Defining parameters
Level: | \( N \) | \(=\) | \( 896 = 2^{7} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 896.q (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 56 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(256\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(896, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 288 | 64 | 224 |
Cusp forms | 224 | 64 | 160 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(896, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
896.2.q.a | $16$ | $7.155$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-12\) | \(0\) | \(0\) | \(q+(-2+\beta _{2}-\beta _{3}+\beta _{7})q^{3}+(\beta _{5}+\beta _{10}+\cdots)q^{5}+\cdots\) |
896.2.q.b | $16$ | $7.155$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{13}q^{3}+\beta _{7}q^{5}+(-\beta _{10}+\beta _{14}+\cdots)q^{7}+\cdots\) |
896.2.q.c | $16$ | $7.155$ | 16.0.\(\cdots\).2 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{5}q^{3}+\beta _{9}q^{5}-\beta _{14}q^{7}+(2\beta _{6}+2\beta _{7}+\cdots)q^{9}+\cdots\) |
896.2.q.d | $16$ | $7.155$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(12\) | \(0\) | \(0\) | \(q+(2-\beta _{2}+\beta _{3}-\beta _{7})q^{3}+(\beta _{5}+\beta _{10}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(896, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(896, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(448, [\chi])\)\(^{\oplus 2}\)