Properties

Label 896.2.z.a.159.11
Level $896$
Weight $2$
Character 896.159
Analytic conductor $7.155$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [896,2,Mod(31,896)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("896.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(896, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.15459602111\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 159.11
Character \(\chi\) \(=\) 896.159
Dual form 896.2.z.a.479.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.67893 + 0.449868i) q^{3} +(-0.195879 - 0.731029i) q^{5} +(-2.52163 - 0.800849i) q^{7} +(0.0183525 + 0.0105958i) q^{9} +(-4.42364 - 1.18531i) q^{11} +(-2.89529 - 2.89529i) q^{13} -1.31547i q^{15} +(-2.28427 + 1.31882i) q^{17} +(-1.44161 - 5.38016i) q^{19} +(-3.87337 - 2.47897i) q^{21} +(-1.01143 + 1.75184i) q^{23} +(3.83409 - 2.21361i) q^{25} +(-3.66114 - 3.66114i) q^{27} +(0.209526 - 0.209526i) q^{29} +(3.33052 + 5.76864i) q^{31} +(-6.89376 - 3.98011i) q^{33} +(-0.0915096 + 2.00026i) q^{35} +(3.82183 - 1.02406i) q^{37} +(-3.55850 - 6.16350i) q^{39} +5.04472 q^{41} +(-3.79454 + 3.79454i) q^{43} +(0.00415099 - 0.0154917i) q^{45} +(-2.53993 + 4.39928i) q^{47} +(5.71728 + 4.03890i) q^{49} +(-4.42843 + 1.18659i) q^{51} +(2.87599 - 10.7333i) q^{53} +3.46599i q^{55} -9.68145i q^{57} +(-1.40190 + 5.23198i) q^{59} +(5.84791 - 1.56694i) q^{61} +(-0.0377926 - 0.0414163i) q^{63} +(-1.54942 + 2.68367i) q^{65} +(-2.47586 + 9.24005i) q^{67} +(-2.48621 + 2.48621i) q^{69} +7.25507 q^{71} +(-3.29633 - 5.70940i) q^{73} +(7.43301 - 1.99167i) q^{75} +(10.2056 + 6.53159i) q^{77} +(-13.0615 - 7.54108i) q^{79} +(-4.53156 - 7.84890i) q^{81} +(8.00548 - 8.00548i) q^{83} +(1.41154 + 1.41154i) q^{85} +(0.446039 - 0.257521i) q^{87} +(-3.92536 + 6.79892i) q^{89} +(4.98218 + 9.61956i) q^{91} +(2.99659 + 11.1834i) q^{93} +(-3.65067 + 2.10772i) q^{95} -8.79532i q^{97} +(-0.0686254 - 0.0686254i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 6 q^{3} + 6 q^{5} + 8 q^{7} + 2 q^{11} - 12 q^{17} - 6 q^{19} + 10 q^{21} + 12 q^{23} + 24 q^{29} - 12 q^{33} - 2 q^{35} - 6 q^{37} + 4 q^{39} - 12 q^{45} - 8 q^{49} - 34 q^{51} - 6 q^{53} + 42 q^{59}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.67893 + 0.449868i 0.969331 + 0.259732i 0.708546 0.705665i \(-0.249352\pi\)
0.260786 + 0.965397i \(0.416018\pi\)
\(4\) 0 0
\(5\) −0.195879 0.731029i −0.0875996 0.326926i 0.908194 0.418549i \(-0.137461\pi\)
−0.995794 + 0.0916229i \(0.970795\pi\)
\(6\) 0 0
\(7\) −2.52163 0.800849i −0.953088 0.302693i
\(8\) 0 0
\(9\) 0.0183525 + 0.0105958i 0.00611749 + 0.00353194i
\(10\) 0 0
\(11\) −4.42364 1.18531i −1.33378 0.357385i −0.479656 0.877457i \(-0.659238\pi\)
−0.854122 + 0.520072i \(0.825905\pi\)
\(12\) 0 0
\(13\) −2.89529 2.89529i −0.803010 0.803010i 0.180555 0.983565i \(-0.442211\pi\)
−0.983565 + 0.180555i \(0.942211\pi\)
\(14\) 0 0
\(15\) 1.31547i 0.339652i
\(16\) 0 0
\(17\) −2.28427 + 1.31882i −0.554017 + 0.319862i −0.750740 0.660597i \(-0.770303\pi\)
0.196724 + 0.980459i \(0.436970\pi\)
\(18\) 0 0
\(19\) −1.44161 5.38016i −0.330728 1.23429i −0.908427 0.418043i \(-0.862716\pi\)
0.577700 0.816249i \(-0.303951\pi\)
\(20\) 0 0
\(21\) −3.87337 2.47897i −0.845240 0.540956i
\(22\) 0 0
\(23\) −1.01143 + 1.75184i −0.210897 + 0.365284i −0.951995 0.306112i \(-0.900972\pi\)
0.741099 + 0.671396i \(0.234305\pi\)
\(24\) 0 0
\(25\) 3.83409 2.21361i 0.766818 0.442723i
\(26\) 0 0
\(27\) −3.66114 3.66114i −0.704587 0.704587i
\(28\) 0 0
\(29\) 0.209526 0.209526i 0.0389080 0.0389080i −0.687385 0.726293i \(-0.741242\pi\)
0.726293 + 0.687385i \(0.241242\pi\)
\(30\) 0 0
\(31\) 3.33052 + 5.76864i 0.598180 + 1.03608i 0.993090 + 0.117358i \(0.0374424\pi\)
−0.394910 + 0.918720i \(0.629224\pi\)
\(32\) 0 0
\(33\) −6.89376 3.98011i −1.20005 0.692849i
\(34\) 0 0
\(35\) −0.0915096 + 2.00026i −0.0154679 + 0.338105i
\(36\) 0 0
\(37\) 3.82183 1.02406i 0.628305 0.168354i 0.0694046 0.997589i \(-0.477890\pi\)
0.558900 + 0.829235i \(0.311223\pi\)
\(38\) 0 0
\(39\) −3.55850 6.16350i −0.569815 0.986949i
\(40\) 0 0
\(41\) 5.04472 0.787853 0.393926 0.919142i \(-0.371117\pi\)
0.393926 + 0.919142i \(0.371117\pi\)
\(42\) 0 0
\(43\) −3.79454 + 3.79454i −0.578662 + 0.578662i −0.934534 0.355873i \(-0.884184\pi\)
0.355873 + 0.934534i \(0.384184\pi\)
\(44\) 0 0
\(45\) 0.00415099 0.0154917i 0.000618792 0.00230936i
\(46\) 0 0
\(47\) −2.53993 + 4.39928i −0.370486 + 0.641701i −0.989640 0.143568i \(-0.954142\pi\)
0.619154 + 0.785270i \(0.287476\pi\)
\(48\) 0 0
\(49\) 5.71728 + 4.03890i 0.816754 + 0.576985i
\(50\) 0 0
\(51\) −4.42843 + 1.18659i −0.620104 + 0.166156i
\(52\) 0 0
\(53\) 2.87599 10.7333i 0.395047 1.47434i −0.426652 0.904416i \(-0.640307\pi\)
0.821699 0.569921i \(-0.193026\pi\)
\(54\) 0 0
\(55\) 3.46599i 0.467354i
\(56\) 0 0
\(57\) 9.68145i 1.28234i
\(58\) 0 0
\(59\) −1.40190 + 5.23198i −0.182512 + 0.681145i 0.812637 + 0.582770i \(0.198031\pi\)
−0.995149 + 0.0983751i \(0.968635\pi\)
\(60\) 0 0
\(61\) 5.84791 1.56694i 0.748748 0.200626i 0.135785 0.990738i \(-0.456644\pi\)
0.612962 + 0.790112i \(0.289978\pi\)
\(62\) 0 0
\(63\) −0.0377926 0.0414163i −0.00476142 0.00521796i
\(64\) 0 0
\(65\) −1.54942 + 2.68367i −0.192182 + 0.332868i
\(66\) 0 0
\(67\) −2.47586 + 9.24005i −0.302475 + 1.12885i 0.632622 + 0.774461i \(0.281979\pi\)
−0.935097 + 0.354392i \(0.884688\pi\)
\(68\) 0 0
\(69\) −2.48621 + 2.48621i −0.299305 + 0.299305i
\(70\) 0 0
\(71\) 7.25507 0.861018 0.430509 0.902586i \(-0.358334\pi\)
0.430509 + 0.902586i \(0.358334\pi\)
\(72\) 0 0
\(73\) −3.29633 5.70940i −0.385806 0.668235i 0.606075 0.795408i \(-0.292743\pi\)
−0.991881 + 0.127172i \(0.959410\pi\)
\(74\) 0 0
\(75\) 7.43301 1.99167i 0.858290 0.229978i
\(76\) 0 0
\(77\) 10.2056 + 6.53159i 1.16303 + 0.744344i
\(78\) 0 0
\(79\) −13.0615 7.54108i −1.46954 0.848437i −0.470121 0.882602i \(-0.655790\pi\)
−0.999416 + 0.0341648i \(0.989123\pi\)
\(80\) 0 0
\(81\) −4.53156 7.84890i −0.503507 0.872100i
\(82\) 0 0
\(83\) 8.00548 8.00548i 0.878715 0.878715i −0.114687 0.993402i \(-0.536586\pi\)
0.993402 + 0.114687i \(0.0365864\pi\)
\(84\) 0 0
\(85\) 1.41154 + 1.41154i 0.153103 + 0.153103i
\(86\) 0 0
\(87\) 0.446039 0.257521i 0.0478204 0.0276091i
\(88\) 0 0
\(89\) −3.92536 + 6.79892i −0.416087 + 0.720684i −0.995542 0.0943203i \(-0.969932\pi\)
0.579455 + 0.815004i \(0.303266\pi\)
\(90\) 0 0
\(91\) 4.98218 + 9.61956i 0.522274 + 1.00840i
\(92\) 0 0
\(93\) 2.99659 + 11.1834i 0.310732 + 1.15967i
\(94\) 0 0
\(95\) −3.65067 + 2.10772i −0.374551 + 0.216247i
\(96\) 0 0
\(97\) 8.79532i 0.893029i −0.894776 0.446514i \(-0.852665\pi\)
0.894776 0.446514i \(-0.147335\pi\)
\(98\) 0 0
\(99\) −0.0686254 0.0686254i −0.00689712 0.00689712i
\(100\) 0 0
\(101\) −2.22819 0.597042i −0.221713 0.0594079i 0.146252 0.989247i \(-0.453279\pi\)
−0.367966 + 0.929839i \(0.619946\pi\)
\(102\) 0 0
\(103\) −11.8007 6.81315i −1.16276 0.671319i −0.210795 0.977530i \(-0.567605\pi\)
−0.951964 + 0.306211i \(0.900939\pi\)
\(104\) 0 0
\(105\) −1.05349 + 3.31713i −0.102810 + 0.323719i
\(106\) 0 0
\(107\) −1.22282 4.56363i −0.118215 0.441183i 0.881293 0.472571i \(-0.156674\pi\)
−0.999507 + 0.0313881i \(0.990007\pi\)
\(108\) 0 0
\(109\) −7.95931 2.13269i −0.762364 0.204275i −0.143368 0.989669i \(-0.545793\pi\)
−0.618995 + 0.785395i \(0.712460\pi\)
\(110\) 0 0
\(111\) 6.87728 0.652763
\(112\) 0 0
\(113\) 18.4851 1.73893 0.869467 0.493990i \(-0.164462\pi\)
0.869467 + 0.493990i \(0.164462\pi\)
\(114\) 0 0
\(115\) 1.47876 + 0.396233i 0.137895 + 0.0369490i
\(116\) 0 0
\(117\) −0.0224578 0.0838137i −0.00207623 0.00774858i
\(118\) 0 0
\(119\) 6.81627 1.49624i 0.624847 0.137160i
\(120\) 0 0
\(121\) 8.63736 + 4.98678i 0.785215 + 0.453344i
\(122\) 0 0
\(123\) 8.46974 + 2.26946i 0.763690 + 0.204630i
\(124\) 0 0
\(125\) −5.04499 5.04499i −0.451237 0.451237i
\(126\) 0 0
\(127\) 13.0667i 1.15948i −0.814802 0.579739i \(-0.803154\pi\)
0.814802 0.579739i \(-0.196846\pi\)
\(128\) 0 0
\(129\) −8.07781 + 4.66373i −0.711212 + 0.410618i
\(130\) 0 0
\(131\) −2.22382 8.29942i −0.194296 0.725124i −0.992448 0.122667i \(-0.960855\pi\)
0.798152 0.602457i \(-0.205811\pi\)
\(132\) 0 0
\(133\) −0.673483 + 14.7213i −0.0583984 + 1.27650i
\(134\) 0 0
\(135\) −1.95926 + 3.39354i −0.168626 + 0.292070i
\(136\) 0 0
\(137\) −19.9938 + 11.5434i −1.70818 + 0.986221i −0.771376 + 0.636380i \(0.780431\pi\)
−0.936809 + 0.349841i \(0.886236\pi\)
\(138\) 0 0
\(139\) −6.09369 6.09369i −0.516860 0.516860i 0.399760 0.916620i \(-0.369093\pi\)
−0.916620 + 0.399760i \(0.869093\pi\)
\(140\) 0 0
\(141\) −6.24346 + 6.24346i −0.525794 + 0.525794i
\(142\) 0 0
\(143\) 9.37591 + 16.2396i 0.784053 + 1.35802i
\(144\) 0 0
\(145\) −0.194211 0.112128i −0.0161284 0.00931173i
\(146\) 0 0
\(147\) 7.78195 + 9.35305i 0.641844 + 0.771427i
\(148\) 0 0
\(149\) −11.6694 + 3.12680i −0.955992 + 0.256157i −0.702903 0.711286i \(-0.748113\pi\)
−0.253089 + 0.967443i \(0.581447\pi\)
\(150\) 0 0
\(151\) 0.813682 + 1.40934i 0.0662165 + 0.114690i 0.897233 0.441557i \(-0.145574\pi\)
−0.831016 + 0.556248i \(0.812241\pi\)
\(152\) 0 0
\(153\) −0.0558960 −0.00451892
\(154\) 0 0
\(155\) 3.56466 3.56466i 0.286321 0.286321i
\(156\) 0 0
\(157\) 6.22579 23.2350i 0.496872 1.85435i −0.0224085 0.999749i \(-0.507133\pi\)
0.519281 0.854604i \(-0.326200\pi\)
\(158\) 0 0
\(159\) 9.65717 16.7267i 0.765864 1.32651i
\(160\) 0 0
\(161\) 3.95341 3.60750i 0.311572 0.284311i
\(162\) 0 0
\(163\) −8.80794 + 2.36008i −0.689891 + 0.184856i −0.586698 0.809806i \(-0.699573\pi\)
−0.103193 + 0.994661i \(0.532906\pi\)
\(164\) 0 0
\(165\) −1.55924 + 5.81916i −0.121387 + 0.453021i
\(166\) 0 0
\(167\) 3.18749i 0.246656i 0.992366 + 0.123328i \(0.0393566\pi\)
−0.992366 + 0.123328i \(0.960643\pi\)
\(168\) 0 0
\(169\) 3.76544i 0.289649i
\(170\) 0 0
\(171\) 0.0305500 0.114014i 0.00233622 0.00871888i
\(172\) 0 0
\(173\) −18.6115 + 4.98693i −1.41500 + 0.379149i −0.883708 0.468038i \(-0.844961\pi\)
−0.531295 + 0.847187i \(0.678294\pi\)
\(174\) 0 0
\(175\) −11.4409 + 2.51140i −0.864854 + 0.189844i
\(176\) 0 0
\(177\) −4.70740 + 8.15345i −0.353830 + 0.612851i
\(178\) 0 0
\(179\) 1.88392 7.03090i 0.140811 0.525514i −0.859095 0.511816i \(-0.828973\pi\)
0.999906 0.0136980i \(-0.00436034\pi\)
\(180\) 0 0
\(181\) 5.59617 5.59617i 0.415960 0.415960i −0.467849 0.883809i \(-0.654971\pi\)
0.883809 + 0.467849i \(0.154971\pi\)
\(182\) 0 0
\(183\) 10.5231 0.777894
\(184\) 0 0
\(185\) −1.49723 2.59328i −0.110079 0.190662i
\(186\) 0 0
\(187\) 11.6680 3.12643i 0.853249 0.228627i
\(188\) 0 0
\(189\) 6.30004 + 12.1641i 0.458261 + 0.884807i
\(190\) 0 0
\(191\) 4.12735 + 2.38292i 0.298644 + 0.172422i 0.641834 0.766844i \(-0.278174\pi\)
−0.343189 + 0.939266i \(0.611507\pi\)
\(192\) 0 0
\(193\) 2.67050 + 4.62543i 0.192226 + 0.332946i 0.945988 0.324202i \(-0.105096\pi\)
−0.753761 + 0.657148i \(0.771763\pi\)
\(194\) 0 0
\(195\) −3.80866 + 3.80866i −0.272744 + 0.272744i
\(196\) 0 0
\(197\) 11.6754 + 11.6754i 0.831838 + 0.831838i 0.987768 0.155930i \(-0.0498374\pi\)
−0.155930 + 0.987768i \(0.549837\pi\)
\(198\) 0 0
\(199\) 9.02919 5.21301i 0.640062 0.369540i −0.144576 0.989494i \(-0.546182\pi\)
0.784639 + 0.619953i \(0.212849\pi\)
\(200\) 0 0
\(201\) −8.31361 + 14.3996i −0.586397 + 1.01567i
\(202\) 0 0
\(203\) −0.696147 + 0.360549i −0.0488599 + 0.0253056i
\(204\) 0 0
\(205\) −0.988153 3.68784i −0.0690156 0.257570i
\(206\) 0 0
\(207\) −0.0371243 + 0.0214337i −0.00258032 + 0.00148975i
\(208\) 0 0
\(209\) 25.5086i 1.76447i
\(210\) 0 0
\(211\) −0.716512 0.716512i −0.0493267 0.0493267i 0.682013 0.731340i \(-0.261105\pi\)
−0.731340 + 0.682013i \(0.761105\pi\)
\(212\) 0 0
\(213\) 12.1808 + 3.26383i 0.834612 + 0.223634i
\(214\) 0 0
\(215\) 3.51719 + 2.03065i 0.239870 + 0.138489i
\(216\) 0 0
\(217\) −3.77856 17.2136i −0.256505 1.16854i
\(218\) 0 0
\(219\) −2.96583 11.0686i −0.200412 0.747947i
\(220\) 0 0
\(221\) 10.4320 + 2.79525i 0.701733 + 0.188029i
\(222\) 0 0
\(223\) 12.9181 0.865062 0.432531 0.901619i \(-0.357621\pi\)
0.432531 + 0.901619i \(0.357621\pi\)
\(224\) 0 0
\(225\) 0.0938201 0.00625467
\(226\) 0 0
\(227\) 15.0241 + 4.02569i 0.997184 + 0.267195i 0.720265 0.693699i \(-0.244020\pi\)
0.276919 + 0.960893i \(0.410687\pi\)
\(228\) 0 0
\(229\) 3.58406 + 13.3759i 0.236841 + 0.883903i 0.977310 + 0.211813i \(0.0679367\pi\)
−0.740469 + 0.672090i \(0.765397\pi\)
\(230\) 0 0
\(231\) 14.1961 + 15.5572i 0.934032 + 1.02359i
\(232\) 0 0
\(233\) 10.6523 + 6.15010i 0.697854 + 0.402906i 0.806548 0.591169i \(-0.201333\pi\)
−0.108694 + 0.994075i \(0.534667\pi\)
\(234\) 0 0
\(235\) 3.71352 + 0.995035i 0.242243 + 0.0649089i
\(236\) 0 0
\(237\) −18.5369 18.5369i −1.20410 1.20410i
\(238\) 0 0
\(239\) 7.20218i 0.465870i 0.972492 + 0.232935i \(0.0748329\pi\)
−0.972492 + 0.232935i \(0.925167\pi\)
\(240\) 0 0
\(241\) 20.7383 11.9733i 1.33587 0.771265i 0.349678 0.936870i \(-0.386291\pi\)
0.986192 + 0.165605i \(0.0529577\pi\)
\(242\) 0 0
\(243\) −0.0569986 0.212722i −0.00365646 0.0136461i
\(244\) 0 0
\(245\) 1.83266 4.97063i 0.117084 0.317562i
\(246\) 0 0
\(247\) −11.4032 + 19.7510i −0.725571 + 1.25673i
\(248\) 0 0
\(249\) 17.0421 9.83923i 1.08000 0.623536i
\(250\) 0 0
\(251\) 6.11266 + 6.11266i 0.385828 + 0.385828i 0.873196 0.487369i \(-0.162043\pi\)
−0.487369 + 0.873196i \(0.662043\pi\)
\(252\) 0 0
\(253\) 6.55066 6.55066i 0.411837 0.411837i
\(254\) 0 0
\(255\) 1.73487 + 3.00488i 0.108642 + 0.188173i
\(256\) 0 0
\(257\) −19.7315 11.3920i −1.23082 0.710613i −0.263617 0.964627i \(-0.584915\pi\)
−0.967200 + 0.254015i \(0.918249\pi\)
\(258\) 0 0
\(259\) −10.4574 0.478413i −0.649790 0.0297272i
\(260\) 0 0
\(261\) 0.00606542 0.00162522i 0.000375440 0.000100599i
\(262\) 0 0
\(263\) 5.28788 + 9.15888i 0.326065 + 0.564761i 0.981727 0.190293i \(-0.0609439\pi\)
−0.655662 + 0.755054i \(0.727611\pi\)
\(264\) 0 0
\(265\) −8.40973 −0.516605
\(266\) 0 0
\(267\) −9.64903 + 9.64903i −0.590511 + 0.590511i
\(268\) 0 0
\(269\) −2.68103 + 10.0057i −0.163465 + 0.610061i 0.834766 + 0.550605i \(0.185603\pi\)
−0.998231 + 0.0594553i \(0.981064\pi\)
\(270\) 0 0
\(271\) 12.3322 21.3601i 0.749131 1.29753i −0.199109 0.979977i \(-0.563805\pi\)
0.948240 0.317555i \(-0.102862\pi\)
\(272\) 0 0
\(273\) 4.03720 + 18.3919i 0.244342 + 1.11313i
\(274\) 0 0
\(275\) −19.5845 + 5.24764i −1.18099 + 0.316445i
\(276\) 0 0
\(277\) −2.77622 + 10.3610i −0.166807 + 0.622531i 0.830996 + 0.556278i \(0.187771\pi\)
−0.997803 + 0.0662529i \(0.978896\pi\)
\(278\) 0 0
\(279\) 0.141158i 0.00845093i
\(280\) 0 0
\(281\) 6.46396i 0.385608i 0.981237 + 0.192804i \(0.0617581\pi\)
−0.981237 + 0.192804i \(0.938242\pi\)
\(282\) 0 0
\(283\) 5.09979 19.0327i 0.303151 1.13138i −0.631374 0.775478i \(-0.717509\pi\)
0.934525 0.355897i \(-0.115825\pi\)
\(284\) 0 0
\(285\) −7.07742 + 1.89639i −0.419230 + 0.112332i
\(286\) 0 0
\(287\) −12.7209 4.04006i −0.750893 0.238477i
\(288\) 0 0
\(289\) −5.02141 + 8.69734i −0.295377 + 0.511608i
\(290\) 0 0
\(291\) 3.95673 14.7667i 0.231948 0.865641i
\(292\) 0 0
\(293\) 2.96394 2.96394i 0.173155 0.173155i −0.615209 0.788364i \(-0.710928\pi\)
0.788364 + 0.615209i \(0.210928\pi\)
\(294\) 0 0
\(295\) 4.09933 0.238672
\(296\) 0 0
\(297\) 11.8560 + 20.5352i 0.687954 + 1.19157i
\(298\) 0 0
\(299\) 8.00046 2.14372i 0.462679 0.123974i
\(300\) 0 0
\(301\) 12.6073 6.52959i 0.726672 0.376359i
\(302\) 0 0
\(303\) −3.47239 2.00479i −0.199484 0.115172i
\(304\) 0 0
\(305\) −2.29096 3.96806i −0.131180 0.227210i
\(306\) 0 0
\(307\) −8.60981 + 8.60981i −0.491388 + 0.491388i −0.908743 0.417356i \(-0.862957\pi\)
0.417356 + 0.908743i \(0.362957\pi\)
\(308\) 0 0
\(309\) −16.7476 16.7476i −0.952736 0.952736i
\(310\) 0 0
\(311\) −4.98997 + 2.88096i −0.282955 + 0.163364i −0.634760 0.772709i \(-0.718901\pi\)
0.351805 + 0.936073i \(0.385568\pi\)
\(312\) 0 0
\(313\) 4.01618 6.95623i 0.227008 0.393190i −0.729912 0.683541i \(-0.760439\pi\)
0.956920 + 0.290352i \(0.0937723\pi\)
\(314\) 0 0
\(315\) −0.0228738 + 0.0357401i −0.00128879 + 0.00201372i
\(316\) 0 0
\(317\) 2.41473 + 9.01190i 0.135625 + 0.506159i 0.999995 + 0.00330181i \(0.00105100\pi\)
−0.864370 + 0.502857i \(0.832282\pi\)
\(318\) 0 0
\(319\) −1.17522 + 0.678515i −0.0657998 + 0.0379895i
\(320\) 0 0
\(321\) 8.21213i 0.458356i
\(322\) 0 0
\(323\) 10.3885 + 10.3885i 0.578031 + 0.578031i
\(324\) 0 0
\(325\) −17.5099 4.69176i −0.971273 0.260252i
\(326\) 0 0
\(327\) −12.4037 7.16128i −0.685926 0.396020i
\(328\) 0 0
\(329\) 9.92793 9.05928i 0.547344 0.499454i
\(330\) 0 0
\(331\) −1.32915 4.96046i −0.0730568 0.272652i 0.919729 0.392554i \(-0.128408\pi\)
−0.992786 + 0.119903i \(0.961742\pi\)
\(332\) 0 0
\(333\) 0.0809907 + 0.0217014i 0.00443827 + 0.00118923i
\(334\) 0 0
\(335\) 7.23972 0.395548
\(336\) 0 0
\(337\) 1.50446 0.0819532 0.0409766 0.999160i \(-0.486953\pi\)
0.0409766 + 0.999160i \(0.486953\pi\)
\(338\) 0 0
\(339\) 31.0353 + 8.31587i 1.68560 + 0.451656i
\(340\) 0 0
\(341\) −7.89541 29.4661i −0.427561 1.59568i
\(342\) 0 0
\(343\) −11.1823 14.7633i −0.603790 0.797143i
\(344\) 0 0
\(345\) 2.30449 + 1.33050i 0.124070 + 0.0716316i
\(346\) 0 0
\(347\) −8.39020 2.24815i −0.450410 0.120687i 0.0264814 0.999649i \(-0.491570\pi\)
−0.476891 + 0.878962i \(0.658236\pi\)
\(348\) 0 0
\(349\) 15.6677 + 15.6677i 0.838672 + 0.838672i 0.988684 0.150012i \(-0.0479313\pi\)
−0.150012 + 0.988684i \(0.547931\pi\)
\(350\) 0 0
\(351\) 21.2002i 1.13158i
\(352\) 0 0
\(353\) 21.5439 12.4384i 1.14666 0.662027i 0.198592 0.980082i \(-0.436363\pi\)
0.948072 + 0.318056i \(0.103030\pi\)
\(354\) 0 0
\(355\) −1.42111 5.30367i −0.0754249 0.281490i
\(356\) 0 0
\(357\) 12.1172 + 0.554347i 0.641308 + 0.0293391i
\(358\) 0 0
\(359\) 4.32864 7.49742i 0.228457 0.395699i −0.728894 0.684626i \(-0.759965\pi\)
0.957351 + 0.288928i \(0.0932987\pi\)
\(360\) 0 0
\(361\) −10.4134 + 6.01216i −0.548072 + 0.316429i
\(362\) 0 0
\(363\) 12.2581 + 12.2581i 0.643386 + 0.643386i
\(364\) 0 0
\(365\) −3.52806 + 3.52806i −0.184667 + 0.184667i
\(366\) 0 0
\(367\) −11.9671 20.7276i −0.624676 1.08197i −0.988603 0.150543i \(-0.951898\pi\)
0.363928 0.931427i \(-0.381436\pi\)
\(368\) 0 0
\(369\) 0.0925831 + 0.0534529i 0.00481968 + 0.00278264i
\(370\) 0 0
\(371\) −15.8480 + 24.7623i −0.822786 + 1.28560i
\(372\) 0 0
\(373\) 2.28564 0.612436i 0.118346 0.0317107i −0.199160 0.979967i \(-0.563821\pi\)
0.317506 + 0.948256i \(0.397155\pi\)
\(374\) 0 0
\(375\) −6.20061 10.7398i −0.320198 0.554599i
\(376\) 0 0
\(377\) −1.21328 −0.0624870
\(378\) 0 0
\(379\) −5.34619 + 5.34619i −0.274615 + 0.274615i −0.830955 0.556340i \(-0.812205\pi\)
0.556340 + 0.830955i \(0.312205\pi\)
\(380\) 0 0
\(381\) 5.87828 21.9380i 0.301153 1.12392i
\(382\) 0 0
\(383\) −12.5700 + 21.7718i −0.642296 + 1.11249i 0.342623 + 0.939473i \(0.388685\pi\)
−0.984919 + 0.173016i \(0.944649\pi\)
\(384\) 0 0
\(385\) 2.77573 8.73996i 0.141464 0.445429i
\(386\) 0 0
\(387\) −0.109845 + 0.0294330i −0.00558375 + 0.00149616i
\(388\) 0 0
\(389\) −1.62916 + 6.08010i −0.0826016 + 0.308273i −0.994849 0.101366i \(-0.967679\pi\)
0.912248 + 0.409639i \(0.134345\pi\)
\(390\) 0 0
\(391\) 5.33557i 0.269831i
\(392\) 0 0
\(393\) 14.9346i 0.753350i
\(394\) 0 0
\(395\) −2.95427 + 11.0255i −0.148646 + 0.554753i
\(396\) 0 0
\(397\) −17.4416 + 4.67347i −0.875371 + 0.234555i −0.668409 0.743794i \(-0.733024\pi\)
−0.206962 + 0.978349i \(0.566358\pi\)
\(398\) 0 0
\(399\) −7.75338 + 24.4131i −0.388154 + 1.22218i
\(400\) 0 0
\(401\) −7.88832 + 13.6630i −0.393924 + 0.682296i −0.992963 0.118423i \(-0.962216\pi\)
0.599039 + 0.800720i \(0.295549\pi\)
\(402\) 0 0
\(403\) 7.05905 26.3447i 0.351636 1.31232i
\(404\) 0 0
\(405\) −4.85014 + 4.85014i −0.241005 + 0.241005i
\(406\) 0 0
\(407\) −18.1202 −0.898186
\(408\) 0 0
\(409\) −14.9850 25.9548i −0.740963 1.28338i −0.952057 0.305919i \(-0.901036\pi\)
0.211095 0.977466i \(-0.432297\pi\)
\(410\) 0 0
\(411\) −38.7612 + 10.3860i −1.91195 + 0.512305i
\(412\) 0 0
\(413\) 7.72511 12.0704i 0.380128 0.593946i
\(414\) 0 0
\(415\) −7.42034 4.28413i −0.364250 0.210300i
\(416\) 0 0
\(417\) −7.48953 12.9722i −0.366764 0.635253i
\(418\) 0 0
\(419\) 19.0681 19.0681i 0.931537 0.931537i −0.0662653 0.997802i \(-0.521108\pi\)
0.997802 + 0.0662653i \(0.0211084\pi\)
\(420\) 0 0
\(421\) −1.12116 1.12116i −0.0546418 0.0546418i 0.679258 0.733900i \(-0.262302\pi\)
−0.733900 + 0.679258i \(0.762302\pi\)
\(422\) 0 0
\(423\) −0.0932279 + 0.0538251i −0.00453289 + 0.00261707i
\(424\) 0 0
\(425\) −5.83873 + 10.1130i −0.283220 + 0.490552i
\(426\) 0 0
\(427\) −16.0012 0.732036i −0.774351 0.0354257i
\(428\) 0 0
\(429\) 8.43585 + 31.4830i 0.407287 + 1.52001i
\(430\) 0 0
\(431\) 14.2383 8.22048i 0.685834 0.395966i −0.116216 0.993224i \(-0.537076\pi\)
0.802049 + 0.597258i \(0.203743\pi\)
\(432\) 0 0
\(433\) 34.3709i 1.65176i −0.563847 0.825879i \(-0.690679\pi\)
0.563847 0.825879i \(-0.309321\pi\)
\(434\) 0 0
\(435\) −0.275625 0.275625i −0.0132152 0.0132152i
\(436\) 0 0
\(437\) 10.8833 + 2.91616i 0.520617 + 0.139499i
\(438\) 0 0
\(439\) −8.37299 4.83415i −0.399621 0.230721i 0.286699 0.958021i \(-0.407442\pi\)
−0.686321 + 0.727299i \(0.740775\pi\)
\(440\) 0 0
\(441\) 0.0621309 + 0.134703i 0.00295861 + 0.00641443i
\(442\) 0 0
\(443\) 9.00239 + 33.5974i 0.427717 + 1.59626i 0.757918 + 0.652350i \(0.226217\pi\)
−0.330202 + 0.943910i \(0.607117\pi\)
\(444\) 0 0
\(445\) 5.73910 + 1.53779i 0.272060 + 0.0728982i
\(446\) 0 0
\(447\) −20.9987 −0.993205
\(448\) 0 0
\(449\) −35.5072 −1.67569 −0.837844 0.545910i \(-0.816184\pi\)
−0.837844 + 0.545910i \(0.816184\pi\)
\(450\) 0 0
\(451\) −22.3160 5.97956i −1.05082 0.281567i
\(452\) 0 0
\(453\) 0.732100 + 2.73223i 0.0343970 + 0.128372i
\(454\) 0 0
\(455\) 6.05628 5.52638i 0.283923 0.259081i
\(456\) 0 0
\(457\) −26.0860 15.0607i −1.22025 0.704512i −0.255279 0.966867i \(-0.582167\pi\)
−0.964971 + 0.262356i \(0.915501\pi\)
\(458\) 0 0
\(459\) 13.1914 + 3.53464i 0.615724 + 0.164983i
\(460\) 0 0
\(461\) 2.37946 + 2.37946i 0.110822 + 0.110822i 0.760344 0.649521i \(-0.225031\pi\)
−0.649521 + 0.760344i \(0.725031\pi\)
\(462\) 0 0
\(463\) 1.23324i 0.0573136i 0.999589 + 0.0286568i \(0.00912299\pi\)
−0.999589 + 0.0286568i \(0.990877\pi\)
\(464\) 0 0
\(465\) 7.58845 4.38120i 0.351906 0.203173i
\(466\) 0 0
\(467\) −8.25258 30.7990i −0.381884 1.42521i −0.843021 0.537881i \(-0.819225\pi\)
0.461137 0.887329i \(-0.347442\pi\)
\(468\) 0 0
\(469\) 13.6431 21.3172i 0.629980 0.984339i
\(470\) 0 0
\(471\) 20.9054 36.2091i 0.963268 1.66843i
\(472\) 0 0
\(473\) 21.2834 12.2880i 0.978611 0.565001i
\(474\) 0 0
\(475\) −17.4368 17.4368i −0.800057 0.800057i
\(476\) 0 0
\(477\) 0.166510 0.166510i 0.00762396 0.00762396i
\(478\) 0 0
\(479\) −6.64611 11.5114i −0.303668 0.525969i 0.673296 0.739373i \(-0.264878\pi\)
−0.976964 + 0.213404i \(0.931545\pi\)
\(480\) 0 0
\(481\) −14.0303 8.10037i −0.639725 0.369345i
\(482\) 0 0
\(483\) 8.26040 4.27824i 0.375861 0.194667i
\(484\) 0 0
\(485\) −6.42963 + 1.72281i −0.291955 + 0.0782290i
\(486\) 0 0
\(487\) −0.642044 1.11205i −0.0290938 0.0503919i 0.851112 0.524984i \(-0.175929\pi\)
−0.880206 + 0.474592i \(0.842595\pi\)
\(488\) 0 0
\(489\) −15.8497 −0.716746
\(490\) 0 0
\(491\) 7.08341 7.08341i 0.319670 0.319670i −0.528970 0.848640i \(-0.677422\pi\)
0.848640 + 0.528970i \(0.177422\pi\)
\(492\) 0 0
\(493\) −0.202286 + 0.754942i −0.00911051 + 0.0340009i
\(494\) 0 0
\(495\) −0.0367249 + 0.0636095i −0.00165066 + 0.00285903i
\(496\) 0 0
\(497\) −18.2946 5.81022i −0.820627 0.260624i
\(498\) 0 0
\(499\) −21.9365 + 5.87786i −0.982011 + 0.263129i −0.713891 0.700256i \(-0.753069\pi\)
−0.268120 + 0.963386i \(0.586402\pi\)
\(500\) 0 0
\(501\) −1.43395 + 5.35158i −0.0640642 + 0.239091i
\(502\) 0 0
\(503\) 36.0928i 1.60930i −0.593751 0.804649i \(-0.702354\pi\)
0.593751 0.804649i \(-0.297646\pi\)
\(504\) 0 0
\(505\) 1.74582i 0.0776880i
\(506\) 0 0
\(507\) −1.69395 + 6.32191i −0.0752310 + 0.280766i
\(508\) 0 0
\(509\) 5.25856 1.40903i 0.233081 0.0624540i −0.140388 0.990097i \(-0.544835\pi\)
0.373469 + 0.927643i \(0.378168\pi\)
\(510\) 0 0
\(511\) 3.73976 + 17.0369i 0.165437 + 0.753668i
\(512\) 0 0
\(513\) −14.4196 + 24.9755i −0.636640 + 1.10269i
\(514\) 0 0
\(515\) −2.66910 + 9.96122i −0.117615 + 0.438944i
\(516\) 0 0
\(517\) 16.4502 16.4502i 0.723481 0.723481i
\(518\) 0 0
\(519\) −33.4908 −1.47008
\(520\) 0 0
\(521\) −2.57861 4.46629i −0.112971 0.195672i 0.803996 0.594635i \(-0.202703\pi\)
−0.916967 + 0.398963i \(0.869370\pi\)
\(522\) 0 0
\(523\) 7.42474 1.98945i 0.324661 0.0869928i −0.0928072 0.995684i \(-0.529584\pi\)
0.417469 + 0.908691i \(0.362917\pi\)
\(524\) 0 0
\(525\) −20.3384 0.930458i −0.887639 0.0406085i
\(526\) 0 0
\(527\) −15.2156 8.78475i −0.662803 0.382670i
\(528\) 0 0
\(529\) 9.45404 + 16.3749i 0.411045 + 0.711951i
\(530\) 0 0
\(531\) −0.0811654 + 0.0811654i −0.00352228 + 0.00352228i
\(532\) 0 0
\(533\) −14.6059 14.6059i −0.632653 0.632653i
\(534\) 0 0
\(535\) −3.09662 + 1.78784i −0.133879 + 0.0772949i
\(536\) 0 0
\(537\) 6.32595 10.9569i 0.272985 0.472824i
\(538\) 0 0
\(539\) −20.5039 24.6434i −0.883163 1.06147i
\(540\) 0 0
\(541\) 2.02312 + 7.55039i 0.0869808 + 0.324617i 0.995682 0.0928305i \(-0.0295915\pi\)
−0.908701 + 0.417447i \(0.862925\pi\)
\(542\) 0 0
\(543\) 11.9131 6.87805i 0.511241 0.295165i
\(544\) 0 0
\(545\) 6.23624i 0.267131i
\(546\) 0 0
\(547\) 3.45431 + 3.45431i 0.147696 + 0.147696i 0.777088 0.629392i \(-0.216696\pi\)
−0.629392 + 0.777088i \(0.716696\pi\)
\(548\) 0 0
\(549\) 0.123927 + 0.0332060i 0.00528906 + 0.00141720i
\(550\) 0 0
\(551\) −1.42934 0.825229i −0.0608918 0.0351559i
\(552\) 0 0
\(553\) 26.8971 + 29.4762i 1.14378 + 1.25345i
\(554\) 0 0
\(555\) −1.34711 5.02749i −0.0571817 0.213405i
\(556\) 0 0
\(557\) −27.8991 7.47554i −1.18212 0.316749i −0.386354 0.922350i \(-0.626266\pi\)
−0.795768 + 0.605602i \(0.792933\pi\)
\(558\) 0 0
\(559\) 21.9726 0.929342
\(560\) 0 0
\(561\) 20.9963 0.886463
\(562\) 0 0
\(563\) 0.908166 + 0.243342i 0.0382746 + 0.0102557i 0.277906 0.960608i \(-0.410360\pi\)
−0.239631 + 0.970864i \(0.577026\pi\)
\(564\) 0 0
\(565\) −3.62084 13.5132i −0.152330 0.568503i
\(566\) 0 0
\(567\) 5.14116 + 23.4211i 0.215909 + 0.983596i
\(568\) 0 0
\(569\) 11.5141 + 6.64769i 0.482698 + 0.278686i 0.721540 0.692373i \(-0.243435\pi\)
−0.238842 + 0.971058i \(0.576768\pi\)
\(570\) 0 0
\(571\) −7.90497 2.11813i −0.330813 0.0886410i 0.0895898 0.995979i \(-0.471444\pi\)
−0.420402 + 0.907338i \(0.638111\pi\)
\(572\) 0 0
\(573\) 5.85753 + 5.85753i 0.244702 + 0.244702i
\(574\) 0 0
\(575\) 8.95562i 0.373475i
\(576\) 0 0
\(577\) 23.0378 13.3009i 0.959077 0.553724i 0.0631883 0.998002i \(-0.479873\pi\)
0.895889 + 0.444278i \(0.146540\pi\)
\(578\) 0 0
\(579\) 2.40274 + 8.96716i 0.0998546 + 0.372662i
\(580\) 0 0
\(581\) −26.5981 + 13.7757i −1.10347 + 0.571513i
\(582\) 0 0
\(583\) −25.4447 + 44.0715i −1.05381 + 1.82525i
\(584\) 0 0
\(585\) −0.0568713 + 0.0328347i −0.00235134 + 0.00135755i
\(586\) 0 0
\(587\) 9.30074 + 9.30074i 0.383883 + 0.383883i 0.872499 0.488616i \(-0.162498\pi\)
−0.488616 + 0.872499i \(0.662498\pi\)
\(588\) 0 0
\(589\) 26.2349 26.2349i 1.08099 1.08099i
\(590\) 0 0
\(591\) 14.3498 + 24.8546i 0.590272 + 1.02238i
\(592\) 0 0
\(593\) 12.2162 + 7.05302i 0.501659 + 0.289633i 0.729398 0.684089i \(-0.239800\pi\)
−0.227739 + 0.973722i \(0.573133\pi\)
\(594\) 0 0
\(595\) −2.42895 4.68981i −0.0995774 0.192264i
\(596\) 0 0
\(597\) 17.5046 4.69033i 0.716414 0.191963i
\(598\) 0 0
\(599\) 14.7397 + 25.5299i 0.602247 + 1.04312i 0.992480 + 0.122406i \(0.0390610\pi\)
−0.390233 + 0.920716i \(0.627606\pi\)
\(600\) 0 0
\(601\) 23.6858 0.966164 0.483082 0.875575i \(-0.339517\pi\)
0.483082 + 0.875575i \(0.339517\pi\)
\(602\) 0 0
\(603\) −0.143344 + 0.143344i −0.00583742 + 0.00583742i
\(604\) 0 0
\(605\) 1.95361 7.29097i 0.0794255 0.296420i
\(606\) 0 0
\(607\) −2.86300 + 4.95886i −0.116206 + 0.201274i −0.918261 0.395976i \(-0.870407\pi\)
0.802055 + 0.597250i \(0.203740\pi\)
\(608\) 0 0
\(609\) −1.33098 + 0.292163i −0.0539341 + 0.0118391i
\(610\) 0 0
\(611\) 20.0910 5.38338i 0.812796 0.217788i
\(612\) 0 0
\(613\) 0.582780 2.17496i 0.0235383 0.0878459i −0.953158 0.302474i \(-0.902187\pi\)
0.976696 + 0.214628i \(0.0688540\pi\)
\(614\) 0 0
\(615\) 6.63616i 0.267596i
\(616\) 0 0
\(617\) 12.2572i 0.493457i −0.969085 0.246729i \(-0.920644\pi\)
0.969085 0.246729i \(-0.0793556\pi\)
\(618\) 0 0
\(619\) −1.93311 + 7.21445i −0.0776981 + 0.289973i −0.993832 0.110900i \(-0.964627\pi\)
0.916133 + 0.400873i \(0.131293\pi\)
\(620\) 0 0
\(621\) 10.1167 2.71077i 0.405970 0.108779i
\(622\) 0 0
\(623\) 15.3432 14.0008i 0.614714 0.560929i
\(624\) 0 0
\(625\) 8.36824 14.4942i 0.334730 0.579769i
\(626\) 0 0
\(627\) −11.4755 + 42.8272i −0.458288 + 1.71036i
\(628\) 0 0
\(629\) −7.37954 + 7.37954i −0.294241 + 0.294241i
\(630\) 0 0
\(631\) 10.1046 0.402257 0.201129 0.979565i \(-0.435539\pi\)
0.201129 + 0.979565i \(0.435539\pi\)
\(632\) 0 0
\(633\) −0.880639 1.52531i −0.0350022 0.0606257i
\(634\) 0 0
\(635\) −9.55211 + 2.55948i −0.379064 + 0.101570i
\(636\) 0 0
\(637\) −4.85941 28.2470i −0.192537 1.11919i
\(638\) 0 0
\(639\) 0.133148 + 0.0768733i 0.00526727 + 0.00304106i
\(640\) 0 0
\(641\) 11.1392 + 19.2937i 0.439973 + 0.762056i 0.997687 0.0679772i \(-0.0216545\pi\)
−0.557713 + 0.830034i \(0.688321\pi\)
\(642\) 0 0
\(643\) −2.94059 + 2.94059i −0.115965 + 0.115965i −0.762708 0.646743i \(-0.776131\pi\)
0.646743 + 0.762708i \(0.276131\pi\)
\(644\) 0 0
\(645\) 4.99159 + 4.99159i 0.196544 + 0.196544i
\(646\) 0 0
\(647\) 13.6596 7.88639i 0.537015 0.310046i −0.206853 0.978372i \(-0.566322\pi\)
0.743869 + 0.668326i \(0.232989\pi\)
\(648\) 0 0
\(649\) 12.4030 21.4827i 0.486862 0.843269i
\(650\) 0 0
\(651\) 1.39993 30.6004i 0.0548677 1.19932i
\(652\) 0 0
\(653\) −3.18397 11.8827i −0.124598 0.465007i 0.875227 0.483713i \(-0.160712\pi\)
−0.999825 + 0.0187058i \(0.994045\pi\)
\(654\) 0 0
\(655\) −5.63152 + 3.25136i −0.220042 + 0.127041i
\(656\) 0 0
\(657\) 0.139709i 0.00545056i
\(658\) 0 0
\(659\) 22.1996 + 22.1996i 0.864775 + 0.864775i 0.991888 0.127114i \(-0.0405713\pi\)
−0.127114 + 0.991888i \(0.540571\pi\)
\(660\) 0 0
\(661\) 0.947777 + 0.253956i 0.0368642 + 0.00987774i 0.277204 0.960811i \(-0.410592\pi\)
−0.240340 + 0.970689i \(0.577259\pi\)
\(662\) 0 0
\(663\) 16.2571 + 9.38606i 0.631375 + 0.364524i
\(664\) 0 0
\(665\) 10.8936 2.39125i 0.422436 0.0927288i
\(666\) 0 0
\(667\) 0.155136 + 0.578976i 0.00600690 + 0.0224181i
\(668\) 0 0
\(669\) 21.6887 + 5.81146i 0.838532 + 0.224684i
\(670\) 0 0
\(671\) −27.7264 −1.07036
\(672\) 0 0
\(673\) −28.5560 −1.10075 −0.550376 0.834917i \(-0.685516\pi\)
−0.550376 + 0.834917i \(0.685516\pi\)
\(674\) 0 0
\(675\) −22.1415 5.93280i −0.852227 0.228354i
\(676\) 0 0
\(677\) −1.91250 7.13755i −0.0735033 0.274318i 0.919386 0.393356i \(-0.128686\pi\)
−0.992890 + 0.119037i \(0.962019\pi\)
\(678\) 0 0
\(679\) −7.04372 + 22.1786i −0.270313 + 0.851135i
\(680\) 0 0
\(681\) 23.4134 + 13.5177i 0.897203 + 0.518001i
\(682\) 0 0
\(683\) −1.90507 0.510463i −0.0728956 0.0195323i 0.222187 0.975004i \(-0.428680\pi\)
−0.295083 + 0.955472i \(0.595347\pi\)
\(684\) 0 0
\(685\) 12.3549 + 12.3549i 0.472058 + 0.472058i
\(686\) 0 0
\(687\) 24.0695i 0.918310i
\(688\) 0 0
\(689\) −39.4030 + 22.7493i −1.50113 + 0.866680i
\(690\) 0 0
\(691\) −0.0579544 0.216289i −0.00220469 0.00822801i 0.964815 0.262931i \(-0.0846891\pi\)
−0.967019 + 0.254703i \(0.918022\pi\)
\(692\) 0 0
\(693\) 0.118090 + 0.228007i 0.00448586 + 0.00866127i
\(694\) 0 0
\(695\) −3.26104 + 5.64829i −0.123698 + 0.214252i
\(696\) 0 0
\(697\) −11.5235 + 6.65309i −0.436484 + 0.252004i
\(698\) 0 0
\(699\) 15.1177 + 15.1177i 0.571804 + 0.571804i
\(700\) 0 0
\(701\) −18.2761 + 18.2761i −0.690279 + 0.690279i −0.962293 0.272014i \(-0.912310\pi\)
0.272014 + 0.962293i \(0.412310\pi\)
\(702\) 0 0
\(703\) −11.0192 19.0858i −0.415596 0.719833i
\(704\) 0 0
\(705\) 5.78711 + 3.34119i 0.217955 + 0.125837i
\(706\) 0 0
\(707\) 5.14054 + 3.28997i 0.193330 + 0.123732i
\(708\) 0 0
\(709\) 1.66489 0.446105i 0.0625261 0.0167538i −0.227420 0.973797i \(-0.573029\pi\)
0.289946 + 0.957043i \(0.406362\pi\)
\(710\) 0 0
\(711\) −0.159808 0.276795i −0.00599325 0.0103806i
\(712\) 0 0
\(713\) −13.4743 −0.504617
\(714\) 0 0
\(715\) 10.0351 10.0351i 0.375290 0.375290i
\(716\) 0 0
\(717\) −3.24003 + 12.0920i −0.121001 + 0.451582i
\(718\) 0 0
\(719\) 25.5064 44.1784i 0.951229 1.64758i 0.208457 0.978031i \(-0.433156\pi\)
0.742771 0.669545i \(-0.233511\pi\)
\(720\) 0 0
\(721\) 24.3008 + 26.6309i 0.905009 + 0.991785i
\(722\) 0 0
\(723\) 40.2045 10.7728i 1.49522 0.400644i
\(724\) 0 0
\(725\) 0.339532 1.26715i 0.0126099 0.0470609i
\(726\) 0 0
\(727\) 31.5017i 1.16833i 0.811634 + 0.584166i \(0.198578\pi\)
−0.811634 + 0.584166i \(0.801422\pi\)
\(728\) 0 0
\(729\) 26.8066i 0.992837i
\(730\) 0 0
\(731\) 3.66342 13.6721i 0.135496 0.505680i
\(732\) 0 0
\(733\) −40.3371 + 10.8083i −1.48988 + 0.399213i −0.909698 0.415271i \(-0.863687\pi\)
−0.580186 + 0.814484i \(0.697020\pi\)
\(734\) 0 0
\(735\) 5.31304 7.52090i 0.195974 0.277413i
\(736\) 0 0
\(737\) 21.9047 37.9400i 0.806869 1.39754i
\(738\) 0 0
\(739\) 4.66207 17.3991i 0.171497 0.640036i −0.825625 0.564220i \(-0.809177\pi\)
0.997122 0.0758162i \(-0.0241562\pi\)
\(740\) 0 0
\(741\) −28.0306 + 28.0306i −1.02973 + 1.02973i
\(742\) 0 0
\(743\) 23.0128 0.844256 0.422128 0.906536i \(-0.361283\pi\)
0.422128 + 0.906536i \(0.361283\pi\)
\(744\) 0 0
\(745\) 4.57156 + 7.91818i 0.167489 + 0.290100i
\(746\) 0 0
\(747\) 0.231745 0.0620958i 0.00847910 0.00227197i
\(748\) 0 0
\(749\) −0.571271 + 12.4871i −0.0208738 + 0.456269i
\(750\) 0 0
\(751\) 0.399765 + 0.230804i 0.0145876 + 0.00842217i 0.507276 0.861784i \(-0.330652\pi\)
−0.492688 + 0.870206i \(0.663986\pi\)
\(752\) 0 0
\(753\) 7.51284 + 13.0126i 0.273783 + 0.474206i
\(754\) 0 0
\(755\) 0.870885 0.870885i 0.0316947 0.0316947i
\(756\) 0 0
\(757\) 5.23204 + 5.23204i 0.190162 + 0.190162i 0.795766 0.605604i \(-0.207069\pi\)
−0.605604 + 0.795766i \(0.707069\pi\)
\(758\) 0 0
\(759\) 13.9450 8.05117i 0.506173 0.292239i
\(760\) 0 0
\(761\) −10.6052 + 18.3687i −0.384437 + 0.665864i −0.991691 0.128644i \(-0.958938\pi\)
0.607254 + 0.794508i \(0.292271\pi\)
\(762\) 0 0
\(763\) 18.3625 + 11.7521i 0.664767 + 0.425454i
\(764\) 0 0
\(765\) 0.0109488 + 0.0408616i 0.000395856 + 0.00147735i
\(766\) 0 0
\(767\) 19.2070 11.0892i 0.693525 0.400407i
\(768\) 0 0
\(769\) 10.8533i 0.391379i 0.980666 + 0.195689i \(0.0626944\pi\)
−0.980666 + 0.195689i \(0.937306\pi\)
\(770\) 0 0
\(771\) −28.0029 28.0029i −1.00850 1.00850i
\(772\) 0 0
\(773\) 46.9962 + 12.5926i 1.69034 + 0.452924i 0.970476 0.241196i \(-0.0775396\pi\)
0.719859 + 0.694120i \(0.244206\pi\)
\(774\) 0 0
\(775\) 25.5391 + 14.7450i 0.917390 + 0.529656i
\(776\) 0 0
\(777\) −17.3420 5.50766i −0.622140 0.197586i
\(778\) 0 0
\(779\) −7.27251 27.1414i −0.260565 0.972441i
\(780\) 0 0
\(781\) −32.0938 8.59952i −1.14841 0.307715i
\(782\) 0 0
\(783\) −1.53421 −0.0548282
\(784\) 0 0
\(785\) −18.2049 −0.649762
\(786\) 0 0
\(787\) −12.9614 3.47299i −0.462023 0.123799i 0.0202968 0.999794i \(-0.493539\pi\)
−0.482319 + 0.875995i \(0.660206\pi\)
\(788\) 0 0
\(789\) 4.75770 + 17.7560i 0.169379 + 0.632130i
\(790\) 0 0
\(791\) −46.6127 14.8038i −1.65736 0.526363i
\(792\) 0 0
\(793\) −21.4682 12.3946i −0.762356 0.440147i
\(794\) 0 0
\(795\) −14.1194 3.78327i −0.500762 0.134179i
\(796\) 0 0
\(797\) −6.22856 6.22856i −0.220627 0.220627i 0.588135 0.808762i \(-0.299862\pi\)
−0.808762 + 0.588135i \(0.799862\pi\)
\(798\) 0 0
\(799\) 13.3989i 0.474017i
\(800\) 0 0
\(801\) −0.144080 + 0.0831847i −0.00509082 + 0.00293919i
\(802\) 0 0
\(803\) 7.81434 + 29.1635i 0.275762 + 1.02916i
\(804\) 0 0
\(805\) −3.41158 2.18342i −0.120242 0.0769555i
\(806\) 0 0
\(807\) −9.00253 + 15.5928i −0.316904 + 0.548894i
\(808\) 0 0
\(809\) −1.49336 + 0.862190i −0.0525036 + 0.0303130i −0.526022 0.850471i \(-0.676317\pi\)
0.473518 + 0.880784i \(0.342984\pi\)
\(810\) 0 0
\(811\) 29.5809 + 29.5809i 1.03872 + 1.03872i 0.999219 + 0.0395050i \(0.0125781\pi\)
0.0395050 + 0.999219i \(0.487422\pi\)
\(812\) 0 0
\(813\) 30.3142 30.3142i 1.06317 1.06317i
\(814\) 0 0
\(815\) 3.45058 + 5.97657i 0.120868 + 0.209350i
\(816\) 0 0
\(817\) 25.8854 + 14.9450i 0.905617 + 0.522858i
\(818\) 0 0
\(819\) −0.0104917 + 0.229333i −0.000366611 + 0.00801354i
\(820\) 0 0
\(821\) −36.4661 + 9.77105i −1.27267 + 0.341012i −0.831055 0.556190i \(-0.812263\pi\)
−0.441620 + 0.897202i \(0.645596\pi\)
\(822\) 0 0
\(823\) −18.3778 31.8313i −0.640609 1.10957i −0.985297 0.170850i \(-0.945349\pi\)
0.344688 0.938717i \(-0.387985\pi\)
\(824\) 0 0
\(825\) −35.2417 −1.22696
\(826\) 0 0
\(827\) 25.1791 25.1791i 0.875565 0.875565i −0.117507 0.993072i \(-0.537490\pi\)
0.993072 + 0.117507i \(0.0374904\pi\)
\(828\) 0 0
\(829\) −6.08475 + 22.7086i −0.211332 + 0.788702i 0.776094 + 0.630618i \(0.217198\pi\)
−0.987426 + 0.158084i \(0.949468\pi\)
\(830\) 0 0
\(831\) −9.32215 + 16.1464i −0.323382 + 0.560114i
\(832\) 0 0
\(833\) −18.3864 1.68584i −0.637051 0.0584110i
\(834\) 0 0
\(835\) 2.33015 0.624362i 0.0806382 0.0216069i
\(836\) 0 0
\(837\) 8.92628 33.3133i 0.308537 1.15148i
\(838\) 0 0
\(839\) 13.7267i 0.473899i −0.971522 0.236949i \(-0.923852\pi\)
0.971522 0.236949i \(-0.0761475\pi\)
\(840\) 0 0
\(841\) 28.9122i 0.996972i
\(842\) 0 0
\(843\) −2.90793 + 10.8525i −0.100154 + 0.373782i
\(844\) 0 0
\(845\) 2.75264 0.737569i 0.0946938 0.0253731i
\(846\) 0 0
\(847\) −17.7866 19.4921i −0.611155 0.669755i
\(848\) 0 0
\(849\) 17.1244 29.6603i 0.587708 1.01794i
\(850\) 0 0
\(851\) −2.07151 + 7.73099i −0.0710106 + 0.265015i
\(852\) 0 0
\(853\) −2.88131 + 2.88131i −0.0986542 + 0.0986542i −0.754711 0.656057i \(-0.772223\pi\)
0.656057 + 0.754711i \(0.272223\pi\)
\(854\) 0 0
\(855\) −0.0893318 −0.00305508
\(856\) 0 0
\(857\) −7.75242 13.4276i −0.264817 0.458677i 0.702698 0.711488i \(-0.251978\pi\)
−0.967516 + 0.252811i \(0.918645\pi\)
\(858\) 0 0
\(859\) 23.6842 6.34616i 0.808094 0.216528i 0.168960 0.985623i \(-0.445959\pi\)
0.639135 + 0.769095i \(0.279293\pi\)
\(860\) 0 0
\(861\) −19.5401 12.5057i −0.665924 0.426194i
\(862\) 0 0
\(863\) 40.7734 + 23.5405i 1.38794 + 0.801329i 0.993083 0.117412i \(-0.0374598\pi\)
0.394860 + 0.918741i \(0.370793\pi\)
\(864\) 0 0
\(865\) 7.29118 + 12.6287i 0.247907 + 0.429388i
\(866\) 0 0
\(867\) −12.3433 + 12.3433i −0.419199 + 0.419199i
\(868\) 0 0
\(869\) 48.8410 + 48.8410i 1.65682 + 1.65682i
\(870\) 0 0
\(871\) 33.9210 19.5843i 1.14937 0.663589i
\(872\) 0 0
\(873\) 0.0931935 0.161416i 0.00315412 0.00546310i
\(874\) 0 0
\(875\) 8.68134 + 16.7619i 0.293483 + 0.566655i
\(876\) 0 0
\(877\) −5.24273 19.5661i −0.177034 0.660701i −0.996196 0.0871389i \(-0.972228\pi\)
0.819162 0.573563i \(-0.194439\pi\)
\(878\) 0 0
\(879\) 6.30964 3.64287i 0.212819 0.122871i
\(880\) 0 0
\(881\) 29.7191i 1.00126i −0.865660 0.500632i \(-0.833101\pi\)
0.865660 0.500632i \(-0.166899\pi\)
\(882\) 0 0
\(883\) −10.1351 10.1351i −0.341074 0.341074i 0.515697 0.856771i \(-0.327533\pi\)
−0.856771 + 0.515697i \(0.827533\pi\)
\(884\) 0 0
\(885\) 6.88249 + 1.84416i 0.231352 + 0.0619907i
\(886\) 0 0
\(887\) 29.8863 + 17.2549i 1.00348 + 0.579362i 0.909277 0.416191i \(-0.136635\pi\)
0.0942069 + 0.995553i \(0.469968\pi\)
\(888\) 0 0
\(889\) −10.4644 + 32.9494i −0.350966 + 1.10509i
\(890\) 0 0
\(891\) 10.7426 + 40.0920i 0.359891 + 1.34313i
\(892\) 0 0
\(893\) 27.3304 + 7.32316i 0.914577 + 0.245060i
\(894\) 0 0
\(895\) −5.50881 −0.184139
\(896\) 0 0
\(897\) 14.3966 0.480689
\(898\) 0 0
\(899\) 1.90651 + 0.510848i 0.0635857 + 0.0170377i
\(900\) 0 0
\(901\) 7.58584 + 28.3107i 0.252721 + 0.943168i
\(902\) 0 0
\(903\) 24.1042 5.29111i 0.802138 0.176077i
\(904\) 0 0
\(905\) −5.18714 2.99479i −0.172426 0.0995503i
\(906\) 0 0
\(907\) −8.06405 2.16076i −0.267762 0.0717467i 0.122440 0.992476i \(-0.460928\pi\)
−0.390202 + 0.920729i \(0.627595\pi\)
\(908\) 0 0
\(909\) −0.0345667 0.0345667i −0.00114650 0.00114650i
\(910\) 0 0
\(911\) 8.93090i 0.295894i 0.988995 + 0.147947i \(0.0472665\pi\)
−0.988995 + 0.147947i \(0.952734\pi\)
\(912\) 0 0
\(913\) −44.9023 + 25.9244i −1.48605 + 0.857972i
\(914\) 0 0
\(915\) −2.06126 7.69273i −0.0681432 0.254314i
\(916\) 0 0
\(917\) −1.03891 + 22.7091i −0.0343080 + 0.749919i
\(918\) 0 0
\(919\) 26.6631 46.1818i 0.879533 1.52340i 0.0276794 0.999617i \(-0.491188\pi\)
0.851854 0.523779i \(-0.175478\pi\)
\(920\) 0 0
\(921\) −18.3286 + 10.5820i −0.603946 + 0.348689i
\(922\) 0 0
\(923\) −21.0055 21.0055i −0.691406 0.691406i
\(924\) 0 0
\(925\) 12.3864 12.3864i 0.407262 0.407262i
\(926\) 0 0
\(927\) −0.144382 0.250076i −0.00474211 0.00821358i
\(928\) 0 0
\(929\) 33.5814 + 19.3882i 1.10177 + 0.636107i 0.936685 0.350173i \(-0.113877\pi\)
0.165084 + 0.986280i \(0.447211\pi\)
\(930\) 0 0
\(931\) 13.4878 36.5824i 0.442045 1.19894i
\(932\) 0 0
\(933\) −9.67386 + 2.59210i −0.316708 + 0.0848617i
\(934\) 0 0
\(935\) −4.57103 7.91725i −0.149489 0.258922i
\(936\) 0 0
\(937\) −14.3493 −0.468771 −0.234385 0.972144i \(-0.575308\pi\)
−0.234385 + 0.972144i \(0.575308\pi\)
\(938\) 0 0
\(939\) 9.87228 9.87228i 0.322170 0.322170i
\(940\) 0 0
\(941\) −8.50975 + 31.7588i −0.277410 + 1.03531i 0.676799 + 0.736168i \(0.263367\pi\)
−0.954209 + 0.299141i \(0.903300\pi\)
\(942\) 0 0
\(943\) −5.10236 + 8.83754i −0.166156 + 0.287790i
\(944\) 0 0
\(945\) 7.65826 6.98820i 0.249123 0.227326i
\(946\) 0 0
\(947\) −48.8089 + 13.0783i −1.58608 + 0.424988i −0.940800 0.338962i \(-0.889924\pi\)
−0.645276 + 0.763950i \(0.723258\pi\)
\(948\) 0 0
\(949\) −6.98657 + 26.0742i −0.226794 + 0.846405i
\(950\) 0 0
\(951\) 16.2167i 0.525861i
\(952\) 0 0
\(953\) 12.5441i 0.406345i 0.979143 + 0.203172i \(0.0651252\pi\)
−0.979143 + 0.203172i \(0.934875\pi\)
\(954\) 0 0
\(955\) 0.933528 3.48398i 0.0302083 0.112739i
\(956\) 0 0
\(957\) −2.27836 + 0.610485i −0.0736489 + 0.0197342i
\(958\) 0 0
\(959\) 59.6616 13.0963i 1.92657 0.422901i
\(960\) 0 0
\(961\) −6.68477 + 11.5784i −0.215638 + 0.373496i
\(962\) 0 0
\(963\) 0.0259135 0.0967106i 0.000835052 0.00311646i
\(964\) 0 0
\(965\) 2.85823 2.85823i 0.0920098 0.0920098i
\(966\) 0 0
\(967\) 19.7015 0.633559 0.316779 0.948499i \(-0.397399\pi\)
0.316779 + 0.948499i \(0.397399\pi\)
\(968\) 0 0
\(969\) 12.7681 + 22.1150i 0.410171 + 0.710437i
\(970\) 0 0
\(971\) −19.1999 + 5.14459i −0.616153 + 0.165098i −0.553378 0.832930i \(-0.686662\pi\)
−0.0627745 + 0.998028i \(0.519995\pi\)
\(972\) 0 0
\(973\) 10.4859 + 20.2462i 0.336163 + 0.649063i
\(974\) 0 0
\(975\) −27.2872 15.7543i −0.873890 0.504541i
\(976\) 0 0
\(977\) −22.0366 38.1686i −0.705015 1.22112i −0.966686 0.255965i \(-0.917607\pi\)
0.261671 0.965157i \(-0.415726\pi\)
\(978\) 0 0
\(979\) 25.4232 25.4232i 0.812530 0.812530i
\(980\) 0 0
\(981\) −0.123475 0.123475i −0.00394227 0.00394227i
\(982\) 0 0
\(983\) −38.9733 + 22.5013i −1.24306 + 0.717678i −0.969715 0.244239i \(-0.921462\pi\)
−0.273340 + 0.961917i \(0.588129\pi\)
\(984\) 0 0
\(985\) 6.24810 10.8220i 0.199081 0.344818i
\(986\) 0 0
\(987\) 20.7438 10.7437i 0.660282 0.341974i
\(988\) 0 0
\(989\) −2.80953 10.4853i −0.0893379 0.333414i
\(990\) 0 0
\(991\) −32.1531 + 18.5636i −1.02138 + 0.589693i −0.914503 0.404579i \(-0.867418\pi\)
−0.106875 + 0.994272i \(0.534085\pi\)
\(992\) 0 0
\(993\) 8.92622i 0.283265i
\(994\) 0 0
\(995\) −5.57949 5.57949i −0.176882 0.176882i
\(996\) 0 0
\(997\) −55.7466 14.9373i −1.76551 0.473067i −0.777689 0.628649i \(-0.783608\pi\)
−0.987823 + 0.155582i \(0.950275\pi\)
\(998\) 0 0
\(999\) −17.7415 10.2430i −0.561316 0.324076i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 896.2.z.a.159.11 56
4.3 odd 2 896.2.z.b.159.4 56
7.3 odd 6 inner 896.2.z.a.31.11 56
8.3 odd 2 112.2.v.a.75.5 yes 56
8.5 even 2 448.2.z.a.271.4 56
16.3 odd 4 inner 896.2.z.a.607.11 56
16.5 even 4 112.2.v.a.19.6 yes 56
16.11 odd 4 448.2.z.a.47.4 56
16.13 even 4 896.2.z.b.607.4 56
28.3 even 6 896.2.z.b.31.4 56
56.3 even 6 112.2.v.a.59.6 yes 56
56.11 odd 6 784.2.w.f.619.6 56
56.19 even 6 784.2.j.a.587.26 56
56.27 even 2 784.2.w.f.411.5 56
56.45 odd 6 448.2.z.a.143.4 56
56.51 odd 6 784.2.j.a.587.25 56
112.3 even 12 inner 896.2.z.a.479.11 56
112.5 odd 12 784.2.j.a.195.25 56
112.37 even 12 784.2.j.a.195.26 56
112.45 odd 12 896.2.z.b.479.4 56
112.53 even 12 784.2.w.f.227.5 56
112.59 even 12 448.2.z.a.367.4 56
112.69 odd 4 784.2.w.f.19.6 56
112.101 odd 12 112.2.v.a.3.5 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.5 56 112.101 odd 12
112.2.v.a.19.6 yes 56 16.5 even 4
112.2.v.a.59.6 yes 56 56.3 even 6
112.2.v.a.75.5 yes 56 8.3 odd 2
448.2.z.a.47.4 56 16.11 odd 4
448.2.z.a.143.4 56 56.45 odd 6
448.2.z.a.271.4 56 8.5 even 2
448.2.z.a.367.4 56 112.59 even 12
784.2.j.a.195.25 56 112.5 odd 12
784.2.j.a.195.26 56 112.37 even 12
784.2.j.a.587.25 56 56.51 odd 6
784.2.j.a.587.26 56 56.19 even 6
784.2.w.f.19.6 56 112.69 odd 4
784.2.w.f.227.5 56 112.53 even 12
784.2.w.f.411.5 56 56.27 even 2
784.2.w.f.619.6 56 56.11 odd 6
896.2.z.a.31.11 56 7.3 odd 6 inner
896.2.z.a.159.11 56 1.1 even 1 trivial
896.2.z.a.479.11 56 112.3 even 12 inner
896.2.z.a.607.11 56 16.3 odd 4 inner
896.2.z.b.31.4 56 28.3 even 6
896.2.z.b.159.4 56 4.3 odd 2
896.2.z.b.479.4 56 112.45 odd 12
896.2.z.b.607.4 56 16.13 even 4