13113 1.13113i −0.0959413 0.0959413i 0.657507 0.753448i \(-0.271611\pi\)
−0.753448 + 0.657507i \(0.771611\pi\)
\(140\) 0 0
\(141\) −5.71402 + 5.71402i −0.481207 + 0.481207i
\(142\) 0 0
\(143\) 6.39833 + 11.0822i 0.535055 + 0.926742i
\(144\) 0 0
\(145\) −0.642337 0.370853i −0.0533431 0.0307977i
\(146\) 0 0
\(147\) 15.0395 11.5256i 1.24044 0.950618i
\(148\) 0 0
\(149\) 9.81380 2.62960i 0.803978 0.215425i 0.166648 0.986016i \(-0.446706\pi\)
0.637330 + 0.770591i \(0.280039\pi\)
\(150\) 0 0
\(151\) −5.83900 10.1134i −0.475171 0.823020i 0.524425 0.851457i \(-0.324280\pi\)
−0.999596 + 0.0284368i \(0.990947\pi\)
\(152\) 0 0
\(153\) −23.3869 −1.89072
\(154\) 0 0
\(155\) −0.286400 + 0.286400i −0.0230042 + 0.0230042i
\(156\) 0 0
\(157\) −0.576431 + 2.15127i −0.0460042 + 0.171690i −0.985106 0.171950i \(-0.944993\pi\)
0.939101 + 0.343640i \(0.111660\pi\)
\(158\) 0 0
\(159\) 9.49962 16.4538i 0.753369 1.30487i
\(160\) 0 0
\(161\) −0.330743 + 5.02264i −0.0260662 + 0.395839i
\(162\) 0 0
\(163\) 14.1740 3.79792i 1.11020 0.297476i 0.343286 0.939231i \(-0.388460\pi\)
0.766910 + 0.641755i \(0.221793\pi\)
\(164\) 0 0
\(165\) 0.654901 2.44412i 0.0509839 0.190275i
\(166\) 0 0
\(167\) 5.94995i 0.460421i −0.973141 0.230210i \(-0.926059\pi\)
0.973141 0.230210i \(-0.0739415\pi\)
\(168\) 0 0
\(169\) 27.7898i 2.13768i
\(170\) 0 0
\(171\) −2.20846 + 8.24207i −0.168885 + 0.630287i
\(172\) 0 0
\(173\) 8.87194 2.37723i 0.674521 0.180737i 0.0947304 0.995503i \(-0.469801\pi\)
0.579790 + 0.814766i \(0.303134\pi\)
\(174\) 0 0
\(175\) −7.03278 + 10.5183i −0.531628 + 0.795111i
\(176\) 0 0
\(177\) 11.6209 20.1279i 0.873478 1.51291i
\(178\) 0 0
\(179\) 0.984716 3.67501i 0.0736011 0.274683i −0.919311 0.393531i \(-0.871253\pi\)
0.992912 + 0.118848i \(0.0379201\pi\)
\(180\) 0 0
\(181\) −5.13439 + 5.13439i −0.381636 + 0.381636i −0.871691 0.490055i \(-0.836977\pi\)
0.490055 + 0.871691i \(0.336977\pi\)
\(182\) 0 0
\(183\) −1.31627 −0.0973015
\(184\) 0 0
\(185\) −1.90963 3.30757i −0.140398 0.243177i
\(186\) 0 0
\(187\) −10.4602 + 2.80281i −0.764927 + 0.204962i
\(188\) 0 0
\(189\) −8.99887 3.05777i −0.654572 0.222420i
\(190\) 0 0
\(191\) −15.2400 8.79882i −1.10273 0.636660i −0.165791 0.986161i \(-0.553018\pi\)
−0.936936 + 0.349501i \(0.886351\pi\)
\(192\) 0 0
\(193\) 3.28968 + 5.69790i 0.236797 + 0.410144i 0.959793 0.280708i \(-0.0905692\pi\)
−0.722997 + 0.690851i \(0.757236\pi\)
\(194\) 0 0
\(195\) 5.70321 5.70321i 0.408415 0.408415i
\(196\) 0 0
\(197\) −14.8776 14.8776i −1.05998 1.05998i −0.998082 0.0619015i \(-0.980284\pi\)
−0.0619015 0.998082i \(-0.519716\pi\)
\(198\) 0 0
\(199\) 6.43322 3.71422i 0.456039 0.263294i −0.254338 0.967115i \(-0.581858\pi\)
0.710377 + 0.703821i \(0.248524\pi\)
\(200\) 0 0
\(201\) 5.39785 9.34935i 0.380735 0.659452i
\(202\) 0 0
\(203\) −1.35325 + 3.98255i −0.0949796 + 0.279520i
\(204\) 0 0
\(205\) −0.391505 1.46112i −0.0273439 0.102049i
\(206\) 0 0
\(207\) 7.12934 4.11612i 0.495523 0.286090i
\(208\) 0 0
\(209\) 3.95109i 0.273303i
\(210\) 0 0
\(211\) 9.11727 + 9.11727i 0.627659 + 0.627659i 0.947478 0.319820i \(-0.103622\pi\)
−0.319820 + 0.947478i \(0.603622\pi\)
\(212\) 0 0
\(213\) −31.8764 8.54126i −2.18414 0.585237i
\(214\) 0 0
\(215\) 3.63253 + 2.09724i 0.247736 + 0.143031i
\(216\) 0 0
\(217\) 1.90942 + 1.27668i 0.129620 + 0.0866666i
\(218\) 0 0
\(219\) −10.9167 40.7416i −0.737681 2.75306i
\(220\) 0 0
\(221\) −33.3423 8.93405i −2.24285 0.600969i
\(222\) 0 0
\(223\) −6.72926 −0.450624 −0.225312 0.974287i \(-0.572340\pi\)
−0.225312 + 0.974287i \(0.572340\pi\)
\(224\) 0 0
\(225\) 20.6936 1.37957
\(226\) 0 0
\(227\) 7.46500 + 2.00024i 0.495469 + 0.132761i 0.497896 0.867236i \(-0.334106\pi\)
−0.00242728 + 0.999997i \(0.500773\pi\)
\(228\) 0 0
\(229\) 3.94509 + 14.7233i 0.260699 + 0.972941i 0.964831 + 0.262872i \(0.0846696\pi\)
−0.704132 + 0.710069i \(0.748664\pi\)
\(230\) 0 0
\(231\) −14.3184 0.942877i −0.942084 0.0620367i
\(232\) 0 0
\(233\) 12.7954 + 7.38741i 0.838253 + 0.483965i 0.856670 0.515865i \(-0.172529\pi\)
−0.0184173 + 0.999830i \(0.505863\pi\)
\(234\) 0 0
\(235\) 1.34533 + 0.360479i 0.0877594 + 0.0235151i
\(236\) 0 0
\(237\) −2.36773 2.36773i −0.153800 0.153800i
\(238\) 0 0
\(239\) 28.5488i 1.84667i −0.383998 0.923334i \(-0.625453\pi\)
0.383998 0.923334i \(-0.374547\pi\)
\(240\) 0 0
\(241\) 19.8792 11.4772i 1.28053 0.739314i 0.303584 0.952805i \(-0.401817\pi\)
0.976945 + 0.213491i \(0.0684834\pi\)
\(242\) 0 0
\(243\) −5.07143 18.9268i −0.325332 1.21416i
\(244\) 0 0
\(245\) −3.01645 1.25162i −0.192714 0.0799628i
\(246\) 0 0
\(247\) −6.29713 + 10.9069i −0.400676 + 0.693992i
\(248\) 0 0
\(249\) −29.9549 + 17.2945i −1.89832 + 1.09599i
\(250\) 0 0
\(251\) 10.2808 + 10.2808i 0.648918 + 0.648918i 0.952732 0.303813i \(-0.0982599\pi\)
−0.303813 + 0.952732i \(0.598260\pi\)
\(252\) 0 0
\(253\) 2.69543 2.69543i 0.169460 0.169460i
\(254\) 0 0
\(255\) 3.41276 + 5.91107i 0.213715 + 0.370165i
\(256\) 0 0
\(257\) 2.17812 + 1.25754i 0.135867 + 0.0784431i 0.566393 0.824135i \(-0.308338\pi\)
−0.430526 + 0.902578i \(0.641672\pi\)
\(258\) 0 0
\(259\) −16.2883 + 14.2757i −1.01211 + 0.887046i
\(260\) 0 0
\(261\) 6.64475 1.78046i 0.411300 0.110207i
\(262\) 0 0
\(263\) −4.54781 7.87703i −0.280430 0.485718i 0.691061 0.722797i \(-0.257144\pi\)
−0.971491 + 0.237078i \(0.923810\pi\)
\(264\) 0 0
\(265\) −3.27464 −0.201159
\(266\) 0 0
\(267\) −4.45449 + 4.45449i −0.272611 + 0.272611i
\(268\) 0 0
\(269\) −1.47548 + 5.50656i −0.0899615 + 0.335741i −0.996207 0.0870099i \(-0.972269\pi\)
0.906246 + 0.422751i \(0.138935\pi\)
\(270\) 0 0
\(271\) −5.76007 + 9.97673i −0.349899 + 0.606043i −0.986231 0.165372i \(-0.947118\pi\)
0.636332 + 0.771415i \(0.280451\pi\)
\(272\) 0 0
\(273\) −38.0232 25.4231i −2.30127 1.53868i
\(274\) 0 0
\(275\) 9.25560 2.48003i 0.558134 0.149551i
\(276\) 0 0
\(277\) −5.40800 + 20.1829i −0.324935 + 1.21268i 0.589442 + 0.807811i \(0.299348\pi\)
−0.914377 + 0.404864i \(0.867319\pi\)
\(278\) 0 0
\(279\) 3.75657i 0.224900i
\(280\) 0 0
\(281\) 19.8360i 1.18331i −0.806190 0.591657i \(-0.798474\pi\)
0.806190 0.591657i \(-0.201526\pi\)
\(282\) 0 0
\(283\) −5.26602 + 19.6531i −0.313033 + 1.16825i 0.612775 + 0.790258i \(0.290053\pi\)
−0.925807 + 0.377996i \(0.876613\pi\)
\(284\) 0 0
\(285\) 2.40546 0.644542i 0.142487 0.0381794i
\(286\) 0 0
\(287\) −7.69473 + 3.79170i −0.454206 + 0.223817i
\(288\) 0 0
\(289\) 6.10572 10.5754i 0.359160 0.622083i
\(290\) 0 0
\(291\) −3.29069 + 12.2810i −0.192903 + 0.719926i
\(292\) 0 0
\(293\) 6.75509 6.75509i 0.394636 0.394636i −0.481700 0.876336i \(-0.659980\pi\)
0.876336 + 0.481700i \(0.159980\pi\)
\(294\) 0 0
\(295\) −4.00586 −0.233230
\(296\) 0 0
\(297\) 3.59879 + 6.23329i 0.208823 + 0.361692i
\(298\) 0 0
\(299\) 11.7366 3.14481i 0.678745 0.181869i
\(300\) 0 0
\(301\) 7.65288 22.5220i 0.441105 1.29815i
\(302\) 0 0
\(303\) −12.9981 7.50446i −0.746721 0.431120i
\(304\) 0 0
\(305\) 0.113434 + 0.196473i 0.00649520 + 0.0112500i
\(306\) 0 0
\(307\) −2.36930 + 2.36930i −0.135223 + 0.135223i −0.771479 0.636255i \(-0.780483\pi\)
0.636255 + 0.771479i \(0.280483\pi\)
\(308\) 0 0
\(309\) −2.11757 2.11757i −0.120464 0.120464i
\(310\) 0 0
\(311\) −13.1239 + 7.57707i −0.744186 + 0.429656i −0.823589 0.567186i \(-0.808032\pi\)
0.0794032 + 0.996843i \(0.474699\pi\)
\(312\) 0 0
\(313\) −3.32791 + 5.76411i −0.188105 + 0.325807i −0.944618 0.328171i \(-0.893568\pi\)
0.756514 + 0.653978i \(0.226901\pi\)
\(314\) 0 0
\(315\) 1.04041 + 5.23888i 0.0586206 + 0.295177i
\(316\) 0 0
\(317\) −6.86233 25.6106i −0.385427 1.43843i −0.837493 0.546449i \(-0.815979\pi\)
0.452065 0.891985i \(-0.350687\pi\)
\(318\) 0 0
\(319\) 2.75861 1.59268i 0.154453 0.0891732i
\(320\) 0 0
\(321\) 16.7357i 0.934094i
\(322\) 0 0
\(323\) −7.53630 7.53630i −0.419331 0.419331i
\(324\) 0 0
\(325\) 29.5026 + 7.90519i 1.63651 + 0.438501i
\(326\) 0 0
\(327\) 25.5398 + 14.7454i 1.41235 + 0.815423i
\(328\) 0 0
\(329\) 0.518991 7.88134i 0.0286129 0.434513i
\(330\) 0 0
\(331\) −2.45530 9.16331i −0.134956 0.503661i −0.999998 0.00196237i \(-0.999375\pi\)
0.865043 0.501699i \(-0.167291\pi\)
\(332\) 0 0
\(333\) 34.2157 + 9.16806i 1.87501 + 0.502407i
\(334\) 0 0
\(335\) −1.86071 −0.101661
\(336\) 0 0
\(337\) −16.0354 −0.873502 −0.436751 0.899582i \(-0.643871\pi\)
−0.436751 + 0.899582i \(0.643871\pi\)
\(338\) 0 0
\(339\) −7.36991 1.97476i −0.400278 0.107254i
\(340\) 0 0
\(341\) −0.450207 1.68019i −0.0243801 0.0909876i
\(342\) 0 0
\(343\) −3.62978 + 18.1611i −0.195990 + 0.980606i
\(344\) 0 0
\(345\) −2.08071 1.20130i −0.112022 0.0646758i
\(346\) 0 0
\(347\) 3.06636 + 0.821629i 0.164611 + 0.0441074i 0.340183 0.940359i \(-0.389511\pi\)
−0.175572 + 0.984467i \(0.556178\pi\)
\(348\) 0 0
\(349\) 2.21348 + 2.21348i 0.118485 + 0.118485i 0.763863 0.645378i \(-0.223300\pi\)
−0.645378 + 0.763863i \(0.723300\pi\)
\(350\) 0 0
\(351\) 22.9426i 1.22458i
\(352\) 0 0
\(353\) −7.11770 + 4.10941i −0.378837 + 0.218722i −0.677312 0.735696i \(-0.736855\pi\)
0.298475 + 0.954417i \(0.403522\pi\)
\(354\) 0 0
\(355\) 1.47214 + 5.49410i 0.0781331 + 0.291597i
\(356\) 0 0
\(357\) 29.1094 25.5125i 1.54063 1.35026i
\(358\) 0 0
\(359\) 15.3319 26.5556i 0.809184 1.40155i −0.104245 0.994552i \(-0.533243\pi\)
0.913430 0.406997i \(-0.133424\pi\)
\(360\) 0 0
\(361\) 13.0869 7.55570i 0.688782 0.397668i
\(362\) 0 0
\(363\) −13.3703 13.3703i −0.701761 0.701761i
\(364\) 0 0
\(365\) −5.14051 + 5.14051i −0.269067 + 0.269067i
\(366\) 0 0
\(367\) 8.91168 + 15.4355i 0.465186 + 0.805726i 0.999210 0.0397435i \(-0.0126541\pi\)
−0.534024 + 0.845469i \(0.679321\pi\)
\(368\) 0 0
\(369\) 12.1500 + 7.01478i 0.632502 + 0.365175i
\(370\) 0 0
\(371\) 3.61732 + 18.2146i 0.187802 + 0.945656i
\(372\) 0 0
\(373\) −2.39939 + 0.642914i −0.124236 + 0.0332888i −0.320401 0.947282i \(-0.603818\pi\)
0.196166 + 0.980571i \(0.437151\pi\)
\(374\) 0 0
\(375\) −6.17691 10.6987i −0.318974 0.552480i
\(376\) 0 0
\(377\) 10.1535 0.522931
\(378\) 0 0
\(379\) 0.526070 0.526070i 0.0270224 0.0270224i −0.693466 0.720489i \(-0.743917\pi\)
0.720489 + 0.693466i \(0.243917\pi\)
\(380\) 0 0
\(381\) −6.54856 + 24.4396i −0.335493 + 1.25208i
\(382\) 0 0
\(383\) 11.8928 20.5989i 0.607692 1.05255i −0.383928 0.923363i \(-0.625429\pi\)
0.991620 0.129190i \(-0.0412377\pi\)
\(384\) 0 0
\(385\) 1.09320 + 2.21850i 0.0557145 + 0.113065i
\(386\) 0 0
\(387\) −37.5773 + 10.0688i −1.91016 + 0.511826i
\(388\) 0 0
\(389\) −6.27509 + 23.4190i −0.318160 + 1.18739i 0.602852 + 0.797853i \(0.294031\pi\)
−0.921012 + 0.389535i \(0.872636\pi\)
\(390\) 0 0
\(391\) 10.2825i 0.520009i
\(392\) 0 0
\(393\) 50.2190i 2.53321i
\(394\) 0 0
\(395\) −0.149372 + 0.557465i −0.00751574 + 0.0280491i
\(396\) 0 0
\(397\) −4.07659 + 1.09232i −0.204598 + 0.0548219i −0.359662 0.933082i \(-0.617108\pi\)
0.155064 + 0.987904i \(0.450442\pi\)
\(398\) 0 0
\(399\) −6.24235 12.6680i −0.312508 0.634193i
\(400\) 0 0
\(401\) −9.01163 + 15.6086i −0.450019 + 0.779456i −0.998387 0.0567812i \(-0.981916\pi\)
0.548367 + 0.836238i \(0.315250\pi\)
\(402\) 0 0
\(403\) 1.43505 5.35568i 0.0714849 0.266785i
\(404\) 0 0
\(405\) −1.07466 + 1.07466i −0.0534002 + 0.0534002i
\(406\) 0 0
\(407\) 16.4023 0.813034
\(408\) 0 0
\(409\) 13.9843 + 24.2215i 0.691478 + 1.19768i 0.971354 + 0.237639i \(0.0763736\pi\)
−0.279875 + 0.960036i \(0.590293\pi\)
\(410\) 0 0
\(411\) 39.7137 10.6412i 1.95893 0.524894i
\(412\) 0 0
\(413\) 4.42506 + 22.2819i 0.217743 + 1.09642i
\(414\) 0 0
\(415\) 5.16292 + 2.98081i 0.253438 + 0.146322i
\(416\) 0 0
\(417\) −2.16503 3.74994i −0.106022 0.183635i
\(418\) 0 0
\(419\) 10.4669 10.4669i 0.511342 0.511342i −0.403596 0.914937i \(-0.632240\pi\)
0.914937 + 0.403596i \(0.132240\pi\)
\(420\) 0 0
\(421\) −12.3722 12.3722i −0.602984 0.602984i 0.338119 0.941103i \(-0.390209\pi\)
−0.941103 + 0.338119i \(0.890209\pi\)
\(422\) 0 0
\(423\) −11.1871 + 6.45887i −0.543935 + 0.314041i
\(424\) 0 0
\(425\) −12.9237 + 22.3845i −0.626891 + 1.08581i
\(426\) 0 0
\(427\) 0.967542 0.847989i 0.0468227 0.0410370i
\(428\) 0 0
\(429\) 8.96517 + 33.4585i 0.432842 + 1.61539i
\(430\) 0 0
\(431\) −11.8089 + 6.81786i −0.568814 + 0.328405i −0.756675 0.653791i \(-0.773178\pi\)
0.187862 + 0.982195i \(0.439844\pi\)
\(432\) 0 0
\(433\) 19.1575i 0.920649i 0.887751 + 0.460325i \(0.152267\pi\)
−0.887751 + 0.460325i \(0.847733\pi\)
\(434\) 0 0
\(435\) −1.41965 1.41965i −0.0680672 0.0680672i
\(436\) 0 0
\(437\) 3.62379 + 0.970991i 0.173349 + 0.0464488i
\(438\) 0 0
\(439\) 7.42387 + 4.28617i 0.354322 + 0.204568i 0.666587 0.745427i \(-0.267754\pi\)
−0.312265 + 0.949995i \(0.601088\pi\)
\(440\) 0 0
\(441\) 27.9911 11.5742i 1.33291 0.551154i
\(442\) 0 0
\(443\) 5.42088 + 20.2310i 0.257554 + 0.961204i 0.966652 + 0.256094i \(0.0824356\pi\)
−0.709098 + 0.705110i \(0.750898\pi\)
\(444\) 0 0
\(445\) 1.04878 + 0.281020i 0.0497169 + 0.0133216i
\(446\) 0 0
\(447\) 27.5017 1.30079
\(448\) 0 0
\(449\) −24.4270 −1.15278 −0.576391 0.817174i \(-0.695539\pi\)
−0.576391 + 0.817174i \(0.695539\pi\)
\(450\) 0 0
\(451\) 6.27498 + 1.68138i 0.295477 + 0.0791729i
\(452\) 0 0
\(453\) −8.18145 30.5336i −0.384398 1.43459i
\(454\) 0 0
\(455\) −0.518009 + 7.86644i −0.0242846 + 0.368784i
\(456\) 0 0
\(457\) 3.12783 + 1.80585i 0.146314 + 0.0844743i 0.571370 0.820693i \(-0.306412\pi\)
−0.425056 + 0.905167i \(0.639746\pi\)
\(458\) 0 0
\(459\) −18.7537 5.02503i −0.875347 0.234548i
\(460\) 0 0
\(461\) 25.2872 + 25.2872i 1.17774 + 1.17774i 0.980318 + 0.197423i \(0.0632574\pi\)
0.197423 + 0.980318i \(0.436743\pi\)
\(462\) 0 0
\(463\) 8.01165i 0.372333i 0.982518 + 0.186166i \(0.0596064\pi\)
−0.982518 + 0.186166i \(0.940394\pi\)
\(464\) 0 0
\(465\) −0.949477 + 0.548181i −0.0440309 + 0.0254213i
\(466\) 0 0
\(467\) 4.79633 + 17.9002i 0.221948 + 0.828321i 0.983604 + 0.180340i \(0.0577197\pi\)
−0.761657 + 0.647981i \(0.775614\pi\)
\(468\) 0 0
\(469\) 2.05542 + 10.3499i 0.0949107 + 0.477912i
\(470\) 0 0
\(471\) −3.01430 + 5.22093i −0.138892 + 0.240568i
\(472\) 0 0
\(473\) −15.6004 + 9.00692i −0.717309 + 0.414139i
\(474\) 0 0
\(475\) 6.66840 + 6.66840i 0.305967 + 0.305967i
\(476\) 0 0
\(477\) 21.4759 21.4759i 0.983314 0.983314i
\(478\) 0 0
\(479\) 13.6882 + 23.7087i 0.625432 + 1.08328i 0.988457 + 0.151501i \(0.0484106\pi\)
−0.363025 + 0.931779i \(0.618256\pi\)
\(480\) 0 0
\(481\) 45.2785 + 26.1415i 2.06452 + 1.19195i
\(482\) 0 0
\(483\) −4.38357 + 12.9006i −0.199459 + 0.586998i
\(484\) 0 0
\(485\) 2.11671 0.567171i 0.0961148 0.0257539i
\(486\) 0 0
\(487\) −9.68012 16.7665i −0.438648 0.759761i 0.558938 0.829210i \(-0.311209\pi\)
−0.997585 + 0.0694492i \(0.977876\pi\)
\(488\) 0 0
\(489\) 39.7206 1.79623
\(490\) 0 0
\(491\) 17.1950 17.1950i 0.775998 0.775998i −0.203149 0.979148i \(-0.565118\pi\)
0.979148 + 0.203149i \(0.0651177\pi\)
\(492\) 0 0
\(493\) −2.22388 + 8.29964i −0.100159 + 0.373797i
\(494\) 0 0
\(495\) 2.02246 3.50300i 0.0909027 0.157448i
\(496\) 0 0
\(497\) 28.9338 14.2576i 1.29786 0.639539i
\(498\) 0 0
\(499\) −2.92484 + 0.783708i −0.130934 + 0.0350836i −0.323691 0.946163i \(-0.604924\pi\)
0.192757 + 0.981247i \(0.438257\pi\)
\(500\) 0 0
\(501\) 4.16846 15.5569i 0.186233 0.695031i
\(502\) 0 0
\(503\) 34.5673i 1.54128i 0.637272 + 0.770639i \(0.280063\pi\)
−0.637272 + 0.770639i \(0.719937\pi\)
\(504\) 0 0
\(505\) 2.58688i 0.115115i
\(506\) 0 0
\(507\) −19.4692 + 72.6599i −0.864656 + 3.22694i
\(508\) 0 0
\(509\) 15.2307 4.08105i 0.675088 0.180889i 0.0950424 0.995473i \(-0.469701\pi\)
0.580046 + 0.814584i \(0.303035\pi\)
\(510\) 0 0
\(511\) 34.2717 + 22.9147i 1.51609 + 1.01369i
\(512\) 0 0
\(513\) −3.54187 + 6.13470i −0.156377 + 0.270854i
\(514\) 0 0
\(515\) −0.133591 + 0.498567i −0.00588671 + 0.0219695i
\(516\) 0 0
\(517\) −4.22957 + 4.22957i −0.186016 + 0.186016i
\(518\) 0 0
\(519\) 24.8623 1.09133
\(520\) 0 0
\(521\) −7.72095 13.3731i −0.338261 0.585885i 0.645845 0.763469i \(-0.276505\pi\)
−0.984106 + 0.177584i \(0.943172\pi\)
\(522\) 0 0
\(523\) −1.96968 + 0.527773i −0.0861280 + 0.0230779i −0.301626 0.953426i \(-0.597529\pi\)
0.215498 + 0.976504i \(0.430863\pi\)
\(524\) 0 0
\(525\) −25.7571 + 22.5744i −1.12413 + 0.985229i
\(526\) 0 0
\(527\) 4.06352 + 2.34607i 0.177010 + 0.102197i
\(528\) 0 0
\(529\) 9.69026 + 16.7840i 0.421316 + 0.729740i
\(530\) 0 0
\(531\) 26.2714 26.2714i 1.14008 1.14008i
\(532\) 0 0
\(533\) 14.6423 + 14.6423i 0.634228 + 0.634228i
\(534\) 0 0
\(535\) 2.49805 1.44225i 0.108000 0.0623538i
\(536\) 0 0
\(537\) 5.14933 8.91890i 0.222210 0.384879i
\(538\) 0 0
\(539\) 11.1324 8.53138i 0.479507 0.367473i
\(540\) 0 0
\(541\) −5.40772 20.1819i −0.232496 0.867686i −0.979262 0.202599i \(-0.935061\pi\)
0.746766 0.665087i \(-0.231606\pi\)
\(542\) 0 0
\(543\) −17.0216 + 9.82741i −0.730466 + 0.421735i
\(544\) 0 0
\(545\) 5.08293i 0.217729i
\(546\) 0 0
\(547\) −13.0675 13.0675i −0.558728 0.558728i 0.370217 0.928945i \(-0.379283\pi\)
−0.928945 + 0.370217i \(0.879283\pi\)
\(548\) 0 0
\(549\) −2.03245 0.544592i −0.0867427 0.0232426i
\(550\) 0 0
\(551\) 2.71498 + 1.56749i 0.115662 + 0.0667775i
\(552\) 0 0
\(553\) 3.26581 + 0.215055i 0.138876 + 0.00914507i
\(554\) 0 0
\(555\) −2.67572 9.98591i −0.113578 0.423878i
\(556\) 0 0
\(557\) 11.6914 + 3.13271i 0.495381 + 0.132737i 0.497856 0.867260i \(-0.334121\pi\)
−0.00247440 + 0.999997i \(0.500788\pi\)
\(558\) 0 0
\(559\) −57.4198 −2.42860
\(560\) 0 0
\(561\) −29.3132 −1.23760
\(562\) 0 0
\(563\) −27.2040 7.28930i −1.14651 0.307207i −0.364946 0.931029i \(-0.618913\pi\)
−0.781567 + 0.623821i \(0.785579\pi\)
\(564\) 0 0
\(565\) 0.340362 + 1.27025i 0.0143192 + 0.0534398i
\(566\) 0 0
\(567\) 7.16472 + 4.79048i 0.300890 + 0.201181i
\(568\) 0 0
\(569\) −20.4277 11.7940i −0.856375 0.494428i 0.00642167 0.999979i \(-0.497956\pi\)
−0.862797 + 0.505551i \(0.831289\pi\)
\(570\) 0 0
\(571\) −21.7673 5.83253i −0.910933 0.244084i −0.227227 0.973842i \(-0.572966\pi\)
−0.683705 + 0.729758i \(0.739633\pi\)
\(572\) 0 0
\(573\) −33.6826 33.6826i −1.40711 1.40711i
\(574\) 0 0
\(575\) 9.09835i 0.379427i
\(576\) 0 0
\(577\) −16.2893 + 9.40463i −0.678132 + 0.391520i −0.799151 0.601130i \(-0.794717\pi\)
0.121019 + 0.992650i \(0.461384\pi\)
\(578\) 0 0
\(579\) 4.60942 + 17.2026i 0.191561 + 0.714915i
\(580\) 0 0
\(581\) 10.8771 32.0106i 0.451256 1.32802i
\(582\) 0 0
\(583\) 7.03171 12.1793i 0.291224 0.504414i
\(584\) 0 0
\(585\) 11.1659 6.44666i 0.461655 0.266537i
\(586\) 0 0
\(587\) −12.6185 12.6185i −0.520820 0.520820i 0.396999 0.917819i \(-0.370052\pi\)
−0.917819 + 0.396999i \(0.870052\pi\)
\(588\) 0 0
\(589\) 1.21053 1.21053i 0.0498791 0.0498791i
\(590\) 0 0
\(591\) −28.4763 49.3223i −1.17136 2.02885i
\(592\) 0 0
\(593\) −22.0260 12.7167i −0.904498 0.522212i −0.0258409 0.999666i \(-0.508226\pi\)
−0.878657 + 0.477454i \(0.841560\pi\)
\(594\) 0 0
\(595\) −6.31671 2.14639i −0.258960 0.0879934i
\(596\) 0 0
\(597\) 19.4226 5.20427i 0.794914 0.212997i
\(598\) 0 0
\(599\) 21.1003 + 36.5468i 0.862135 + 1.49326i 0.869864 + 0.493292i \(0.164207\pi\)
−0.00772853 + 0.999970i \(0.502460\pi\)
\(600\) 0 0
\(601\) −29.8695 −1.21840 −0.609202 0.793015i \(-0.708510\pi\)
−0.609202 + 0.793015i \(0.708510\pi\)
\(602\) 0 0
\(603\) 12.2030 12.2030i 0.496944 0.496944i
\(604\) 0 0
\(605\) −0.843492 + 3.14796i −0.0342928 + 0.127983i
\(606\) 0 0
\(607\) 14.7137 25.4850i 0.597212 1.03440i −0.396018 0.918243i \(-0.629608\pi\)
0.993231 0.116160i \(-0.0370584\pi\)
\(608\) 0 0
\(609\) −6.32837 + 9.46480i −0.256438 + 0.383533i
\(610\) 0 0
\(611\) −18.4166 + 4.93472i −0.745058 + 0.199638i
\(612\) 0 0
\(613\) −5.94532 + 22.1882i −0.240129 + 0.896175i 0.735640 + 0.677373i \(0.236882\pi\)
−0.975769 + 0.218802i \(0.929785\pi\)
\(614\) 0 0
\(615\) 4.09456i 0.165108i
\(616\) 0 0
\(617\) 31.2064i 1.25632i 0.778084 + 0.628161i \(0.216192\pi\)
−0.778084 + 0.628161i \(0.783808\pi\)
\(618\) 0 0
\(619\) 4.74503 17.7087i 0.190719 0.711772i −0.802615 0.596498i \(-0.796559\pi\)
0.993334 0.115275i \(-0.0367748\pi\)
\(620\) 0 0
\(621\) 6.60135 1.76883i 0.264903 0.0709805i
\(622\) 0 0
\(623\) 0.404591 6.14408i 0.0162096 0.246157i
\(624\) 0 0
\(625\) 10.8912 18.8641i 0.435648 0.754565i
\(626\) 0 0
\(627\) −2.76808 + 10.3306i −0.110547 + 0.412565i
\(628\) 0 0
\(629\) −31.2858 + 31.2858i −1.24745 + 1.24745i
\(630\) 0 0
\(631\) 8.10970 0.322842 0.161421 0.986886i \(-0.448392\pi\)
0.161421 + 0.986886i \(0.448392\pi\)
\(632\) 0 0
\(633\) 17.4508 + 30.2257i 0.693608 + 1.20136i
\(634\) 0 0
\(635\) 4.21231 1.12869i 0.167160 0.0447905i
\(636\) 0 0
\(637\) 44.3279 5.80831i 1.75634 0.230134i
\(638\) 0 0
\(639\) −45.6864 26.3770i −1.80732 1.04346i
\(640\) 0 0
\(641\) −14.0435 24.3241i −0.554685 0.960743i −0.997928 0.0643416i \(-0.979505\pi\)
0.443242 0.896402i \(-0.353828\pi\)
\(642\) 0 0
\(643\) −21.6759 + 21.6759i −0.854812 + 0.854812i −0.990721 0.135909i \(-0.956605\pi\)
0.135909 + 0.990721i \(0.456605\pi\)
\(644\) 0 0
\(645\) 8.02841 + 8.02841i 0.316118 + 0.316118i
\(646\) 0 0
\(647\) −39.8543 + 23.0099i −1.56683 + 0.904612i −0.570299 + 0.821437i \(0.693173\pi\)
−0.996535 + 0.0831749i \(0.973494\pi\)
\(648\) 0 0
\(649\) 8.60188 14.8989i 0.337653 0.584833i
\(650\) 0 0
\(651\) 4.09800 + 4.67575i 0.160613 + 0.183257i
\(652\) 0 0
\(653\) −7.84001 29.2593i −0.306803 1.14501i −0.931382 0.364043i \(-0.881396\pi\)
0.624579 0.780962i \(-0.285271\pi\)
\(654\) 0 0
\(655\) −7.49594 + 4.32778i −0.292890 + 0.169100i
\(656\) 0 0
\(657\) 67.4255i 2.63052i
\(658\) 0 0
\(659\) 7.48634 + 7.48634i 0.291626 + 0.291626i 0.837723 0.546096i \(-0.183887\pi\)
−0.546096 + 0.837723i \(0.683887\pi\)
\(660\) 0 0
\(661\) −10.2052 2.73446i −0.396934 0.106358i 0.0548296 0.998496i \(-0.482538\pi\)
−0.451764 + 0.892137i \(0.649205\pi\)
\(662\) 0 0
\(663\) −80.9187 46.7184i −3.14262 1.81439i
\(664\) 0 0
\(665\) −1.35293 + 2.02347i −0.0524645 + 0.0784667i
\(666\) 0 0
\(667\) −0.782813 2.92150i −0.0303106 0.113121i
\(668\) 0 0
\(669\) −17.5945 4.71443i −0.680242 0.182270i
\(670\) 0 0
\(671\) −0.974316 −0.0376130
\(672\) 0 0
\(673\) 17.2027 0.663115 0.331557 0.943435i \(-0.392426\pi\)
0.331557 + 0.943435i \(0.392426\pi\)
\(674\) 0 0
\(675\) 16.5940 + 4.44634i 0.638702 + 0.171140i
\(676\) 0 0
\(677\) −5.18323 19.3441i −0.199208 0.743453i −0.991137 0.132841i \(-0.957590\pi\)
0.791930 0.610612i \(-0.209077\pi\)
\(678\) 0 0
\(679\) −5.49301 11.1473i −0.210802 0.427794i
\(680\) 0 0
\(681\) 18.1168 + 10.4598i 0.694238 + 0.400819i
\(682\) 0 0
\(683\) 0.930638 + 0.249364i 0.0356099 + 0.00954164i 0.276580 0.960991i \(-0.410799\pi\)
−0.240970 + 0.970533i \(0.577466\pi\)
\(684\) 0 0
\(685\) −5.01082 5.01082i −0.191453 0.191453i
\(686\) 0 0
\(687\) 41.2597i 1.57416i
\(688\) 0 0
\(689\) 38.8219 22.4138i 1.47900 0.853899i
\(690\) 0 0
\(691\) 8.97758 + 33.5048i 0.341523 + 1.27458i 0.896622 + 0.442797i \(0.146014\pi\)
−0.555099 + 0.831784i \(0.687320\pi\)
\(692\) 0 0
\(693\) −21.7189 7.37999i −0.825034 0.280343i
\(694\) 0 0
\(695\) −0.373156 + 0.646326i −0.0141546 + 0.0245165i
\(696\) 0 0
\(697\) −15.1759 + 8.76183i −0.574829 + 0.331878i
\(698\) 0 0
\(699\) 28.2796 + 28.2796i 1.06963 + 1.06963i
\(700\) 0 0
\(701\) −32.4969 + 32.4969i −1.22739 + 1.22739i −0.262444 + 0.964947i \(0.584529\pi\)
−0.964947 + 0.262444i \(0.915471\pi\)
\(702\) 0 0
\(703\) 8.07146 + 13.9802i 0.304421 + 0.527272i
\(704\) 0 0
\(705\) 3.26498 + 1.88504i 0.122966 + 0.0709945i
\(706\) 0 0
\(707\) 14.3891 2.85759i 0.541157 0.107471i
\(708\) 0 0
\(709\) −4.54454 + 1.21770i −0.170674 + 0.0457319i −0.343144 0.939283i \(-0.611492\pi\)
0.172470 + 0.985015i \(0.444825\pi\)
\(710\) 0 0
\(711\) −2.67638 4.63562i −0.100372 0.173849i
\(712\) 0 0
\(713\) −1.65165 −0.0618547
\(714\) 0 0
\(715\) 4.22157 4.22157i 0.157878 0.157878i
\(716\) 0 0
\(717\) 20.0009 74.6444i 0.746947 2.78765i
\(718\) 0 0
\(719\) 9.27548 16.0656i 0.345917 0.599146i −0.639603 0.768706i \(-0.720901\pi\)
0.985520 + 0.169559i \(0.0542345\pi\)
\(720\) 0 0
\(721\) 2.92076 + 0.192334i 0.108775 + 0.00716289i
\(722\) 0 0
\(723\) 60.0174 16.0816i 2.23207 0.598081i
\(724\) 0 0
\(725\) 1.96778 7.34384i 0.0730813 0.272743i
\(726\) 0 0
\(727\) 5.96613i 0.221272i 0.993861 + 0.110636i \(0.0352887\pi\)
−0.993861 + 0.110636i \(0.964711\pi\)
\(728\) 0 0
\(729\) 43.2669i 1.60248i
\(730\) 0 0
\(731\) 12.5765 46.9360i 0.465157 1.73599i
\(732\) 0 0
\(733\) −20.8755 + 5.59358i −0.771055 + 0.206604i −0.622838 0.782351i \(-0.714020\pi\)
−0.148218 + 0.988955i \(0.547354\pi\)
\(734\) 0 0
\(735\) −7.01002 5.38579i −0.258569 0.198658i
\(736\) 0 0
\(737\) 3.99554 6.92048i 0.147178 0.254919i
\(738\) 0 0
\(739\) 9.37297 34.9804i 0.344790 1.28677i −0.548067 0.836434i \(-0.684636\pi\)
0.892857 0.450340i \(-0.148697\pi\)
\(740\) 0 0
\(741\) −24.1059 + 24.1059i −0.885552 + 0.885552i
\(742\) 0 0
\(743\) 16.2749 0.597067 0.298533 0.954399i \(-0.403503\pi\)
0.298533 + 0.954399i \(0.403503\pi\)
\(744\) 0 0
\(745\) −2.37004 4.10504i −0.0868317 0.150397i
\(746\) 0 0
\(747\) −53.4087 + 14.3108i −1.95412 + 0.523605i
\(748\) 0 0
\(749\) −10.7817 12.3018i −0.393955 0.449497i
\(750\) 0 0
\(751\) 15.8511 + 9.15166i 0.578416 + 0.333949i 0.760504 0.649334i \(-0.224952\pi\)
−0.182087 + 0.983282i \(0.558285\pi\)
\(752\) 0 0
\(753\) 19.6778 + 34.0830i 0.717101 + 1.24205i
\(754\) 0 0
\(755\) −3.85253 + 3.85253i −0.140208 + 0.140208i
\(756\) 0 0
\(757\) 16.6944 + 16.6944i 0.606767 + 0.606767i 0.942100 0.335333i \(-0.108849\pi\)
−0.335333 + 0.942100i \(0.608849\pi\)
\(758\) 0 0
\(759\) 8.93593 5.15916i 0.324354 0.187266i
\(760\) 0 0
\(761\) −4.43390 + 7.67974i −0.160729 + 0.278390i −0.935130 0.354304i \(-0.884718\pi\)
0.774401 + 0.632695i \(0.218051\pi\)
\(762\) 0 0
\(763\) −28.2729 + 5.61484i −1.02355 + 0.203271i
\(764\) 0 0
\(765\) 2.82398 + 10.5392i 0.102101 + 0.381047i
\(766\) 0 0
\(767\) 47.4908 27.4188i 1.71479 0.990036i
\(768\) 0 0
\(769\) 1.14344i 0.0412335i 0.999787 + 0.0206167i \(0.00656298\pi\)
−0.999787 + 0.0206167i \(0.993437\pi\)
\(770\) 0 0
\(771\) 4.81396 + 4.81396i 0.173370 + 0.173370i
\(772\) 0 0
\(773\) 5.25103 + 1.40701i 0.188866 + 0.0506066i 0.352012 0.935995i \(-0.385497\pi\)
−0.163146 + 0.986602i \(0.552164\pi\)
\(774\) 0 0
\(775\) −3.59555 2.07589i −0.129156 0.0745683i
\(776\) 0 0
\(777\) −52.5892 + 25.9141i −1.88663 + 0.929664i
\(778\) 0 0
\(779\) 1.65478 + 6.17573i 0.0592888 + 0.221269i
\(780\) 0 0
\(781\) −23.5952 6.32232i −0.844304 0.226231i
\(782\) 0 0
\(783\) 5.71091 0.204091
\(784\) 0 0
\(785\) 1.03907 0.0370859
\(786\) 0 0
\(787\) 49.2659 + 13.2008i 1.75614 + 0.470556i 0.985919 0.167221i \(-0.0534795\pi\)
0.770220 + 0.637778i \(0.220146\pi\)
\(788\) 0 0
\(789\) −6.37227 23.7816i −0.226859 0.846648i
\(790\) 0 0
\(791\) 6.68956 3.29639i 0.237854 0.117206i
\(792\) 0 0
\(793\) −2.68959 1.55283i −0.0955101 0.0551428i
\(794\) 0 0
\(795\) −8.56196 2.29417i −0.303661 0.0813658i
\(796\) 0 0
\(797\) 26.5433 + 26.5433i 0.940211 + 0.940211i 0.998311 0.0581002i \(-0.0185043\pi\)
−0.0581002 + 0.998311i \(0.518504\pi\)
\(798\) 0 0
\(799\) 16.1349i 0.570813i
\(800\) 0 0
\(801\) −8.72116 + 5.03516i −0.308147 + 0.177909i
\(802\) 0 0
\(803\) −8.08063 30.1573i −0.285159 1.06423i
\(804\) 0 0
\(805\) 2.30338 0.457438i 0.0811833 0.0161226i
\(806\) 0 0
\(807\) −7.71565 + 13.3639i −0.271604 + 0.470432i
\(808\) 0 0
\(809\) −17.6346 + 10.1813i −0.620000 + 0.357957i −0.776869 0.629662i \(-0.783193\pi\)
0.156869 + 0.987619i \(0.449860\pi\)
\(810\) 0 0
\(811\) 31.8932 + 31.8932i 1.11992 + 1.11992i 0.991752 + 0.128171i \(0.0409107\pi\)
0.128171 + 0.991752i \(0.459089\pi\)
\(812\) 0 0
\(813\) −22.0500 + 22.0500i −0.773327 + 0.773327i
\(814\) 0 0
\(815\) −3.42304 5.92889i −0.119904 0.207680i
\(816\) 0 0
\(817\) −15.3537 8.86446i −0.537158 0.310128i
\(818\) 0 0
\(819\) −48.1928 54.9873i −1.68399 1.92141i
\(820\) 0 0
\(821\) −23.6777 + 6.34443i −0.826359 + 0.221422i −0.647125 0.762384i \(-0.724029\pi\)
−0.179234 + 0.983806i \(0.557362\pi\)
\(822\) 0 0
\(823\) −5.16976 8.95429i −0.180207 0.312127i 0.761744 0.647878i \(-0.224343\pi\)
−0.941951 + 0.335751i \(0.891010\pi\)
\(824\) 0 0
\(825\) 25.9374 0.903024
\(826\) 0 0
\(827\) −33.0264 + 33.0264i −1.14844 + 1.14844i −0.161581 + 0.986859i \(0.551659\pi\)
−0.986859 + 0.161581i \(0.948341\pi\)
\(828\) 0 0
\(829\) −9.70111 + 36.2050i −0.336934 + 1.25745i 0.564824 + 0.825211i \(0.308944\pi\)
−0.901758 + 0.432242i \(0.857723\pi\)
\(830\) 0 0
\(831\) −28.2798 + 48.9821i −0.981015 + 1.69917i
\(832\) 0 0
\(833\) −4.96118 + 37.5066i −0.171895 + 1.29953i
\(834\) 0 0
\(835\) −2.68133 + 0.718460i −0.0927912 + 0.0248633i
\(836\) 0 0
\(837\) 0.807156 3.01235i 0.0278994 0.104122i
\(838\) 0 0
\(839\) 41.5802i 1.43551i −0.696296 0.717754i \(-0.745170\pi\)
0.696296 0.717754i \(-0.254830\pi\)
\(840\) 0 0
\(841\) 26.4726i 0.912847i
\(842\) 0 0
\(843\) 13.8968 51.8636i 0.478632 1.78628i
\(844\) 0 0
\(845\) 12.5234 3.35563i 0.430818 0.115437i
\(846\) 0 0
\(847\) 18.4417 + 1.21440i 0.633665 + 0.0417272i
\(848\) 0 0
\(849\) −27.5374 + 47.6961i −0.945080 + 1.63693i
\(850\) 0 0
\(851\) 4.03092 15.0436i 0.138178 0.515688i
\(852\) 0 0
\(853\) 3.78632 3.78632i 0.129641 0.129641i −0.639309 0.768950i \(-0.720779\pi\)
0.768950 + 0.639309i \(0.220779\pi\)
\(854\) 0 0
\(855\) 3.98094 0.136145
\(856\) 0 0
\(857\) −9.93943 17.2156i −0.339524 0.588073i 0.644819 0.764335i \(-0.276933\pi\)
−0.984343 + 0.176262i \(0.943599\pi\)
\(858\) 0 0
\(859\) 12.3699 3.31449i 0.422054 0.113089i −0.0415399 0.999137i \(-0.513226\pi\)
0.463594 + 0.886048i \(0.346560\pi\)
\(860\) 0 0
\(861\) −22.7753 + 4.52304i −0.776179 + 0.154145i
\(862\) 0 0
\(863\) 20.9940 + 12.1209i 0.714643 + 0.412599i 0.812778 0.582574i \(-0.197954\pi\)
−0.0981346 + 0.995173i \(0.531288\pi\)
\(864\) 0 0
\(865\) −2.14258 3.71106i −0.0728500 0.126180i
\(866\) 0 0
\(867\) 23.3732 23.3732i 0.793794 0.793794i
\(868\) 0 0
\(869\) −1.75262 1.75262i −0.0594534 0.0594534i
\(870\) 0 0
\(871\) 22.0593 12.7359i 0.747450 0.431541i
\(872\) 0 0
\(873\) −10.1623 + 17.6016i −0.343941 + 0.595723i
\(874\) 0 0
\(875\) 11.4329 + 3.88485i 0.386503 + 0.131332i
\(876\) 0 0
\(877\) 5.60738 + 20.9270i 0.189348 + 0.706656i 0.993658 + 0.112446i \(0.0358685\pi\)
−0.804310 + 0.594210i \(0.797465\pi\)
\(878\) 0 0
\(879\) 22.3946 12.9295i 0.755349 0.436101i
\(880\) 0 0
\(881\) 15.3375i 0.516733i 0.966047 + 0.258367i \(0.0831842\pi\)
−0.966047 + 0.258367i \(0.916816\pi\)
\(882\) 0 0
\(883\) −35.7596 35.7596i −1.20341 1.20341i −0.973124 0.230282i \(-0.926035\pi\)
−0.230282 0.973124i \(-0.573965\pi\)
\(884\) 0 0
\(885\) −10.4738 2.80645i −0.352074 0.0943378i
\(886\) 0 0
\(887\) 28.0000 + 16.1658i 0.940148 + 0.542795i 0.890007 0.455947i \(-0.150699\pi\)
0.0501414 + 0.998742i \(0.484033\pi\)
\(888\) 0 0
\(889\) −10.9312 22.1835i −0.366622 0.744009i
\(890\) 0 0
\(891\) −1.68931 6.30459i −0.0565940 0.211212i
\(892\) 0 0
\(893\) −5.68632 1.52364i −0.190285 0.0509868i
\(894\) 0 0
\(895\) −1.77504 −0.0593330
\(896\) 0 0
\(897\) 32.8900 1.09817
\(898\) 0 0
\(899\) −1.33315 0.357216i −0.0444629 0.0119138i
\(900\) 0 0
\(901\) 9.81846 + 36.6430i 0.327100 + 1.22075i
\(902\) 0 0
\(903\) 35.7881 53.5252i 1.19095 1.78121i
\(904\) 0 0
\(905\) 2.93378 + 1.69382i 0.0975220 + 0.0563044i
\(906\) 0 0
\(907\) 30.5807 + 8.19408i 1.01542 + 0.272080i 0.727891 0.685693i \(-0.240501\pi\)
0.287525 + 0.957773i \(0.407168\pi\)
\(908\) 0 0
\(909\) −16.9654 16.9654i −0.562707 0.562707i
\(910\) 0 0
\(911\) 7.17911i 0.237854i 0.992903 + 0.118927i \(0.0379455\pi\)
−0.992903 + 0.118927i \(0.962054\pi\)
\(912\) 0 0
\(913\) −22.1729 + 12.8015i −0.733817 + 0.423669i
\(914\) 0 0
\(915\) 0.158940 + 0.593173i 0.00525441 + 0.0196097i
\(916\) 0 0
\(917\) 32.3529 + 36.9142i 1.06839 + 1.21901i
\(918\) 0 0
\(919\) −1.18242 + 2.04801i −0.0390044 + 0.0675576i −0.884869 0.465841i \(-0.845752\pi\)
0.845864 + 0.533398i \(0.179085\pi\)
\(920\) 0 0
\(921\) −7.85475 + 4.53494i −0.258823 + 0.149431i
\(922\) 0 0
\(923\) −55.0580 55.0580i −1.81226 1.81226i
\(924\) 0 0
\(925\) 27.6828 27.6828i 0.910206 0.910206i
\(926\) 0 0
\(927\) −2.39361 4.14585i −0.0786164 0.136168i
\(928\) 0 0
\(929\) −50.6476 29.2414i −1.66169 0.959379i −0.971906 0.235367i \(-0.924371\pi\)
−0.689787 0.724012i \(-0.742296\pi\)
\(930\) 0 0
\(931\) 12.7497 + 5.29023i 0.417854 + 0.173380i
\(932\) 0 0
\(933\) −39.6224 + 10.6168i −1.29718 + 0.347578i
\(934\) 0 0
\(935\) 2.52615 + 4.37543i 0.0826141 + 0.143092i
\(936\) 0 0
\(937\) −13.4613 −0.439761 −0.219881 0.975527i \(-0.570567\pi\)
−0.219881 + 0.975527i \(0.570567\pi\)
\(938\) 0 0
\(939\) −12.7395 + 12.7395i −0.415738 + 0.415738i
\(940\) 0 0
\(941\) 3.99761 14.9193i 0.130318 0.486355i −0.869655 0.493660i \(-0.835659\pi\)
0.999973 + 0.00730539i \(0.00232540\pi\)
\(942\) 0 0
\(943\) 3.08419 5.34197i 0.100435 0.173959i
\(944\) 0 0
\(945\) −0.291359 + 4.42454i −0.00947790 + 0.143930i
\(946\) 0 0
\(947\) 30.1683 8.08357i 0.980338 0.262681i 0.267151 0.963655i \(-0.413918\pi\)
0.713187 + 0.700974i \(0.247251\pi\)
\(948\) 0 0
\(949\) 25.7573 96.1276i 0.836118 3.12043i
\(950\) 0 0
\(951\) 71.7697i 2.32729i
\(952\) 0 0
\(953\) 15.7802i 0.511170i −0.966787 0.255585i \(-0.917732\pi\)
0.966787 0.255585i \(-0.0822680\pi\)
\(954\) 0 0
\(955\) −2.12492 + 7.93032i −0.0687609 + 0.256619i
\(956\) 0 0
\(957\) 8.32855 2.23163i 0.269224 0.0721383i
\(958\) 0 0
\(959\) −22.3366 + 33.4070i −0.721287 + 1.07877i
\(960\) 0 0
\(961\) 15.1232 26.1941i 0.487844 0.844970i
\(962\) 0 0
\(963\) −6.92420 + 25.8415i −0.223129 + 0.832729i
\(964\) 0 0
\(965\) 2.17051 2.17051i 0.0698712 0.0698712i
\(966\) 0 0
\(967\) −44.7046 −1.43760 −0.718801 0.695216i \(-0.755309\pi\)
−0.718801 + 0.695216i \(0.755309\pi\)
\(968\) 0 0
\(969\) −14.4248 24.9844i −0.463390 0.802615i
\(970\) 0 0
\(971\) −56.2271 + 15.0660i −1.80441 + 0.483491i −0.994653 0.103269i \(-0.967070\pi\)
−0.809761 + 0.586761i \(0.800403\pi\)
\(972\) 0 0
\(973\) 4.00728 + 1.36166i 0.128468 + 0.0436527i
\(974\) 0 0
\(975\) 71.5999 + 41.3382i 2.29303 + 1.32388i
\(976\) 0 0
\(977\) 10.4344 + 18.0729i 0.333827 + 0.578204i 0.983259 0.182215i \(-0.0583267\pi\)
−0.649432 + 0.760420i \(0.724993\pi\)
\(978\) 0 0
\(979\) −3.29726 + 3.29726i −0.105381 + 0.105381i
\(980\) 0 0
\(981\) 33.3351 + 33.3351i 1.06431 + 1.06431i
\(982\) 0 0
\(983\) 36.5230 21.0866i 1.16490 0.672558i 0.212430 0.977176i \(-0.431862\pi\)
0.952474 + 0.304619i \(0.0985291\pi\)
\(984\) 0 0
\(985\) −4.90806 + 8.50102i −0.156384 + 0.270865i
\(986\) 0 0
\(987\) 6.87853 20.2432i 0.218946 0.644347i
\(988\) 0 0
\(989\) 4.42695 + 16.5216i 0.140769 + 0.525356i
\(990\) 0 0
\(991\) −14.7987 + 8.54402i −0.470095 + 0.271410i −0.716280 0.697813i \(-0.754156\pi\)
0.246184 + 0.969223i \(0.420823\pi\)
\(992\) 0 0
\(993\) 25.6788i 0.814891i
\(994\) 0 0
\(995\) −2.45062 2.45062i −0.0776898 0.0776898i
\(996\) 0 0
\(997\) 27.4427 + 7.35325i 0.869119 + 0.232880i 0.665707 0.746214i \(-0.268130\pi\)
0.203412 + 0.979093i \(0.434797\pi\)
\(998\) 0 0
\(999\) 25.4673 + 14.7035i 0.805749 + 0.465199i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 896.2.z.b.159.13 56
4.3 odd 2 896.2.z.a.159.2 56
7.3 odd 6 inner 896.2.z.b.31.13 56
8.3 odd 2 448.2.z.a.271.13 56
8.5 even 2 112.2.v.a.75.7 yes 56
16.3 odd 4 inner 896.2.z.b.607.13 56
16.5 even 4 448.2.z.a.47.13 56
16.11 odd 4 112.2.v.a.19.13 yes 56
16.13 even 4 896.2.z.a.607.2 56
28.3 even 6 896.2.z.a.31.2 56
56.3 even 6 448.2.z.a.143.13 56
56.5 odd 6 784.2.j.a.587.7 56
56.13 odd 2 784.2.w.f.411.7 56
56.37 even 6 784.2.j.a.587.8 56
56.45 odd 6 112.2.v.a.59.13 yes 56
56.53 even 6 784.2.w.f.619.13 56
112.3 even 12 inner 896.2.z.b.479.13 56
112.11 odd 12 784.2.w.f.227.7 56
112.27 even 4 784.2.w.f.19.13 56
112.45 odd 12 896.2.z.a.479.2 56
112.59 even 12 112.2.v.a.3.7 56
112.75 even 12 784.2.j.a.195.8 56
112.101 odd 12 448.2.z.a.367.13 56
112.107 odd 12 784.2.j.a.195.7 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.7 56 112.59 even 12
112.2.v.a.19.13 yes 56 16.11 odd 4
112.2.v.a.59.13 yes 56 56.45 odd 6
112.2.v.a.75.7 yes 56 8.5 even 2
448.2.z.a.47.13 56 16.5 even 4
448.2.z.a.143.13 56 56.3 even 6
448.2.z.a.271.13 56 8.3 odd 2
448.2.z.a.367.13 56 112.101 odd 12
784.2.j.a.195.7 56 112.107 odd 12
784.2.j.a.195.8 56 112.75 even 12
784.2.j.a.587.7 56 56.5 odd 6
784.2.j.a.587.8 56 56.37 even 6
784.2.w.f.19.13 56 112.27 even 4
784.2.w.f.227.7 56 112.11 odd 12
784.2.w.f.411.7 56 56.13 odd 2
784.2.w.f.619.13 56 56.53 even 6
896.2.z.a.31.2 56 28.3 even 6
896.2.z.a.159.2 56 4.3 odd 2
896.2.z.a.479.2 56 112.45 odd 12
896.2.z.a.607.2 56 16.13 even 4
896.2.z.b.31.13 56 7.3 odd 6 inner
896.2.z.b.159.13 56 1.1 even 1 trivial
896.2.z.b.479.13 56 112.3 even 12 inner
896.2.z.b.607.13 56 16.3 odd 4 inner