Properties

Label 896.1.l.b
Level $896$
Weight $1$
Character orbit 896.l
Analytic conductor $0.447$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 896 = 2^{7} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 896.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.447162251319\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 112)
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.14336.1
Artin image: $C_4\wr C_2$
Artin field: Galois closure of 8.0.4917248.1

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q -i q^{7} + i q^{9} +O(q^{10})\) \( q -i q^{7} + i q^{9} + ( 1 - i ) q^{11} -i q^{25} + ( 1 + i ) q^{29} + ( 1 - i ) q^{37} + ( -1 + i ) q^{43} - q^{49} + ( -1 + i ) q^{53} + q^{63} + ( -1 - i ) q^{67} + 2 i q^{71} + ( -1 - i ) q^{77} - q^{81} + ( 1 + i ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + O(q^{10}) \) \( 2 q + 2 q^{11} + 2 q^{29} + 2 q^{37} - 2 q^{43} - 2 q^{49} - 2 q^{53} + 2 q^{63} - 2 q^{67} - 2 q^{77} - 2 q^{81} + 2 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/896\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(645\)
\(\chi(n)\) \(1\) \(-1\) \(-i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
97.1
1.00000i
1.00000i
0 0 0 0 0 1.00000i 0 1.00000i 0
545.1 0 0 0 0 0 1.00000i 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
16.e even 4 1 inner
112.l odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 896.1.l.b 2
4.b odd 2 1 896.1.l.a 2
7.b odd 2 1 CM 896.1.l.b 2
8.b even 2 1 112.1.l.a 2
8.d odd 2 1 448.1.l.a 2
16.e even 4 1 112.1.l.a 2
16.e even 4 1 inner 896.1.l.b 2
16.f odd 4 1 448.1.l.a 2
16.f odd 4 1 896.1.l.a 2
24.h odd 2 1 1008.1.u.b 2
28.d even 2 1 896.1.l.a 2
40.f even 2 1 2800.1.z.a 2
40.i odd 4 1 2800.1.bf.a 2
40.i odd 4 1 2800.1.bf.b 2
48.i odd 4 1 1008.1.u.b 2
56.e even 2 1 448.1.l.a 2
56.h odd 2 1 112.1.l.a 2
56.j odd 6 2 784.1.y.a 4
56.k odd 6 2 3136.1.bc.a 4
56.m even 6 2 3136.1.bc.a 4
56.p even 6 2 784.1.y.a 4
80.i odd 4 1 2800.1.bf.b 2
80.q even 4 1 2800.1.z.a 2
80.t odd 4 1 2800.1.bf.a 2
112.j even 4 1 448.1.l.a 2
112.j even 4 1 896.1.l.a 2
112.l odd 4 1 112.1.l.a 2
112.l odd 4 1 inner 896.1.l.b 2
112.u odd 12 2 3136.1.bc.a 4
112.v even 12 2 3136.1.bc.a 4
112.w even 12 2 784.1.y.a 4
112.x odd 12 2 784.1.y.a 4
168.i even 2 1 1008.1.u.b 2
280.c odd 2 1 2800.1.z.a 2
280.s even 4 1 2800.1.bf.a 2
280.s even 4 1 2800.1.bf.b 2
336.y even 4 1 1008.1.u.b 2
560.r even 4 1 2800.1.bf.a 2
560.bf odd 4 1 2800.1.z.a 2
560.bn even 4 1 2800.1.bf.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
112.1.l.a 2 8.b even 2 1
112.1.l.a 2 16.e even 4 1
112.1.l.a 2 56.h odd 2 1
112.1.l.a 2 112.l odd 4 1
448.1.l.a 2 8.d odd 2 1
448.1.l.a 2 16.f odd 4 1
448.1.l.a 2 56.e even 2 1
448.1.l.a 2 112.j even 4 1
784.1.y.a 4 56.j odd 6 2
784.1.y.a 4 56.p even 6 2
784.1.y.a 4 112.w even 12 2
784.1.y.a 4 112.x odd 12 2
896.1.l.a 2 4.b odd 2 1
896.1.l.a 2 16.f odd 4 1
896.1.l.a 2 28.d even 2 1
896.1.l.a 2 112.j even 4 1
896.1.l.b 2 1.a even 1 1 trivial
896.1.l.b 2 7.b odd 2 1 CM
896.1.l.b 2 16.e even 4 1 inner
896.1.l.b 2 112.l odd 4 1 inner
1008.1.u.b 2 24.h odd 2 1
1008.1.u.b 2 48.i odd 4 1
1008.1.u.b 2 168.i even 2 1
1008.1.u.b 2 336.y even 4 1
2800.1.z.a 2 40.f even 2 1
2800.1.z.a 2 80.q even 4 1
2800.1.z.a 2 280.c odd 2 1
2800.1.z.a 2 560.bf odd 4 1
2800.1.bf.a 2 40.i odd 4 1
2800.1.bf.a 2 80.t odd 4 1
2800.1.bf.a 2 280.s even 4 1
2800.1.bf.a 2 560.r even 4 1
2800.1.bf.b 2 40.i odd 4 1
2800.1.bf.b 2 80.i odd 4 1
2800.1.bf.b 2 280.s even 4 1
2800.1.bf.b 2 560.bn even 4 1
3136.1.bc.a 4 56.k odd 6 2
3136.1.bc.a 4 56.m even 6 2
3136.1.bc.a 4 112.u odd 12 2
3136.1.bc.a 4 112.v even 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{2} - 2 T_{11} + 2 \) acting on \(S_{1}^{\mathrm{new}}(896, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( T^{2} \)
$7$ \( 1 + T^{2} \)
$11$ \( 2 - 2 T + T^{2} \)
$13$ \( T^{2} \)
$17$ \( T^{2} \)
$19$ \( T^{2} \)
$23$ \( T^{2} \)
$29$ \( 2 - 2 T + T^{2} \)
$31$ \( T^{2} \)
$37$ \( 2 - 2 T + T^{2} \)
$41$ \( T^{2} \)
$43$ \( 2 + 2 T + T^{2} \)
$47$ \( T^{2} \)
$53$ \( 2 + 2 T + T^{2} \)
$59$ \( T^{2} \)
$61$ \( T^{2} \)
$67$ \( 2 + 2 T + T^{2} \)
$71$ \( 4 + T^{2} \)
$73$ \( T^{2} \)
$79$ \( T^{2} \)
$83$ \( T^{2} \)
$89$ \( T^{2} \)
$97$ \( T^{2} \)
show more
show less