Properties

Label 8954.2.a.v
Level $8954$
Weight $2$
Character orbit 8954.a
Self dual yes
Analytic conductor $71.498$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8954,2,Mod(1,8954)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8954.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8954, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8954 = 2 \cdot 11^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8954.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,4,4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.4980499699\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.4352.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 814)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + (\beta_{3} - \beta_{2} + 1) q^{3} + q^{4} + ( - \beta_{3} + \beta_1 + 1) q^{5} + ( - \beta_{3} + \beta_{2} - 1) q^{6} + ( - \beta_{2} - 1) q^{7} - q^{8} + ( - \beta_{2} - \beta_1 + 2) q^{9}+ \cdots + (2 \beta_{3} - \beta_{2} - \beta_1 + 2) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{3} + 4 q^{4} + 4 q^{5} - 4 q^{6} - 4 q^{7} - 4 q^{8} + 8 q^{9} - 4 q^{10} + 4 q^{12} + 4 q^{14} + 4 q^{15} + 4 q^{16} - 8 q^{18} - 4 q^{19} + 4 q^{20} + 8 q^{21} + 8 q^{23} - 4 q^{24}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 6x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 5\beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.74912
2.68554
−1.27133
0.334904
−1.00000 −2.22274 1.00000 0.665096 2.22274 −2.80853 −1.00000 1.94059 −0.665096
1.2 −1.00000 0.887611 1.00000 2.27133 −0.887611 −2.52660 −1.00000 −2.21215 −2.27133
1.3 −1.00000 2.52660 1.00000 −1.68554 −2.52660 −0.887611 −1.00000 3.38372 1.68554
1.4 −1.00000 2.80853 1.00000 2.74912 −2.80853 2.22274 −1.00000 4.88784 −2.74912
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( -1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8954.2.a.v 4
11.b odd 2 1 814.2.a.i 4
33.d even 2 1 7326.2.a.be 4
44.c even 2 1 6512.2.a.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
814.2.a.i 4 11.b odd 2 1
6512.2.a.l 4 44.c even 2 1
7326.2.a.be 4 33.d even 2 1
8954.2.a.v 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8954))\):

\( T_{3}^{4} - 4T_{3}^{3} - 2T_{3}^{2} + 20T_{3} - 14 \) Copy content Toggle raw display
\( T_{5}^{4} - 4T_{5}^{3} + 12T_{5} - 7 \) Copy content Toggle raw display
\( T_{7}^{4} + 4T_{7}^{3} - 2T_{7}^{2} - 20T_{7} - 14 \) Copy content Toggle raw display
\( T_{17}^{4} - 26T_{17}^{2} + 32T_{17} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 4 T^{3} + \cdots - 14 \) Copy content Toggle raw display
$5$ \( T^{4} - 4 T^{3} + \cdots - 7 \) Copy content Toggle raw display
$7$ \( T^{4} + 4 T^{3} + \cdots - 14 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 6 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$17$ \( T^{4} - 26 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} + 4 T^{3} + \cdots + 146 \) Copy content Toggle raw display
$23$ \( T^{4} - 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$29$ \( T^{4} + 4 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$31$ \( T^{4} + 4 T^{3} + \cdots + 8 \) Copy content Toggle raw display
$37$ \( (T + 1)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} - 4 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$43$ \( T^{4} - 126 T^{2} + \cdots + 162 \) Copy content Toggle raw display
$47$ \( T^{4} - 12 T^{3} + \cdots - 3871 \) Copy content Toggle raw display
$53$ \( T^{4} - 8 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$59$ \( T^{4} - 12 T^{3} + \cdots - 28 \) Copy content Toggle raw display
$61$ \( T^{4} - 8 T^{3} + \cdots + 178 \) Copy content Toggle raw display
$67$ \( T^{4} - 8 T^{3} + \cdots + 5362 \) Copy content Toggle raw display
$71$ \( T^{4} - 4 T^{3} + \cdots + 3521 \) Copy content Toggle raw display
$73$ \( T^{4} - 8 T^{3} + \cdots + 3602 \) Copy content Toggle raw display
$79$ \( T^{4} - 16 T^{3} + \cdots - 5039 \) Copy content Toggle raw display
$83$ \( T^{4} + 28 T^{3} + \cdots - 14263 \) Copy content Toggle raw display
$89$ \( T^{4} - 4 T^{3} + \cdots + 2888 \) Copy content Toggle raw display
$97$ \( T^{4} + 8 T^{3} + \cdots + 3394 \) Copy content Toggle raw display
show more
show less