Properties

Label 8954.2.a.z
Level $8954$
Weight $2$
Character orbit 8954.a
Self dual yes
Analytic conductor $71.498$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8954,2,Mod(1,8954)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8954.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8954, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8954 = 2 \cdot 11^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8954.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-5,3,5,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.4980499699\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.702521.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 7x^{3} + 9x^{2} + 4x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + ( - \beta_{4} + 1) q^{3} + q^{4} + (\beta_{4} - \beta_{2} + \beta_1 - 1) q^{5} + (\beta_{4} - 1) q^{6} + (\beta_{4} + \beta_1) q^{7} - q^{8} + (\beta_{4} - \beta_{3} + 2 \beta_1) q^{9} + ( - \beta_{4} + \beta_{2} - \beta_1 + 1) q^{10}+ \cdots + ( - 4 \beta_{4} + \beta_{3} - \beta_{2} + \cdots + 3) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{2} + 3 q^{3} + 5 q^{4} - 3 q^{6} + 3 q^{7} - 5 q^{8} + 6 q^{9} + 3 q^{12} - 11 q^{13} - 3 q^{14} - 10 q^{15} + 5 q^{16} - 7 q^{17} - 6 q^{18} - 2 q^{19} - 14 q^{21} + 16 q^{23} - 3 q^{24} + 5 q^{25}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 7x^{3} + 9x^{2} + 4x - 5 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{4} - 6\nu^{2} + 3\nu + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} + \nu^{3} - 6\nu^{2} - 2\nu + 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 7\nu^{2} + 2\nu + 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{4} + \beta_{2} - \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - \beta_{2} + 5\beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -6\beta_{4} + 7\beta_{2} - 9\beta _1 + 22 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.744607
−0.779024
−2.63323
2.13295
1.53469
−1.00000 −2.91554 1.00000 2.44556 2.91554 4.66015 −1.00000 5.50036 −2.44556
1.2 −1.00000 0.437894 1.00000 2.39312 −0.437894 −0.216918 −1.00000 −2.80825 −2.39312
1.3 −1.00000 0.724763 1.00000 −3.93390 −0.724763 −2.35799 −1.00000 −2.47472 3.93390
1.4 −1.00000 1.88265 1.00000 −1.54950 −1.88265 1.25031 −1.00000 0.544362 1.54950
1.5 −1.00000 2.87023 1.00000 0.644719 −2.87023 −0.335541 −1.00000 5.23824 −0.644719
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( -1 \)
\(37\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8954.2.a.z 5
11.b odd 2 1 8954.2.a.bd yes 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8954.2.a.z 5 1.a even 1 1 trivial
8954.2.a.bd yes 5 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8954))\):

\( T_{3}^{5} - 3T_{3}^{4} - 6T_{3}^{3} + 25T_{3}^{2} - 21T_{3} + 5 \) Copy content Toggle raw display
\( T_{5}^{5} - 15T_{5}^{3} + 12T_{5}^{2} + 34T_{5} - 23 \) Copy content Toggle raw display
\( T_{7}^{5} - 3T_{7}^{4} - 10T_{7}^{3} + 9T_{7}^{2} + 7T_{7} + 1 \) Copy content Toggle raw display
\( T_{17}^{5} + 7T_{17}^{4} + 9T_{17}^{3} - 10T_{17}^{2} - 3T_{17} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 3 T^{4} + \cdots + 5 \) Copy content Toggle raw display
$5$ \( T^{5} - 15 T^{3} + \cdots - 23 \) Copy content Toggle raw display
$7$ \( T^{5} - 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{5} \) Copy content Toggle raw display
$13$ \( T^{5} + 11 T^{4} + \cdots - 955 \) Copy content Toggle raw display
$17$ \( T^{5} + 7 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{5} + 2 T^{4} + \cdots - 135 \) Copy content Toggle raw display
$23$ \( T^{5} - 16 T^{4} + \cdots + 1511 \) Copy content Toggle raw display
$29$ \( T^{5} + 15 T^{4} + \cdots - 7705 \) Copy content Toggle raw display
$31$ \( T^{5} - 11 T^{4} + \cdots + 5 \) Copy content Toggle raw display
$37$ \( (T - 1)^{5} \) Copy content Toggle raw display
$41$ \( T^{5} - 4 T^{4} + \cdots + 1255 \) Copy content Toggle raw display
$43$ \( T^{5} + 4 T^{4} + \cdots + 225 \) Copy content Toggle raw display
$47$ \( T^{5} - 7 T^{4} + \cdots - 18197 \) Copy content Toggle raw display
$53$ \( T^{5} + 14 T^{4} + \cdots - 7349 \) Copy content Toggle raw display
$59$ \( T^{5} - 3 T^{4} + \cdots + 1135 \) Copy content Toggle raw display
$61$ \( T^{5} + 27 T^{4} + \cdots - 18125 \) Copy content Toggle raw display
$67$ \( T^{5} - 12 T^{4} + \cdots + 8425 \) Copy content Toggle raw display
$71$ \( T^{5} + 11 T^{4} + \cdots + 16839 \) Copy content Toggle raw display
$73$ \( T^{5} + 15 T^{4} + \cdots + 21325 \) Copy content Toggle raw display
$79$ \( T^{5} - 5 T^{4} + \cdots - 17531 \) Copy content Toggle raw display
$83$ \( T^{5} + 8 T^{4} + \cdots - 27 \) Copy content Toggle raw display
$89$ \( T^{5} - 27 T^{4} + \cdots + 2403 \) Copy content Toggle raw display
$97$ \( T^{5} + 7 T^{4} + \cdots - 3379 \) Copy content Toggle raw display
show more
show less