Properties

Label 896.2.ba.c.737.1
Level $896$
Weight $2$
Character 896.737
Analytic conductor $7.155$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [896,2,Mod(289,896)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(896, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("896.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 896.ba (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,0,0,0,0,0,-6,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.15459602111\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 737.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 896.737
Dual form 896.2.ba.c.417.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.133975i) q^{3} +(0.866025 - 0.232051i) q^{5} +(-1.73205 + 2.00000i) q^{7} +(-2.36603 - 1.36603i) q^{9} +(-0.767949 + 2.86603i) q^{11} +(-3.73205 + 3.73205i) q^{13} +0.464102 q^{15} +(-3.23205 - 5.59808i) q^{17} +(0.767949 + 2.86603i) q^{19} +(-1.13397 + 0.767949i) q^{21} +(-3.86603 - 2.23205i) q^{23} +(-3.63397 + 2.09808i) q^{25} +(-2.09808 - 2.09808i) q^{27} +(0.267949 - 0.267949i) q^{29} +(1.86603 + 3.23205i) q^{31} +(-0.767949 + 1.33013i) q^{33} +(-1.03590 + 2.13397i) q^{35} +(1.13397 - 0.303848i) q^{37} +(-2.36603 + 1.36603i) q^{39} +4.92820i q^{41} +(6.46410 + 6.46410i) q^{43} +(-2.36603 - 0.633975i) q^{45} +(2.13397 - 3.69615i) q^{47} +(-1.00000 - 6.92820i) q^{49} +(-0.866025 - 3.23205i) q^{51} +(1.06218 - 3.96410i) q^{53} +2.66025i q^{55} +1.53590i q^{57} +(-3.03590 + 11.3301i) q^{59} +(-1.86603 - 6.96410i) q^{61} +(6.83013 - 2.36603i) q^{63} +(-2.36603 + 4.09808i) q^{65} +(-4.96410 - 1.33013i) q^{67} +(-1.63397 - 1.63397i) q^{69} +0.535898i q^{71} +(6.23205 - 3.59808i) q^{73} +(-2.09808 + 0.562178i) q^{75} +(-4.40192 - 6.50000i) q^{77} +(-8.33013 + 14.4282i) q^{79} +(3.33013 + 5.76795i) q^{81} +(1.53590 - 1.53590i) q^{83} +(-4.09808 - 4.09808i) q^{85} +(0.169873 - 0.0980762i) q^{87} +(-4.50000 - 2.59808i) q^{89} +(-1.00000 - 13.9282i) q^{91} +(0.500000 + 1.86603i) q^{93} +(1.33013 + 2.30385i) q^{95} -2.92820 q^{97} +(5.73205 - 5.73205i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 6 q^{9} - 10 q^{11} - 8 q^{13} - 12 q^{15} - 6 q^{17} + 10 q^{19} - 8 q^{21} - 12 q^{23} - 18 q^{25} + 2 q^{27} + 8 q^{29} + 4 q^{31} - 10 q^{33} - 18 q^{35} + 8 q^{37} - 6 q^{39} + 12 q^{43}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.133975i 0.288675 + 0.0773503i 0.400251 0.916406i \(-0.368923\pi\)
−0.111576 + 0.993756i \(0.535590\pi\)
\(4\) 0 0
\(5\) 0.866025 0.232051i 0.387298 0.103776i −0.0599153 0.998203i \(-0.519083\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) −1.73205 + 2.00000i −0.654654 + 0.755929i
\(8\) 0 0
\(9\) −2.36603 1.36603i −0.788675 0.455342i
\(10\) 0 0
\(11\) −0.767949 + 2.86603i −0.231545 + 0.864139i 0.748130 + 0.663552i \(0.230952\pi\)
−0.979676 + 0.200587i \(0.935715\pi\)
\(12\) 0 0
\(13\) −3.73205 + 3.73205i −1.03508 + 1.03508i −0.0357229 + 0.999362i \(0.511373\pi\)
−0.999362 + 0.0357229i \(0.988627\pi\)
\(14\) 0 0
\(15\) 0.464102 0.119831
\(16\) 0 0
\(17\) −3.23205 5.59808i −0.783887 1.35773i −0.929661 0.368415i \(-0.879901\pi\)
0.145774 0.989318i \(-0.453433\pi\)
\(18\) 0 0
\(19\) 0.767949 + 2.86603i 0.176180 + 0.657511i 0.996348 + 0.0853887i \(0.0272132\pi\)
−0.820168 + 0.572123i \(0.806120\pi\)
\(20\) 0 0
\(21\) −1.13397 + 0.767949i −0.247454 + 0.167580i
\(22\) 0 0
\(23\) −3.86603 2.23205i −0.806122 0.465415i 0.0394853 0.999220i \(-0.487428\pi\)
−0.845607 + 0.533805i \(0.820761\pi\)
\(24\) 0 0
\(25\) −3.63397 + 2.09808i −0.726795 + 0.419615i
\(26\) 0 0
\(27\) −2.09808 2.09808i −0.403775 0.403775i
\(28\) 0 0
\(29\) 0.267949 0.267949i 0.0497569 0.0497569i −0.681791 0.731547i \(-0.738798\pi\)
0.731547 + 0.681791i \(0.238798\pi\)
\(30\) 0 0
\(31\) 1.86603 + 3.23205i 0.335148 + 0.580493i 0.983513 0.180836i \(-0.0578803\pi\)
−0.648365 + 0.761329i \(0.724547\pi\)
\(32\) 0 0
\(33\) −0.767949 + 1.33013i −0.133683 + 0.231545i
\(34\) 0 0
\(35\) −1.03590 + 2.13397i −0.175099 + 0.360708i
\(36\) 0 0
\(37\) 1.13397 0.303848i 0.186424 0.0499522i −0.164399 0.986394i \(-0.552568\pi\)
0.350823 + 0.936442i \(0.385902\pi\)
\(38\) 0 0
\(39\) −2.36603 + 1.36603i −0.378867 + 0.218739i
\(40\) 0 0
\(41\) 4.92820i 0.769656i 0.922988 + 0.384828i \(0.125739\pi\)
−0.922988 + 0.384828i \(0.874261\pi\)
\(42\) 0 0
\(43\) 6.46410 + 6.46410i 0.985766 + 0.985766i 0.999900 0.0141339i \(-0.00449910\pi\)
−0.0141339 + 0.999900i \(0.504499\pi\)
\(44\) 0 0
\(45\) −2.36603 0.633975i −0.352706 0.0945074i
\(46\) 0 0
\(47\) 2.13397 3.69615i 0.311272 0.539139i −0.667366 0.744730i \(-0.732578\pi\)
0.978638 + 0.205591i \(0.0659116\pi\)
\(48\) 0 0
\(49\) −1.00000 6.92820i −0.142857 0.989743i
\(50\) 0 0
\(51\) −0.866025 3.23205i −0.121268 0.452578i
\(52\) 0 0
\(53\) 1.06218 3.96410i 0.145901 0.544511i −0.853812 0.520581i \(-0.825715\pi\)
0.999714 0.0239302i \(-0.00761796\pi\)
\(54\) 0 0
\(55\) 2.66025i 0.358709i
\(56\) 0 0
\(57\) 1.53590i 0.203435i
\(58\) 0 0
\(59\) −3.03590 + 11.3301i −0.395240 + 1.47506i 0.426130 + 0.904662i \(0.359877\pi\)
−0.821370 + 0.570395i \(0.806790\pi\)
\(60\) 0 0
\(61\) −1.86603 6.96410i −0.238920 0.891662i −0.976342 0.216230i \(-0.930624\pi\)
0.737422 0.675432i \(-0.236043\pi\)
\(62\) 0 0
\(63\) 6.83013 2.36603i 0.860515 0.298091i
\(64\) 0 0
\(65\) −2.36603 + 4.09808i −0.293469 + 0.508304i
\(66\) 0 0
\(67\) −4.96410 1.33013i −0.606462 0.162501i −0.0574958 0.998346i \(-0.518312\pi\)
−0.548966 + 0.835845i \(0.684978\pi\)
\(68\) 0 0
\(69\) −1.63397 1.63397i −0.196707 0.196707i
\(70\) 0 0
\(71\) 0.535898i 0.0635994i 0.999494 + 0.0317997i \(0.0101239\pi\)
−0.999494 + 0.0317997i \(0.989876\pi\)
\(72\) 0 0
\(73\) 6.23205 3.59808i 0.729406 0.421123i −0.0887986 0.996050i \(-0.528303\pi\)
0.818205 + 0.574927i \(0.194969\pi\)
\(74\) 0 0
\(75\) −2.09808 + 0.562178i −0.242265 + 0.0649147i
\(76\) 0 0
\(77\) −4.40192 6.50000i −0.501646 0.740744i
\(78\) 0 0
\(79\) −8.33013 + 14.4282i −0.937213 + 1.62330i −0.166572 + 0.986029i \(0.553270\pi\)
−0.770640 + 0.637270i \(0.780063\pi\)
\(80\) 0 0
\(81\) 3.33013 + 5.76795i 0.370014 + 0.640883i
\(82\) 0 0
\(83\) 1.53590 1.53590i 0.168587 0.168587i −0.617771 0.786358i \(-0.711964\pi\)
0.786358 + 0.617771i \(0.211964\pi\)
\(84\) 0 0
\(85\) −4.09808 4.09808i −0.444499 0.444499i
\(86\) 0 0
\(87\) 0.169873 0.0980762i 0.0182123 0.0105149i
\(88\) 0 0
\(89\) −4.50000 2.59808i −0.476999 0.275396i 0.242166 0.970235i \(-0.422142\pi\)
−0.719165 + 0.694839i \(0.755475\pi\)
\(90\) 0 0
\(91\) −1.00000 13.9282i −0.104828 1.46007i
\(92\) 0 0
\(93\) 0.500000 + 1.86603i 0.0518476 + 0.193498i
\(94\) 0 0
\(95\) 1.33013 + 2.30385i 0.136468 + 0.236370i
\(96\) 0 0
\(97\) −2.92820 −0.297314 −0.148657 0.988889i \(-0.547495\pi\)
−0.148657 + 0.988889i \(0.547495\pi\)
\(98\) 0 0
\(99\) 5.73205 5.73205i 0.576093 0.576093i
\(100\) 0 0
\(101\) −5.06218 + 18.8923i −0.503706 + 1.87985i −0.0292559 + 0.999572i \(0.509314\pi\)
−0.474450 + 0.880283i \(0.657353\pi\)
\(102\) 0 0
\(103\) 5.59808 + 3.23205i 0.551595 + 0.318463i 0.749765 0.661704i \(-0.230167\pi\)
−0.198170 + 0.980168i \(0.563500\pi\)
\(104\) 0 0
\(105\) −0.803848 + 0.928203i −0.0784475 + 0.0905834i
\(106\) 0 0
\(107\) 3.23205 0.866025i 0.312454 0.0837218i −0.0991843 0.995069i \(-0.531623\pi\)
0.411638 + 0.911347i \(0.364957\pi\)
\(108\) 0 0
\(109\) 2.13397 + 0.571797i 0.204398 + 0.0547682i 0.359565 0.933120i \(-0.382925\pi\)
−0.155167 + 0.987888i \(0.549592\pi\)
\(110\) 0 0
\(111\) 0.607695 0.0576799
\(112\) 0 0
\(113\) −1.46410 −0.137731 −0.0688655 0.997626i \(-0.521938\pi\)
−0.0688655 + 0.997626i \(0.521938\pi\)
\(114\) 0 0
\(115\) −3.86603 1.03590i −0.360509 0.0965980i
\(116\) 0 0
\(117\) 13.9282 3.73205i 1.28766 0.345028i
\(118\) 0 0
\(119\) 16.7942 + 3.23205i 1.53952 + 0.296282i
\(120\) 0 0
\(121\) 1.90192 + 1.09808i 0.172902 + 0.0998251i
\(122\) 0 0
\(123\) −0.660254 + 2.46410i −0.0595331 + 0.222181i
\(124\) 0 0
\(125\) −5.83013 + 5.83013i −0.521462 + 0.521462i
\(126\) 0 0
\(127\) −9.46410 −0.839803 −0.419902 0.907570i \(-0.637935\pi\)
−0.419902 + 0.907570i \(0.637935\pi\)
\(128\) 0 0
\(129\) 2.36603 + 4.09808i 0.208317 + 0.360815i
\(130\) 0 0
\(131\) −2.03590 7.59808i −0.177877 0.663847i −0.996044 0.0888654i \(-0.971676\pi\)
0.818166 0.574982i \(-0.194991\pi\)
\(132\) 0 0
\(133\) −7.06218 3.42820i −0.612368 0.297263i
\(134\) 0 0
\(135\) −2.30385 1.33013i −0.198284 0.114479i
\(136\) 0 0
\(137\) 15.2321 8.79423i 1.30136 0.751342i 0.320724 0.947173i \(-0.396074\pi\)
0.980638 + 0.195831i \(0.0627404\pi\)
\(138\) 0 0
\(139\) −11.9282 11.9282i −1.01174 1.01174i −0.999930 0.0118067i \(-0.996242\pi\)
−0.0118067 0.999930i \(-0.503758\pi\)
\(140\) 0 0
\(141\) 1.56218 1.56218i 0.131559 0.131559i
\(142\) 0 0
\(143\) −7.83013 13.5622i −0.654788 1.13413i
\(144\) 0 0
\(145\) 0.169873 0.294229i 0.0141072 0.0244344i
\(146\) 0 0
\(147\) 0.428203 3.59808i 0.0353176 0.296764i
\(148\) 0 0
\(149\) 7.59808 2.03590i 0.622459 0.166787i 0.0662134 0.997805i \(-0.478908\pi\)
0.556245 + 0.831018i \(0.312242\pi\)
\(150\) 0 0
\(151\) −9.86603 + 5.69615i −0.802886 + 0.463546i −0.844479 0.535588i \(-0.820090\pi\)
0.0415935 + 0.999135i \(0.486757\pi\)
\(152\) 0 0
\(153\) 17.6603i 1.42775i
\(154\) 0 0
\(155\) 2.36603 + 2.36603i 0.190044 + 0.190044i
\(156\) 0 0
\(157\) 18.2583 + 4.89230i 1.45717 + 0.390448i 0.898513 0.438948i \(-0.144649\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) 0 0
\(159\) 1.06218 1.83975i 0.0842362 0.145901i
\(160\) 0 0
\(161\) 11.1603 3.86603i 0.879551 0.304685i
\(162\) 0 0
\(163\) 3.23205 + 12.0622i 0.253154 + 0.944783i 0.969108 + 0.246636i \(0.0793251\pi\)
−0.715954 + 0.698147i \(0.754008\pi\)
\(164\) 0 0
\(165\) −0.356406 + 1.33013i −0.0277462 + 0.103550i
\(166\) 0 0
\(167\) 21.8564i 1.69130i −0.533738 0.845650i \(-0.679213\pi\)
0.533738 0.845650i \(-0.320787\pi\)
\(168\) 0 0
\(169\) 14.8564i 1.14280i
\(170\) 0 0
\(171\) 2.09808 7.83013i 0.160444 0.598785i
\(172\) 0 0
\(173\) −0.598076 2.23205i −0.0454709 0.169700i 0.939456 0.342668i \(-0.111331\pi\)
−0.984927 + 0.172969i \(0.944664\pi\)
\(174\) 0 0
\(175\) 2.09808 10.9019i 0.158600 0.824108i
\(176\) 0 0
\(177\) −3.03590 + 5.25833i −0.228192 + 0.395240i
\(178\) 0 0
\(179\) 8.96410 + 2.40192i 0.670008 + 0.179528i 0.577759 0.816208i \(-0.303928\pi\)
0.0922498 + 0.995736i \(0.470594\pi\)
\(180\) 0 0
\(181\) −13.3923 13.3923i −0.995442 0.995442i 0.00454748 0.999990i \(-0.498552\pi\)
−0.999990 + 0.00454748i \(0.998552\pi\)
\(182\) 0 0
\(183\) 3.73205i 0.275881i
\(184\) 0 0
\(185\) 0.911543 0.526279i 0.0670180 0.0386928i
\(186\) 0 0
\(187\) 18.5263 4.96410i 1.35478 0.363011i
\(188\) 0 0
\(189\) 7.83013 0.562178i 0.569558 0.0408924i
\(190\) 0 0
\(191\) 4.33013 7.50000i 0.313317 0.542681i −0.665761 0.746165i \(-0.731893\pi\)
0.979078 + 0.203484i \(0.0652264\pi\)
\(192\) 0 0
\(193\) 11.5000 + 19.9186i 0.827788 + 1.43377i 0.899770 + 0.436365i \(0.143734\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) −1.73205 + 1.73205i −0.124035 + 0.124035i
\(196\) 0 0
\(197\) 16.6603 + 16.6603i 1.18699 + 1.18699i 0.977894 + 0.209100i \(0.0670533\pi\)
0.209100 + 0.977894i \(0.432947\pi\)
\(198\) 0 0
\(199\) 10.3301 5.96410i 0.732283 0.422784i −0.0869736 0.996211i \(-0.527720\pi\)
0.819257 + 0.573427i \(0.194386\pi\)
\(200\) 0 0
\(201\) −2.30385 1.33013i −0.162501 0.0938199i
\(202\) 0 0
\(203\) 0.0717968 + 1.00000i 0.00503915 + 0.0701862i
\(204\) 0 0
\(205\) 1.14359 + 4.26795i 0.0798720 + 0.298087i
\(206\) 0 0
\(207\) 6.09808 + 10.5622i 0.423846 + 0.734122i
\(208\) 0 0
\(209\) −8.80385 −0.608975
\(210\) 0 0
\(211\) −15.9282 + 15.9282i −1.09654 + 1.09654i −0.101731 + 0.994812i \(0.532438\pi\)
−0.994812 + 0.101731i \(0.967562\pi\)
\(212\) 0 0
\(213\) −0.0717968 + 0.267949i −0.00491943 + 0.0183596i
\(214\) 0 0
\(215\) 7.09808 + 4.09808i 0.484085 + 0.279486i
\(216\) 0 0
\(217\) −9.69615 1.86603i −0.658218 0.126674i
\(218\) 0 0
\(219\) 3.59808 0.964102i 0.243135 0.0651479i
\(220\) 0 0
\(221\) 32.9545 + 8.83013i 2.21676 + 0.593979i
\(222\) 0 0
\(223\) −9.85641 −0.660034 −0.330017 0.943975i \(-0.607054\pi\)
−0.330017 + 0.943975i \(0.607054\pi\)
\(224\) 0 0
\(225\) 11.4641 0.764273
\(226\) 0 0
\(227\) 11.1603 + 2.99038i 0.740732 + 0.198479i 0.609403 0.792860i \(-0.291409\pi\)
0.131329 + 0.991339i \(0.458076\pi\)
\(228\) 0 0
\(229\) −13.3301 + 3.57180i −0.880880 + 0.236031i −0.670787 0.741650i \(-0.734043\pi\)
−0.210093 + 0.977681i \(0.567377\pi\)
\(230\) 0 0
\(231\) −1.33013 3.83975i −0.0875159 0.252637i
\(232\) 0 0
\(233\) 0.696152 + 0.401924i 0.0456065 + 0.0263309i 0.522630 0.852560i \(-0.324951\pi\)
−0.477023 + 0.878891i \(0.658284\pi\)
\(234\) 0 0
\(235\) 0.990381 3.69615i 0.0646053 0.241110i
\(236\) 0 0
\(237\) −6.09808 + 6.09808i −0.396113 + 0.396113i
\(238\) 0 0
\(239\) 8.53590 0.552141 0.276071 0.961137i \(-0.410968\pi\)
0.276071 + 0.961137i \(0.410968\pi\)
\(240\) 0 0
\(241\) −6.96410 12.0622i −0.448597 0.776993i 0.549698 0.835364i \(-0.314743\pi\)
−0.998295 + 0.0583704i \(0.981410\pi\)
\(242\) 0 0
\(243\) 3.19615 + 11.9282i 0.205033 + 0.765195i
\(244\) 0 0
\(245\) −2.47372 5.76795i −0.158040 0.368501i
\(246\) 0 0
\(247\) −13.5622 7.83013i −0.862941 0.498219i
\(248\) 0 0
\(249\) 0.973721 0.562178i 0.0617070 0.0356266i
\(250\) 0 0
\(251\) −17.5885 17.5885i −1.11017 1.11017i −0.993126 0.117047i \(-0.962657\pi\)
−0.117047 0.993126i \(-0.537343\pi\)
\(252\) 0 0
\(253\) 9.36603 9.36603i 0.588837 0.588837i
\(254\) 0 0
\(255\) −1.50000 2.59808i −0.0939336 0.162698i
\(256\) 0 0
\(257\) 9.69615 16.7942i 0.604829 1.04760i −0.387249 0.921975i \(-0.626575\pi\)
0.992078 0.125620i \(-0.0400920\pi\)
\(258\) 0 0
\(259\) −1.35641 + 2.79423i −0.0842830 + 0.173625i
\(260\) 0 0
\(261\) −1.00000 + 0.267949i −0.0618984 + 0.0165856i
\(262\) 0 0
\(263\) −3.99038 + 2.30385i −0.246057 + 0.142061i −0.617958 0.786211i \(-0.712040\pi\)
0.371900 + 0.928273i \(0.378706\pi\)
\(264\) 0 0
\(265\) 3.67949i 0.226029i
\(266\) 0 0
\(267\) −1.90192 1.90192i −0.116396 0.116396i
\(268\) 0 0
\(269\) −9.79423 2.62436i −0.597165 0.160010i −0.0524390 0.998624i \(-0.516700\pi\)
−0.544726 + 0.838614i \(0.683366\pi\)
\(270\) 0 0
\(271\) 6.06218 10.5000i 0.368251 0.637830i −0.621041 0.783778i \(-0.713290\pi\)
0.989292 + 0.145948i \(0.0466233\pi\)
\(272\) 0 0
\(273\) 1.36603 7.09808i 0.0826756 0.429595i
\(274\) 0 0
\(275\) −3.22243 12.0263i −0.194320 0.725212i
\(276\) 0 0
\(277\) 1.20577 4.50000i 0.0724478 0.270379i −0.920195 0.391461i \(-0.871970\pi\)
0.992642 + 0.121082i \(0.0386365\pi\)
\(278\) 0 0
\(279\) 10.1962i 0.610428i
\(280\) 0 0
\(281\) 0.928203i 0.0553720i 0.999617 + 0.0276860i \(0.00881385\pi\)
−0.999617 + 0.0276860i \(0.991186\pi\)
\(282\) 0 0
\(283\) −3.89230 + 14.5263i −0.231374 + 0.863498i 0.748377 + 0.663274i \(0.230834\pi\)
−0.979750 + 0.200224i \(0.935833\pi\)
\(284\) 0 0
\(285\) 0.356406 + 1.33013i 0.0211117 + 0.0787899i
\(286\) 0 0
\(287\) −9.85641 8.53590i −0.581805 0.503858i
\(288\) 0 0
\(289\) −12.3923 + 21.4641i −0.728959 + 1.26259i
\(290\) 0 0
\(291\) −1.46410 0.392305i −0.0858272 0.0229973i
\(292\) 0 0
\(293\) 7.92820 + 7.92820i 0.463171 + 0.463171i 0.899693 0.436523i \(-0.143790\pi\)
−0.436523 + 0.899693i \(0.643790\pi\)
\(294\) 0 0
\(295\) 10.5167i 0.612304i
\(296\) 0 0
\(297\) 7.62436 4.40192i 0.442410 0.255426i
\(298\) 0 0
\(299\) 22.7583 6.09808i 1.31615 0.352661i
\(300\) 0 0
\(301\) −24.1244 + 1.73205i −1.39050 + 0.0998337i
\(302\) 0 0
\(303\) −5.06218 + 8.76795i −0.290815 + 0.503706i
\(304\) 0 0
\(305\) −3.23205 5.59808i −0.185067 0.320545i
\(306\) 0 0
\(307\) 9.00000 9.00000i 0.513657 0.513657i −0.401988 0.915645i \(-0.631681\pi\)
0.915645 + 0.401988i \(0.131681\pi\)
\(308\) 0 0
\(309\) 2.36603 + 2.36603i 0.134598 + 0.134598i
\(310\) 0 0
\(311\) −5.59808 + 3.23205i −0.317438 + 0.183273i −0.650250 0.759720i \(-0.725336\pi\)
0.332812 + 0.942993i \(0.392002\pi\)
\(312\) 0 0
\(313\) −18.6962 10.7942i −1.05677 0.610126i −0.132232 0.991219i \(-0.542214\pi\)
−0.924537 + 0.381093i \(0.875548\pi\)
\(314\) 0 0
\(315\) 5.36603 3.63397i 0.302341 0.204751i
\(316\) 0 0
\(317\) 3.79423 + 14.1603i 0.213105 + 0.795319i 0.986825 + 0.161791i \(0.0517271\pi\)
−0.773720 + 0.633528i \(0.781606\pi\)
\(318\) 0 0
\(319\) 0.562178 + 0.973721i 0.0314759 + 0.0545179i
\(320\) 0 0
\(321\) 1.73205 0.0966736
\(322\) 0 0
\(323\) 13.5622 13.5622i 0.754620 0.754620i
\(324\) 0 0
\(325\) 5.73205 21.3923i 0.317957 1.18663i
\(326\) 0 0
\(327\) 0.990381 + 0.571797i 0.0547682 + 0.0316204i
\(328\) 0 0
\(329\) 3.69615 + 10.6699i 0.203775 + 0.588249i
\(330\) 0 0
\(331\) −19.6244 + 5.25833i −1.07865 + 0.289024i −0.754044 0.656824i \(-0.771899\pi\)
−0.324609 + 0.945848i \(0.605233\pi\)
\(332\) 0 0
\(333\) −3.09808 0.830127i −0.169774 0.0454907i
\(334\) 0 0
\(335\) −4.60770 −0.251745
\(336\) 0 0
\(337\) −6.14359 −0.334663 −0.167331 0.985901i \(-0.553515\pi\)
−0.167331 + 0.985901i \(0.553515\pi\)
\(338\) 0 0
\(339\) −0.732051 0.196152i −0.0397595 0.0106535i
\(340\) 0 0
\(341\) −10.6962 + 2.86603i −0.579229 + 0.155204i
\(342\) 0 0
\(343\) 15.5885 + 10.0000i 0.841698 + 0.539949i
\(344\) 0 0
\(345\) −1.79423 1.03590i −0.0965980 0.0557709i
\(346\) 0 0
\(347\) −6.30385 + 23.5263i −0.338408 + 1.26296i 0.561718 + 0.827329i \(0.310140\pi\)
−0.900127 + 0.435628i \(0.856526\pi\)
\(348\) 0 0
\(349\) −6.12436 + 6.12436i −0.327829 + 0.327829i −0.851761 0.523931i \(-0.824465\pi\)
0.523931 + 0.851761i \(0.324465\pi\)
\(350\) 0 0
\(351\) 15.6603 0.835883
\(352\) 0 0
\(353\) 13.8923 + 24.0622i 0.739413 + 1.28070i 0.952760 + 0.303724i \(0.0982301\pi\)
−0.213347 + 0.976976i \(0.568437\pi\)
\(354\) 0 0
\(355\) 0.124356 + 0.464102i 0.00660011 + 0.0246320i
\(356\) 0 0
\(357\) 7.96410 + 3.86603i 0.421505 + 0.204612i
\(358\) 0 0
\(359\) 3.86603 + 2.23205i 0.204041 + 0.117803i 0.598539 0.801094i \(-0.295748\pi\)
−0.394498 + 0.918897i \(0.629081\pi\)
\(360\) 0 0
\(361\) 8.83013 5.09808i 0.464744 0.268320i
\(362\) 0 0
\(363\) 0.803848 + 0.803848i 0.0421911 + 0.0421911i
\(364\) 0 0
\(365\) 4.56218 4.56218i 0.238795 0.238795i
\(366\) 0 0
\(367\) 3.06218 + 5.30385i 0.159844 + 0.276859i 0.934812 0.355142i \(-0.115567\pi\)
−0.774968 + 0.632000i \(0.782234\pi\)
\(368\) 0 0
\(369\) 6.73205 11.6603i 0.350457 0.607009i
\(370\) 0 0
\(371\) 6.08846 + 8.99038i 0.316097 + 0.466757i
\(372\) 0 0
\(373\) −0.866025 + 0.232051i −0.0448411 + 0.0120151i −0.281170 0.959658i \(-0.590722\pi\)
0.236329 + 0.971673i \(0.424056\pi\)
\(374\) 0 0
\(375\) −3.69615 + 2.13397i −0.190868 + 0.110198i
\(376\) 0 0
\(377\) 2.00000i 0.103005i
\(378\) 0 0
\(379\) 0.124356 + 0.124356i 0.00638772 + 0.00638772i 0.710293 0.703906i \(-0.248562\pi\)
−0.703906 + 0.710293i \(0.748562\pi\)
\(380\) 0 0
\(381\) −4.73205 1.26795i −0.242430 0.0649590i
\(382\) 0 0
\(383\) −12.5981 + 21.8205i −0.643732 + 1.11498i 0.340861 + 0.940114i \(0.389281\pi\)
−0.984593 + 0.174862i \(0.944052\pi\)
\(384\) 0 0
\(385\) −5.32051 4.60770i −0.271158 0.234830i
\(386\) 0 0
\(387\) −6.46410 24.1244i −0.328589 1.22631i
\(388\) 0 0
\(389\) −5.99038 + 22.3564i −0.303724 + 1.13351i 0.630313 + 0.776341i \(0.282926\pi\)
−0.934038 + 0.357174i \(0.883740\pi\)
\(390\) 0 0
\(391\) 28.8564i 1.45933i
\(392\) 0 0
\(393\) 4.07180i 0.205395i
\(394\) 0 0
\(395\) −3.86603 + 14.4282i −0.194521 + 0.725962i
\(396\) 0 0
\(397\) −6.86603 25.6244i −0.344596 1.28605i −0.893084 0.449891i \(-0.851463\pi\)
0.548488 0.836159i \(-0.315204\pi\)
\(398\) 0 0
\(399\) −3.07180 2.66025i −0.153782 0.133179i
\(400\) 0 0
\(401\) 7.50000 12.9904i 0.374532 0.648709i −0.615725 0.787961i \(-0.711137\pi\)
0.990257 + 0.139253i \(0.0444700\pi\)
\(402\) 0 0
\(403\) −19.0263 5.09808i −0.947766 0.253953i
\(404\) 0 0
\(405\) 4.22243 + 4.22243i 0.209814 + 0.209814i
\(406\) 0 0
\(407\) 3.48334i 0.172663i
\(408\) 0 0
\(409\) −7.50000 + 4.33013i −0.370851 + 0.214111i −0.673830 0.738886i \(-0.735352\pi\)
0.302979 + 0.952997i \(0.402019\pi\)
\(410\) 0 0
\(411\) 8.79423 2.35641i 0.433787 0.116233i
\(412\) 0 0
\(413\) −17.4019 25.6962i −0.856293 1.26442i
\(414\) 0 0
\(415\) 0.973721 1.68653i 0.0477981 0.0827887i
\(416\) 0 0
\(417\) −4.36603 7.56218i −0.213805 0.370321i
\(418\) 0 0
\(419\) −19.0000 + 19.0000i −0.928211 + 0.928211i −0.997590 0.0693796i \(-0.977898\pi\)
0.0693796 + 0.997590i \(0.477898\pi\)
\(420\) 0 0
\(421\) −8.66025 8.66025i −0.422075 0.422075i 0.463843 0.885918i \(-0.346470\pi\)
−0.885918 + 0.463843i \(0.846470\pi\)
\(422\) 0 0
\(423\) −10.0981 + 5.83013i −0.490985 + 0.283470i
\(424\) 0 0
\(425\) 23.4904 + 13.5622i 1.13945 + 0.657862i
\(426\) 0 0
\(427\) 17.1603 + 8.33013i 0.830443 + 0.403123i
\(428\) 0 0
\(429\) −2.09808 7.83013i −0.101296 0.378042i
\(430\) 0 0
\(431\) 15.3301 + 26.5526i 0.738426 + 1.27899i 0.953204 + 0.302329i \(0.0977640\pi\)
−0.214777 + 0.976663i \(0.568903\pi\)
\(432\) 0 0
\(433\) −33.1769 −1.59438 −0.797190 0.603728i \(-0.793681\pi\)
−0.797190 + 0.603728i \(0.793681\pi\)
\(434\) 0 0
\(435\) 0.124356 0.124356i 0.00596240 0.00596240i
\(436\) 0 0
\(437\) 3.42820 12.7942i 0.163993 0.612031i
\(438\) 0 0
\(439\) −6.52628 3.76795i −0.311482 0.179834i 0.336107 0.941824i \(-0.390890\pi\)
−0.647590 + 0.761989i \(0.724223\pi\)
\(440\) 0 0
\(441\) −7.09808 + 17.7583i −0.338004 + 0.845635i
\(442\) 0 0
\(443\) −10.4282 + 2.79423i −0.495459 + 0.132758i −0.497892 0.867239i \(-0.665892\pi\)
0.00243278 + 0.999997i \(0.499226\pi\)
\(444\) 0 0
\(445\) −4.50000 1.20577i −0.213320 0.0571590i
\(446\) 0 0
\(447\) 4.07180 0.192589
\(448\) 0 0
\(449\) −23.3205 −1.10056 −0.550281 0.834979i \(-0.685480\pi\)
−0.550281 + 0.834979i \(0.685480\pi\)
\(450\) 0 0
\(451\) −14.1244 3.78461i −0.665090 0.178210i
\(452\) 0 0
\(453\) −5.69615 + 1.52628i −0.267629 + 0.0717109i
\(454\) 0 0
\(455\) −4.09808 11.8301i −0.192121 0.554605i
\(456\) 0 0
\(457\) 16.2846 + 9.40192i 0.761762 + 0.439803i 0.829928 0.557871i \(-0.188381\pi\)
−0.0681661 + 0.997674i \(0.521715\pi\)
\(458\) 0 0
\(459\) −4.96410 + 18.5263i −0.231704 + 0.864733i
\(460\) 0 0
\(461\) −18.6603 + 18.6603i −0.869095 + 0.869095i −0.992372 0.123278i \(-0.960659\pi\)
0.123278 + 0.992372i \(0.460659\pi\)
\(462\) 0 0
\(463\) −2.14359 −0.0996212 −0.0498106 0.998759i \(-0.515862\pi\)
−0.0498106 + 0.998759i \(0.515862\pi\)
\(464\) 0 0
\(465\) 0.866025 + 1.50000i 0.0401610 + 0.0695608i
\(466\) 0 0
\(467\) −6.96410 25.9904i −0.322260 1.20269i −0.917038 0.398801i \(-0.869426\pi\)
0.594777 0.803890i \(-0.297240\pi\)
\(468\) 0 0
\(469\) 11.2583 7.62436i 0.519861 0.352060i
\(470\) 0 0
\(471\) 8.47372 + 4.89230i 0.390448 + 0.225426i
\(472\) 0 0
\(473\) −23.4904 + 13.5622i −1.08009 + 0.623590i
\(474\) 0 0
\(475\) −8.80385 8.80385i −0.403948 0.403948i
\(476\) 0 0
\(477\) −7.92820 + 7.92820i −0.363007 + 0.363007i
\(478\) 0 0
\(479\) 7.79423 + 13.5000i 0.356127 + 0.616831i 0.987310 0.158803i \(-0.0507636\pi\)
−0.631183 + 0.775634i \(0.717430\pi\)
\(480\) 0 0
\(481\) −3.09808 + 5.36603i −0.141260 + 0.244670i
\(482\) 0 0
\(483\) 6.09808 0.437822i 0.277472 0.0199216i
\(484\) 0 0
\(485\) −2.53590 + 0.679492i −0.115149 + 0.0308541i
\(486\) 0 0
\(487\) −10.6699 + 6.16025i −0.483498 + 0.279148i −0.721873 0.692025i \(-0.756719\pi\)
0.238375 + 0.971173i \(0.423385\pi\)
\(488\) 0 0
\(489\) 6.46410i 0.292317i
\(490\) 0 0
\(491\) −3.58846 3.58846i −0.161945 0.161945i 0.621483 0.783428i \(-0.286531\pi\)
−0.783428 + 0.621483i \(0.786531\pi\)
\(492\) 0 0
\(493\) −2.36603 0.633975i −0.106560 0.0285528i
\(494\) 0 0
\(495\) 3.63397 6.29423i 0.163335 0.282905i
\(496\) 0 0
\(497\) −1.07180 0.928203i −0.0480767 0.0416356i
\(498\) 0 0
\(499\) 6.69615 + 24.9904i 0.299761 + 1.11872i 0.937362 + 0.348356i \(0.113260\pi\)
−0.637601 + 0.770367i \(0.720073\pi\)
\(500\) 0 0
\(501\) 2.92820 10.9282i 0.130822 0.488236i
\(502\) 0 0
\(503\) 31.8564i 1.42041i −0.703996 0.710203i \(-0.748603\pi\)
0.703996 0.710203i \(-0.251397\pi\)
\(504\) 0 0
\(505\) 17.5359i 0.780337i
\(506\) 0 0
\(507\) 1.99038 7.42820i 0.0883959 0.329898i
\(508\) 0 0
\(509\) −2.52628 9.42820i −0.111975 0.417898i 0.887067 0.461640i \(-0.152739\pi\)
−0.999043 + 0.0437420i \(0.986072\pi\)
\(510\) 0 0
\(511\) −3.59808 + 18.6962i −0.159170 + 0.827069i
\(512\) 0 0
\(513\) 4.40192 7.62436i 0.194350 0.336624i
\(514\) 0 0
\(515\) 5.59808 + 1.50000i 0.246681 + 0.0660979i
\(516\) 0 0
\(517\) 8.95448 + 8.95448i 0.393818 + 0.393818i
\(518\) 0 0
\(519\) 1.19615i 0.0525053i
\(520\) 0 0
\(521\) −13.3756 + 7.72243i −0.585998 + 0.338326i −0.763513 0.645792i \(-0.776527\pi\)
0.177516 + 0.984118i \(0.443194\pi\)
\(522\) 0 0
\(523\) −32.2846 + 8.65064i −1.41171 + 0.378266i −0.882534 0.470248i \(-0.844164\pi\)
−0.529173 + 0.848514i \(0.677498\pi\)
\(524\) 0 0
\(525\) 2.50962 5.16987i 0.109529 0.225632i
\(526\) 0 0
\(527\) 12.0622 20.8923i 0.525437 0.910083i
\(528\) 0 0
\(529\) −1.53590 2.66025i −0.0667782 0.115663i
\(530\) 0 0
\(531\) 22.6603 22.6603i 0.983371 0.983371i
\(532\) 0 0
\(533\) −18.3923 18.3923i −0.796659 0.796659i
\(534\) 0 0
\(535\) 2.59808 1.50000i 0.112325 0.0648507i
\(536\) 0 0
\(537\) 4.16025 + 2.40192i 0.179528 + 0.103651i
\(538\) 0 0
\(539\) 20.6244 + 2.45448i 0.888354 + 0.105722i
\(540\) 0 0
\(541\) −2.47372 9.23205i −0.106354 0.396917i 0.892142 0.451756i \(-0.149202\pi\)
−0.998495 + 0.0548389i \(0.982535\pi\)
\(542\) 0 0
\(543\) −4.90192 8.49038i −0.210362 0.364357i
\(544\) 0 0
\(545\) 1.98076 0.0848465
\(546\) 0 0
\(547\) −23.0526 + 23.0526i −0.985656 + 0.985656i −0.999899 0.0142423i \(-0.995466\pi\)
0.0142423 + 0.999899i \(0.495466\pi\)
\(548\) 0 0
\(549\) −5.09808 + 19.0263i −0.217581 + 0.812022i
\(550\) 0 0
\(551\) 0.973721 + 0.562178i 0.0414819 + 0.0239496i
\(552\) 0 0
\(553\) −14.4282 41.6506i −0.613550 1.77117i
\(554\) 0 0
\(555\) 0.526279 0.141016i 0.0223393 0.00598580i
\(556\) 0 0
\(557\) −6.59808 1.76795i −0.279569 0.0749104i 0.116310 0.993213i \(-0.462893\pi\)
−0.395879 + 0.918303i \(0.629560\pi\)
\(558\) 0 0
\(559\) −48.2487 −2.04070
\(560\) 0 0
\(561\) 9.92820 0.419169
\(562\) 0 0
\(563\) −2.42820 0.650635i −0.102337 0.0274210i 0.207287 0.978280i \(-0.433536\pi\)
−0.309624 + 0.950859i \(0.600203\pi\)
\(564\) 0 0
\(565\) −1.26795 + 0.339746i −0.0533430 + 0.0142932i
\(566\) 0 0
\(567\) −17.3038 3.33013i −0.726693 0.139852i
\(568\) 0 0
\(569\) −5.08846 2.93782i −0.213319 0.123160i 0.389534 0.921012i \(-0.372636\pi\)
−0.602853 + 0.797852i \(0.705969\pi\)
\(570\) 0 0
\(571\) −7.16025 + 26.7224i −0.299647 + 1.11830i 0.637809 + 0.770195i \(0.279841\pi\)
−0.937456 + 0.348104i \(0.886826\pi\)
\(572\) 0 0
\(573\) 3.16987 3.16987i 0.132423 0.132423i
\(574\) 0 0
\(575\) 18.7321 0.781181
\(576\) 0 0
\(577\) −6.62436 11.4737i −0.275776 0.477657i 0.694555 0.719440i \(-0.255601\pi\)
−0.970330 + 0.241782i \(0.922268\pi\)
\(578\) 0 0
\(579\) 3.08142 + 11.5000i 0.128059 + 0.477924i
\(580\) 0 0
\(581\) 0.411543 + 5.73205i 0.0170737 + 0.237806i
\(582\) 0 0
\(583\) 10.5455 + 6.08846i 0.436751 + 0.252158i
\(584\) 0 0
\(585\) 11.1962 6.46410i 0.462904 0.267258i
\(586\) 0 0
\(587\) 21.9282 + 21.9282i 0.905074 + 0.905074i 0.995870 0.0907957i \(-0.0289410\pi\)
−0.0907957 + 0.995870i \(0.528941\pi\)
\(588\) 0 0
\(589\) −7.83013 + 7.83013i −0.322635 + 0.322635i
\(590\) 0 0
\(591\) 6.09808 + 10.5622i 0.250841 + 0.434470i
\(592\) 0 0
\(593\) 5.69615 9.86603i 0.233913 0.405149i −0.725043 0.688703i \(-0.758180\pi\)
0.958956 + 0.283554i \(0.0915136\pi\)
\(594\) 0 0
\(595\) 15.2942 1.09808i 0.627002 0.0450167i
\(596\) 0 0
\(597\) 5.96410 1.59808i 0.244094 0.0654049i
\(598\) 0 0
\(599\) −16.6699 + 9.62436i −0.681113 + 0.393241i −0.800274 0.599634i \(-0.795313\pi\)
0.119162 + 0.992875i \(0.461979\pi\)
\(600\) 0 0
\(601\) 10.0000i 0.407909i −0.978980 0.203954i \(-0.934621\pi\)
0.978980 0.203954i \(-0.0653794\pi\)
\(602\) 0 0
\(603\) 9.92820 + 9.92820i 0.404308 + 0.404308i
\(604\) 0 0
\(605\) 1.90192 + 0.509619i 0.0773242 + 0.0207190i
\(606\) 0 0
\(607\) 8.52628 14.7679i 0.346071 0.599413i −0.639477 0.768810i \(-0.720849\pi\)
0.985548 + 0.169398i \(0.0541823\pi\)
\(608\) 0 0
\(609\) −0.0980762 + 0.509619i −0.00397425 + 0.0206508i
\(610\) 0 0
\(611\) 5.83013 + 21.7583i 0.235862 + 0.880248i
\(612\) 0 0
\(613\) −2.47372 + 9.23205i −0.0999126 + 0.372879i −0.997718 0.0675126i \(-0.978494\pi\)
0.897806 + 0.440392i \(0.145160\pi\)
\(614\) 0 0
\(615\) 2.28719i 0.0922283i
\(616\) 0 0
\(617\) 0.535898i 0.0215745i −0.999942 0.0107872i \(-0.996566\pi\)
0.999942 0.0107872i \(-0.00343375\pi\)
\(618\) 0 0
\(619\) 5.10770 19.0622i 0.205296 0.766174i −0.784064 0.620680i \(-0.786856\pi\)
0.989359 0.145493i \(-0.0464769\pi\)
\(620\) 0 0
\(621\) 3.42820 + 12.7942i 0.137569 + 0.513415i
\(622\) 0 0
\(623\) 12.9904 4.50000i 0.520449 0.180289i
\(624\) 0 0
\(625\) 6.79423 11.7679i 0.271769 0.470718i
\(626\) 0 0
\(627\) −4.40192 1.17949i −0.175796 0.0471044i
\(628\) 0 0
\(629\) −5.36603 5.36603i −0.213957 0.213957i
\(630\) 0 0
\(631\) 32.2487i 1.28380i 0.766788 + 0.641900i \(0.221854\pi\)
−0.766788 + 0.641900i \(0.778146\pi\)
\(632\) 0 0
\(633\) −10.0981 + 5.83013i −0.401362 + 0.231727i
\(634\) 0 0
\(635\) −8.19615 + 2.19615i −0.325254 + 0.0871517i
\(636\) 0 0
\(637\) 29.5885 + 22.1244i 1.17234 + 0.876599i
\(638\) 0 0
\(639\) 0.732051 1.26795i 0.0289595 0.0501593i
\(640\) 0 0
\(641\) 5.57180 + 9.65064i 0.220073 + 0.381177i 0.954830 0.297153i \(-0.0960372\pi\)
−0.734757 + 0.678330i \(0.762704\pi\)
\(642\) 0 0
\(643\) −5.39230 + 5.39230i −0.212652 + 0.212652i −0.805393 0.592741i \(-0.798046\pi\)
0.592741 + 0.805393i \(0.298046\pi\)
\(644\) 0 0
\(645\) 3.00000 + 3.00000i 0.118125 + 0.118125i
\(646\) 0 0
\(647\) −30.8660 + 17.8205i −1.21347 + 0.700596i −0.963513 0.267661i \(-0.913749\pi\)
−0.249955 + 0.968257i \(0.580416\pi\)
\(648\) 0 0
\(649\) −30.1410 17.4019i −1.18314 0.683085i
\(650\) 0 0
\(651\) −4.59808 2.23205i −0.180213 0.0874810i
\(652\) 0 0
\(653\) 8.72243 + 32.5526i 0.341335 + 1.27388i 0.896836 + 0.442364i \(0.145860\pi\)
−0.555501 + 0.831516i \(0.687473\pi\)
\(654\) 0 0
\(655\) −3.52628 6.10770i −0.137783 0.238647i
\(656\) 0 0
\(657\) −19.6603 −0.767020
\(658\) 0 0
\(659\) 18.8564 18.8564i 0.734541 0.734541i −0.236975 0.971516i \(-0.576156\pi\)
0.971516 + 0.236975i \(0.0761558\pi\)
\(660\) 0 0
\(661\) 5.93782 22.1603i 0.230955 0.861934i −0.748976 0.662597i \(-0.769454\pi\)
0.979931 0.199337i \(-0.0638789\pi\)
\(662\) 0 0
\(663\) 15.2942 + 8.83013i 0.593979 + 0.342934i
\(664\) 0 0
\(665\) −6.91154 1.33013i −0.268018 0.0515801i
\(666\) 0 0
\(667\) −1.63397 + 0.437822i −0.0632677 + 0.0169525i
\(668\) 0 0
\(669\) −4.92820 1.32051i −0.190535 0.0510538i
\(670\) 0 0
\(671\) 21.3923 0.825841
\(672\) 0 0
\(673\) 40.7846 1.57213 0.786066 0.618143i \(-0.212115\pi\)
0.786066 + 0.618143i \(0.212115\pi\)
\(674\) 0 0
\(675\) 12.0263 + 3.22243i 0.462892 + 0.124031i
\(676\) 0 0
\(677\) 42.7224 11.4474i 1.64196 0.439961i 0.684611 0.728908i \(-0.259972\pi\)
0.957345 + 0.288947i \(0.0933052\pi\)
\(678\) 0 0
\(679\) 5.07180 5.85641i 0.194638 0.224748i
\(680\) 0 0
\(681\) 5.17949 + 2.99038i 0.198479 + 0.114592i
\(682\) 0 0
\(683\) 12.2128 45.5788i 0.467310 1.74403i −0.181804 0.983335i \(-0.558194\pi\)
0.649114 0.760691i \(-0.275140\pi\)
\(684\) 0 0
\(685\) 11.1506 11.1506i 0.426044 0.426044i
\(686\) 0 0
\(687\) −7.14359 −0.272545
\(688\) 0 0
\(689\) 10.8301 + 18.7583i 0.412595 + 0.714635i
\(690\) 0 0
\(691\) 6.16025 + 22.9904i 0.234347 + 0.874595i 0.978442 + 0.206521i \(0.0662143\pi\)
−0.744095 + 0.668074i \(0.767119\pi\)
\(692\) 0 0
\(693\) 1.53590 + 21.3923i 0.0583440 + 0.812626i
\(694\) 0 0
\(695\) −13.0981 7.56218i −0.496838 0.286850i
\(696\) 0 0
\(697\) 27.5885 15.9282i 1.04499 0.603324i
\(698\) 0 0
\(699\) 0.294229 + 0.294229i 0.0111287 + 0.0111287i
\(700\) 0 0
\(701\) 13.3923 13.3923i 0.505820 0.505820i −0.407420 0.913241i \(-0.633572\pi\)
0.913241 + 0.407420i \(0.133572\pi\)
\(702\) 0 0
\(703\) 1.74167 + 3.01666i 0.0656883 + 0.113776i
\(704\) 0 0
\(705\) 0.990381 1.71539i 0.0372999 0.0646053i
\(706\) 0 0
\(707\) −29.0167 42.8468i −1.09128 1.61142i
\(708\) 0 0
\(709\) −45.6506 + 12.2321i −1.71445 + 0.459384i −0.976507 0.215484i \(-0.930867\pi\)
−0.737938 + 0.674868i \(0.764200\pi\)
\(710\) 0 0
\(711\) 39.4186 22.7583i 1.47831 0.853504i
\(712\) 0 0
\(713\) 16.6603i 0.623931i
\(714\) 0 0
\(715\) −9.92820 9.92820i −0.371294 0.371294i
\(716\) 0 0
\(717\) 4.26795 + 1.14359i 0.159389 + 0.0427083i
\(718\) 0 0
\(719\) 0.205771 0.356406i 0.00767398 0.0132917i −0.862163 0.506631i \(-0.830891\pi\)
0.869837 + 0.493339i \(0.164224\pi\)
\(720\) 0 0
\(721\) −16.1603 + 5.59808i −0.601839 + 0.208483i
\(722\) 0 0
\(723\) −1.86603 6.96410i −0.0693982 0.258998i
\(724\) 0 0
\(725\) −0.411543 + 1.53590i −0.0152843 + 0.0570418i
\(726\) 0 0
\(727\) 41.3205i 1.53249i −0.642547 0.766246i \(-0.722122\pi\)
0.642547 0.766246i \(-0.277878\pi\)
\(728\) 0 0
\(729\) 13.5885i 0.503276i
\(730\) 0 0
\(731\) 15.2942 57.0788i 0.565677 2.11114i
\(732\) 0 0
\(733\) 8.81347 + 32.8923i 0.325533 + 1.21490i 0.913775 + 0.406220i \(0.133153\pi\)
−0.588242 + 0.808685i \(0.700180\pi\)
\(734\) 0 0
\(735\) −0.464102 3.21539i −0.0171186 0.118601i
\(736\) 0 0
\(737\) 7.62436 13.2058i 0.280847 0.486441i
\(738\) 0 0
\(739\) 38.4808 + 10.3109i 1.41554 + 0.379292i 0.883899 0.467679i \(-0.154910\pi\)
0.531639 + 0.846971i \(0.321576\pi\)
\(740\) 0 0
\(741\) −5.73205 5.73205i −0.210572 0.210572i
\(742\) 0 0
\(743\) 11.0718i 0.406185i −0.979160 0.203092i \(-0.934901\pi\)
0.979160 0.203092i \(-0.0650992\pi\)
\(744\) 0 0
\(745\) 6.10770 3.52628i 0.223769 0.129193i
\(746\) 0 0
\(747\) −5.73205 + 1.53590i −0.209725 + 0.0561956i
\(748\) 0 0
\(749\) −3.86603 + 7.96410i −0.141261 + 0.291002i
\(750\) 0 0
\(751\) 6.52628 11.3038i 0.238147 0.412483i −0.722035 0.691856i \(-0.756793\pi\)
0.960183 + 0.279373i \(0.0901266\pi\)
\(752\) 0 0
\(753\) −6.43782 11.1506i −0.234607 0.406352i
\(754\) 0 0
\(755\) −7.22243 + 7.22243i −0.262851 + 0.262851i
\(756\) 0 0
\(757\) 18.6603 + 18.6603i 0.678218 + 0.678218i 0.959597 0.281378i \(-0.0907916\pi\)
−0.281378 + 0.959597i \(0.590792\pi\)
\(758\) 0 0
\(759\) 5.93782 3.42820i 0.215529 0.124436i
\(760\) 0 0
\(761\) 11.7679 + 6.79423i 0.426588 + 0.246291i 0.697892 0.716203i \(-0.254122\pi\)
−0.271304 + 0.962494i \(0.587455\pi\)
\(762\) 0 0
\(763\) −4.83975 + 3.27757i −0.175211 + 0.118656i
\(764\) 0 0
\(765\) 4.09808 + 15.2942i 0.148166 + 0.552964i
\(766\) 0 0
\(767\) −30.9545 53.6147i −1.11770 1.93592i
\(768\) 0 0
\(769\) 9.85641 0.355431 0.177716 0.984082i \(-0.443129\pi\)
0.177716 + 0.984082i \(0.443129\pi\)
\(770\) 0 0
\(771\) 7.09808 7.09808i 0.255631 0.255631i
\(772\) 0 0
\(773\) 2.93782 10.9641i 0.105666 0.394351i −0.892754 0.450545i \(-0.851230\pi\)
0.998420 + 0.0561936i \(0.0178964\pi\)
\(774\) 0 0
\(775\) −13.5622 7.83013i −0.487168 0.281266i
\(776\) 0 0
\(777\) −1.05256 + 1.21539i −0.0377603 + 0.0436019i
\(778\) 0 0
\(779\) −14.1244 + 3.78461i −0.506058 + 0.135598i
\(780\) 0 0
\(781\) −1.53590 0.411543i −0.0549588 0.0147262i
\(782\) 0 0
\(783\) −1.12436 −0.0401812
\(784\) 0 0
\(785\) 16.9474 0.604880
\(786\) 0 0
\(787\) −13.1603 3.52628i −0.469112 0.125698i 0.0165161 0.999864i \(-0.494743\pi\)
−0.485628 + 0.874165i \(0.661409\pi\)
\(788\) 0 0
\(789\) −2.30385 + 0.617314i −0.0820191 + 0.0219770i
\(790\) 0 0
\(791\) 2.53590 2.92820i 0.0901662 0.104115i
\(792\) 0 0
\(793\) 32.9545 + 19.0263i 1.17025 + 0.675643i
\(794\) 0 0
\(795\) 0.492958 1.83975i 0.0174834 0.0652491i
\(796\) 0 0
\(797\) 13.3397 13.3397i 0.472518 0.472518i −0.430211 0.902729i \(-0.641561\pi\)
0.902729 + 0.430211i \(0.141561\pi\)
\(798\) 0 0
\(799\) −27.5885 −0.976009
\(800\) 0 0
\(801\) 7.09808 + 12.2942i 0.250798 + 0.434395i
\(802\) 0 0
\(803\) 5.52628 + 20.6244i 0.195018 + 0.727818i
\(804\) 0 0
\(805\) 8.76795 5.93782i 0.309030 0.209281i
\(806\) 0 0
\(807\) −4.54552 2.62436i −0.160010 0.0923817i
\(808\) 0 0
\(809\) −29.4282 + 16.9904i −1.03464 + 0.597350i −0.918311 0.395861i \(-0.870446\pi\)
−0.116330 + 0.993211i \(0.537113\pi\)
\(810\) 0 0
\(811\) 24.3205 + 24.3205i 0.854009 + 0.854009i 0.990624 0.136616i \(-0.0436225\pi\)
−0.136616 + 0.990624i \(0.543623\pi\)
\(812\) 0 0
\(813\) 4.43782 4.43782i 0.155641 0.155641i
\(814\) 0 0
\(815\) 5.59808 + 9.69615i 0.196092 + 0.339641i
\(816\) 0 0
\(817\) −13.5622 + 23.4904i −0.474481 + 0.821824i
\(818\) 0 0
\(819\) −16.6603 + 34.3205i −0.582156 + 1.19926i
\(820\) 0 0
\(821\) −0.598076 + 0.160254i −0.0208730 + 0.00559290i −0.269240 0.963073i \(-0.586773\pi\)
0.248367 + 0.968666i \(0.420106\pi\)
\(822\) 0 0
\(823\) 14.9378 8.62436i 0.520700 0.300626i −0.216521 0.976278i \(-0.569471\pi\)
0.737221 + 0.675652i \(0.236138\pi\)
\(824\) 0 0
\(825\) 6.44486i 0.224381i
\(826\) 0 0
\(827\) −3.78461 3.78461i −0.131604 0.131604i 0.638237 0.769840i \(-0.279664\pi\)
−0.769840 + 0.638237i \(0.779664\pi\)
\(828\) 0 0
\(829\) 3.06218 + 0.820508i 0.106354 + 0.0284974i 0.311603 0.950212i \(-0.399134\pi\)
−0.205250 + 0.978710i \(0.565801\pi\)
\(830\) 0 0
\(831\) 1.20577 2.08846i 0.0418277 0.0724478i
\(832\) 0 0
\(833\) −35.5526 + 27.9904i −1.23182 + 0.969809i
\(834\) 0 0
\(835\) −5.07180 18.9282i −0.175517 0.655037i
\(836\) 0 0
\(837\) 2.86603 10.6962i 0.0990643 0.369713i
\(838\) 0 0
\(839\) 17.7128i 0.611514i 0.952110 + 0.305757i \(0.0989096\pi\)
−0.952110 + 0.305757i \(0.901090\pi\)
\(840\) 0 0
\(841\) 28.8564i 0.995048i
\(842\) 0 0
\(843\) −0.124356 + 0.464102i −0.00428304 + 0.0159845i
\(844\) 0 0
\(845\) −3.44744 12.8660i −0.118596 0.442605i
\(846\) 0 0
\(847\) −5.49038 + 1.90192i −0.188652 + 0.0653509i
\(848\) 0 0
\(849\) −3.89230 + 6.74167i −0.133584 + 0.231374i
\(850\) 0 0
\(851\) −5.06218 1.35641i −0.173529 0.0464970i
\(852\) 0 0
\(853\) 11.8756 + 11.8756i 0.406614 + 0.406614i 0.880556 0.473942i \(-0.157169\pi\)
−0.473942 + 0.880556i \(0.657169\pi\)
\(854\) 0 0
\(855\) 7.26795i 0.248559i
\(856\) 0 0
\(857\) 11.8923 6.86603i 0.406233 0.234539i −0.282937 0.959139i \(-0.591309\pi\)
0.689170 + 0.724600i \(0.257975\pi\)
\(858\) 0 0
\(859\) 13.6244 3.65064i 0.464857 0.124558i −0.0187858 0.999824i \(-0.505980\pi\)
0.483643 + 0.875265i \(0.339313\pi\)
\(860\) 0 0
\(861\) −3.78461 5.58846i −0.128979 0.190454i
\(862\) 0 0
\(863\) −16.3301 + 28.2846i −0.555884 + 0.962819i 0.441950 + 0.897040i \(0.354287\pi\)
−0.997834 + 0.0657797i \(0.979047\pi\)
\(864\) 0 0
\(865\) −1.03590 1.79423i −0.0352216 0.0610056i
\(866\) 0 0
\(867\) −9.07180 + 9.07180i −0.308094 + 0.308094i
\(868\) 0 0
\(869\) −34.9545 34.9545i −1.18575 1.18575i
\(870\) 0 0
\(871\) 23.4904 13.5622i 0.795941 0.459537i
\(872\) 0 0
\(873\) 6.92820 + 4.00000i 0.234484 + 0.135379i
\(874\) 0 0
\(875\) −1.56218 21.7583i −0.0528112 0.735566i
\(876\) 0 0
\(877\) −8.18653 30.5526i −0.276440 1.03169i −0.954871 0.297022i \(-0.904006\pi\)
0.678431 0.734664i \(-0.262660\pi\)
\(878\) 0 0
\(879\) 2.90192 + 5.02628i 0.0978795 + 0.169532i
\(880\) 0 0
\(881\) 50.0000 1.68454 0.842271 0.539054i \(-0.181218\pi\)
0.842271 + 0.539054i \(0.181218\pi\)
\(882\) 0 0
\(883\) −5.00000 + 5.00000i −0.168263 + 0.168263i −0.786216 0.617952i \(-0.787963\pi\)
0.617952 + 0.786216i \(0.287963\pi\)
\(884\) 0 0
\(885\) −1.40897 + 5.25833i −0.0473619 + 0.176757i
\(886\) 0 0
\(887\) 39.7750 + 22.9641i 1.33551 + 0.771059i 0.986139 0.165924i \(-0.0530606\pi\)
0.349375 + 0.936983i \(0.386394\pi\)
\(888\) 0 0
\(889\) 16.3923 18.9282i 0.549780 0.634832i
\(890\) 0 0
\(891\) −19.0885 + 5.11474i −0.639487 + 0.171350i
\(892\) 0 0
\(893\) 12.2321 + 3.27757i 0.409330 + 0.109680i
\(894\) 0 0
\(895\) 8.32051 0.278124
\(896\) 0 0
\(897\) 12.1962 0.407218
\(898\) 0 0
\(899\) 1.36603 + 0.366025i 0.0455595 + 0.0122076i
\(900\) 0 0
\(901\) −25.6244 + 6.86603i −0.853671 + 0.228740i
\(902\) 0 0
\(903\) −12.2942 2.36603i −0.409126 0.0787364i
\(904\) 0 0
\(905\) −14.7058 8.49038i −0.488836 0.282230i
\(906\) 0 0
\(907\) 7.16025 26.7224i 0.237752 0.887304i −0.739136 0.673556i \(-0.764766\pi\)
0.976889 0.213748i \(-0.0685672\pi\)
\(908\) 0 0
\(909\) 37.7846 37.7846i 1.25324 1.25324i
\(910\) 0 0
\(911\) −7.32051 −0.242539 −0.121270 0.992620i \(-0.538697\pi\)
−0.121270 + 0.992620i \(0.538697\pi\)
\(912\) 0 0
\(913\) 3.22243 + 5.58142i 0.106647 + 0.184718i
\(914\) 0 0
\(915\) −0.866025 3.23205i −0.0286299 0.106848i
\(916\) 0 0
\(917\) 18.7224 + 9.08846i 0.618269 + 0.300127i
\(918\) 0 0
\(919\) 15.8660 + 9.16025i 0.523372 + 0.302169i 0.738313 0.674458i \(-0.235623\pi\)
−0.214941 + 0.976627i \(0.568956\pi\)
\(920\) 0 0
\(921\) 5.70577 3.29423i 0.188012 0.108549i
\(922\) 0 0
\(923\) −2.00000 2.00000i −0.0658308 0.0658308i
\(924\) 0 0
\(925\) −3.48334 + 3.48334i −0.114531 + 0.114531i
\(926\) 0 0
\(927\) −8.83013 15.2942i −0.290019 0.502328i
\(928\) 0 0
\(929\) −25.0167 + 43.3301i −0.820770 + 1.42162i 0.0843396 + 0.996437i \(0.473122\pi\)
−0.905110 + 0.425178i \(0.860211\pi\)
\(930\) 0 0
\(931\) 19.0885 8.18653i 0.625599 0.268303i
\(932\) 0 0
\(933\) −3.23205 + 0.866025i −0.105813 + 0.0283524i
\(934\) 0 0
\(935\) 14.8923 8.59808i 0.487030 0.281187i
\(936\) 0 0
\(937\) 29.0718i 0.949734i 0.880058 + 0.474867i \(0.157504\pi\)
−0.880058 + 0.474867i \(0.842496\pi\)
\(938\) 0 0
\(939\) −7.90192 7.90192i −0.257870 0.257870i
\(940\) 0 0
\(941\) 23.5263 + 6.30385i 0.766935 + 0.205500i 0.621017 0.783797i \(-0.286720\pi\)
0.145918 + 0.989297i \(0.453386\pi\)
\(942\) 0 0
\(943\) 11.0000 19.0526i 0.358209 0.620437i
\(944\) 0 0
\(945\) 6.65064 2.30385i 0.216345 0.0749442i
\(946\) 0 0
\(947\) −1.44744 5.40192i −0.0470355 0.175539i 0.938412 0.345518i \(-0.112297\pi\)
−0.985448 + 0.169979i \(0.945630\pi\)
\(948\) 0 0
\(949\) −9.83013 + 36.6865i −0.319099 + 1.19090i
\(950\) 0 0
\(951\) 7.58846i 0.246073i
\(952\) 0 0
\(953\) 16.5359i 0.535650i −0.963468 0.267825i \(-0.913695\pi\)
0.963468 0.267825i \(-0.0863050\pi\)
\(954\) 0 0
\(955\) 2.00962 7.50000i 0.0650297 0.242694i
\(956\) 0 0
\(957\) 0.150635 + 0.562178i 0.00486934 + 0.0181726i
\(958\) 0 0
\(959\) −8.79423 + 45.6962i −0.283980 + 1.47561i
\(960\) 0 0
\(961\) 8.53590 14.7846i 0.275352 0.476923i
\(962\) 0 0
\(963\) −8.83013 2.36603i −0.284547 0.0762441i
\(964\) 0 0
\(965\) 14.5814 + 14.5814i 0.469392 + 0.469392i
\(966\) 0 0
\(967\) 60.2487i 1.93747i −0.248102 0.968734i \(-0.579807\pi\)
0.248102 0.968734i \(-0.420193\pi\)
\(968\) 0 0
\(969\) 8.59808 4.96410i 0.276210 0.159470i
\(970\) 0 0
\(971\) −52.4090 + 14.0429i −1.68188 + 0.450659i −0.968275 0.249885i \(-0.919607\pi\)
−0.713608 + 0.700545i \(0.752940\pi\)
\(972\) 0 0
\(973\) 44.5167 3.19615i 1.42714 0.102464i
\(974\) 0 0
\(975\) 5.73205 9.92820i 0.183573 0.317957i
\(976\) 0 0
\(977\) 8.57180 + 14.8468i 0.274236 + 0.474991i 0.969942 0.243336i \(-0.0782417\pi\)
−0.695706 + 0.718327i \(0.744908\pi\)
\(978\) 0 0
\(979\) 10.9019 10.9019i 0.348427 0.348427i
\(980\) 0 0
\(981\) −4.26795 4.26795i −0.136265 0.136265i
\(982\) 0 0
\(983\) −17.1340 + 9.89230i −0.546489 + 0.315516i −0.747705 0.664031i \(-0.768844\pi\)
0.201216 + 0.979547i \(0.435511\pi\)
\(984\) 0 0
\(985\) 18.2942 + 10.5622i 0.582903 + 0.336539i
\(986\) 0 0
\(987\) 0.418584 + 5.83013i 0.0133237 + 0.185575i
\(988\) 0 0
\(989\) −10.5622 39.4186i −0.335858 1.25344i
\(990\) 0 0
\(991\) −4.20577 7.28461i −0.133601 0.231403i 0.791461 0.611219i \(-0.209321\pi\)
−0.925062 + 0.379816i \(0.875987\pi\)
\(992\) 0 0
\(993\) −10.5167 −0.333736
\(994\) 0 0
\(995\) 7.56218 7.56218i 0.239737 0.239737i
\(996\) 0 0
\(997\) −0.401924 + 1.50000i −0.0127291 + 0.0475055i −0.971998 0.234988i \(-0.924495\pi\)
0.959269 + 0.282494i \(0.0911616\pi\)
\(998\) 0 0
\(999\) −3.01666 1.74167i −0.0954429 0.0551040i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 896.2.ba.c.737.1 4
4.3 odd 2 896.2.ba.b.737.1 4
7.4 even 3 896.2.ba.a.865.1 4
8.3 odd 2 112.2.w.b.37.1 yes 4
8.5 even 2 448.2.ba.a.177.1 4
16.3 odd 4 896.2.ba.d.289.1 4
16.5 even 4 448.2.ba.b.401.1 4
16.11 odd 4 112.2.w.a.93.1 yes 4
16.13 even 4 896.2.ba.a.289.1 4
28.11 odd 6 896.2.ba.d.865.1 4
56.3 even 6 784.2.x.a.165.1 4
56.11 odd 6 112.2.w.a.53.1 4
56.19 even 6 784.2.m.d.197.2 4
56.27 even 2 784.2.x.h.373.1 4
56.51 odd 6 784.2.m.e.197.2 4
56.53 even 6 448.2.ba.b.305.1 4
112.11 odd 12 112.2.w.b.109.1 yes 4
112.27 even 4 784.2.x.a.765.1 4
112.53 even 12 448.2.ba.a.81.1 4
112.59 even 12 784.2.x.h.557.1 4
112.67 odd 12 896.2.ba.b.417.1 4
112.75 even 12 784.2.m.d.589.2 4
112.107 odd 12 784.2.m.e.589.2 4
112.109 even 12 inner 896.2.ba.c.417.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.w.a.53.1 4 56.11 odd 6
112.2.w.a.93.1 yes 4 16.11 odd 4
112.2.w.b.37.1 yes 4 8.3 odd 2
112.2.w.b.109.1 yes 4 112.11 odd 12
448.2.ba.a.81.1 4 112.53 even 12
448.2.ba.a.177.1 4 8.5 even 2
448.2.ba.b.305.1 4 56.53 even 6
448.2.ba.b.401.1 4 16.5 even 4
784.2.m.d.197.2 4 56.19 even 6
784.2.m.d.589.2 4 112.75 even 12
784.2.m.e.197.2 4 56.51 odd 6
784.2.m.e.589.2 4 112.107 odd 12
784.2.x.a.165.1 4 56.3 even 6
784.2.x.a.765.1 4 112.27 even 4
784.2.x.h.373.1 4 56.27 even 2
784.2.x.h.557.1 4 112.59 even 12
896.2.ba.a.289.1 4 16.13 even 4
896.2.ba.a.865.1 4 7.4 even 3
896.2.ba.b.417.1 4 112.67 odd 12
896.2.ba.b.737.1 4 4.3 odd 2
896.2.ba.c.417.1 4 112.109 even 12 inner
896.2.ba.c.737.1 4 1.1 even 1 trivial
896.2.ba.d.289.1 4 16.3 odd 4
896.2.ba.d.865.1 4 28.11 odd 6