Properties

Label 8954.2.a.u
Level $8954$
Weight $2$
Character orbit 8954.a
Self dual yes
Analytic conductor $71.498$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8954,2,Mod(1,8954)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8954.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8954, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8954 = 2 \cdot 11^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8954.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,2,4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.4980499699\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.11344.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 814)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + ( - \beta_1 + 1) q^{3} + q^{4} - \beta_{2} q^{5} + (\beta_1 - 1) q^{6} + (\beta_{3} + \beta_1 - 1) q^{7} - q^{8} + (\beta_{2} - \beta_1 + 1) q^{9} + \beta_{2} q^{10} + ( - \beta_1 + 1) q^{12}+ \cdots + (2 \beta_{3} - \beta_{2} + 3 \beta_1 - 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 2 q^{3} + 4 q^{4} + 2 q^{5} - 2 q^{6} - 4 q^{7} - 4 q^{8} - 2 q^{10} + 2 q^{12} - 2 q^{13} + 4 q^{14} + 4 q^{15} + 4 q^{16} - 2 q^{17} - 2 q^{19} + 2 q^{20} - 10 q^{21} + 4 q^{23} - 2 q^{24}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 4x^{2} + 4x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 3\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 5\beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.78165
1.28734
−0.552409
−1.51658
−1.00000 −1.78165 1.00000 −1.95594 1.78165 1.48481 −1.00000 0.174289 1.95594
1.2 −1.00000 −0.287336 1.00000 2.63010 0.287336 −2.75572 −1.00000 −2.91744 −2.63010
1.3 −1.00000 1.55241 1.00000 2.14243 −1.55241 1.32594 −1.00000 −0.590025 −2.14243
1.4 −1.00000 2.51658 1.00000 −0.816594 −2.51658 −4.05502 −1.00000 3.33317 0.816594
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( -1 \)
\(37\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8954.2.a.u 4
11.b odd 2 1 814.2.a.h 4
33.d even 2 1 7326.2.a.bg 4
44.c even 2 1 6512.2.a.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
814.2.a.h 4 11.b odd 2 1
6512.2.a.m 4 44.c even 2 1
7326.2.a.bg 4 33.d even 2 1
8954.2.a.u 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8954))\):

\( T_{3}^{4} - 2T_{3}^{3} - 4T_{3}^{2} + 6T_{3} + 2 \) Copy content Toggle raw display
\( T_{5}^{4} - 2T_{5}^{3} - 6T_{5}^{2} + 8T_{5} + 9 \) Copy content Toggle raw display
\( T_{7}^{4} + 4T_{7}^{3} - 6T_{7}^{2} - 18T_{7} + 22 \) Copy content Toggle raw display
\( T_{17}^{4} + 2T_{17}^{3} - 20T_{17}^{2} - 2T_{17} + 27 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 2 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$5$ \( T^{4} - 2 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{4} + 4 T^{3} + \cdots + 22 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 2 T^{3} + \cdots - 2 \) Copy content Toggle raw display
$17$ \( T^{4} + 2 T^{3} + \cdots + 27 \) Copy content Toggle raw display
$19$ \( T^{4} + 2 T^{3} + \cdots + 270 \) Copy content Toggle raw display
$23$ \( T^{4} - 4 T^{3} + \cdots + 48 \) Copy content Toggle raw display
$29$ \( T^{4} - 18 T^{2} + \cdots + 30 \) Copy content Toggle raw display
$31$ \( T^{4} + 2 T^{3} + \cdots + 8 \) Copy content Toggle raw display
$37$ \( (T - 1)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + 6 T^{3} + \cdots + 162 \) Copy content Toggle raw display
$43$ \( T^{4} + 4 T^{3} + \cdots - 62 \) Copy content Toggle raw display
$47$ \( T^{4} - 8 T^{3} + \cdots + 309 \) Copy content Toggle raw display
$53$ \( T^{4} + 8 T^{3} + \cdots + 96 \) Copy content Toggle raw display
$59$ \( T^{4} - 4 T^{3} + \cdots + 300 \) Copy content Toggle raw display
$61$ \( T^{4} + 2 T^{3} + \cdots + 2578 \) Copy content Toggle raw display
$67$ \( T^{4} + 8 T^{3} + \cdots + 2138 \) Copy content Toggle raw display
$71$ \( T^{4} - 8 T^{3} + \cdots - 4707 \) Copy content Toggle raw display
$73$ \( T^{4} - 12 T^{3} + \cdots - 194 \) Copy content Toggle raw display
$79$ \( T^{4} + 2 T^{3} + \cdots + 1795 \) Copy content Toggle raw display
$83$ \( T^{4} - 6 T^{3} + \cdots + 243 \) Copy content Toggle raw display
$89$ \( T^{4} - 6 T^{3} + \cdots - 3240 \) Copy content Toggle raw display
$97$ \( T^{4} + 24 T^{3} + \cdots - 5522 \) Copy content Toggle raw display
show more
show less