Properties

Label 8954.2.a.q
Level $8954$
Weight $2$
Character orbit 8954.a
Self dual yes
Analytic conductor $71.498$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8954,2,Mod(1,8954)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8954.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8954, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8954 = 2 \cdot 11^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8954.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,-2,3,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.4980499699\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.404.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 814)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + (\beta_1 - 1) q^{3} + q^{4} + ( - \beta_{2} - 2) q^{5} + ( - \beta_1 + 1) q^{6} + ( - \beta_{2} + 2 \beta_1 + 1) q^{7} - q^{8} + (\beta_{2} - \beta_1 + 1) q^{9} + (\beta_{2} + 2) q^{10}+ \cdots + ( - \beta_{2} - \beta_1 - 7) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - 2 q^{3} + 3 q^{4} - 7 q^{5} + 2 q^{6} + 4 q^{7} - 3 q^{8} + 3 q^{9} + 7 q^{10} - 2 q^{12} + 10 q^{13} - 4 q^{14} + 3 q^{16} + 3 q^{17} - 3 q^{18} + 14 q^{19} - 7 q^{20} + 14 q^{21} - 2 q^{23}+ \cdots - 23 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 5x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.65544
−0.210756
2.86620
−1.00000 −2.65544 1.00000 −3.39593 2.65544 −3.70682 −1.00000 4.05137 3.39593
1.2 −1.00000 −1.21076 1.00000 0.744826 1.21076 3.32331 −1.00000 −1.53407 −0.744826
1.3 −1.00000 1.86620 1.00000 −4.34889 −1.86620 4.38350 −1.00000 0.482696 4.34889
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( -1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8954.2.a.q 3
11.b odd 2 1 814.2.a.f 3
33.d even 2 1 7326.2.a.y 3
44.c even 2 1 6512.2.a.j 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
814.2.a.f 3 11.b odd 2 1
6512.2.a.j 3 44.c even 2 1
7326.2.a.y 3 33.d even 2 1
8954.2.a.q 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8954))\):

\( T_{3}^{3} + 2T_{3}^{2} - 4T_{3} - 6 \) Copy content Toggle raw display
\( T_{5}^{3} + 7T_{5}^{2} + 9T_{5} - 11 \) Copy content Toggle raw display
\( T_{7}^{3} - 4T_{7}^{2} - 14T_{7} + 54 \) Copy content Toggle raw display
\( T_{17}^{3} - 3T_{17}^{2} - 29T_{17} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 2 T^{2} + \cdots - 6 \) Copy content Toggle raw display
$5$ \( T^{3} + 7 T^{2} + \cdots - 11 \) Copy content Toggle raw display
$7$ \( T^{3} - 4 T^{2} + \cdots + 54 \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 10 T^{2} + \cdots + 58 \) Copy content Toggle raw display
$17$ \( T^{3} - 3 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$19$ \( T^{3} - 14 T^{2} + \cdots - 74 \) Copy content Toggle raw display
$23$ \( T^{3} + 2 T^{2} + \cdots - 168 \) Copy content Toggle raw display
$29$ \( T^{3} - 66T + 178 \) Copy content Toggle raw display
$31$ \( T^{3} + 4 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$37$ \( (T + 1)^{3} \) Copy content Toggle raw display
$41$ \( T^{3} - 20 T^{2} + \cdots - 258 \) Copy content Toggle raw display
$43$ \( T^{3} - 14 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$47$ \( T^{3} - 11 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$53$ \( T^{3} + 4 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$59$ \( T^{3} + 16 T^{2} + \cdots + 44 \) Copy content Toggle raw display
$61$ \( T^{3} - 20 T^{2} + \cdots - 254 \) Copy content Toggle raw display
$67$ \( T^{3} + 4T^{2} - 2 \) Copy content Toggle raw display
$71$ \( T^{3} - 17 T^{2} + \cdots - 33 \) Copy content Toggle raw display
$73$ \( T^{3} + 28 T^{2} + \cdots + 542 \) Copy content Toggle raw display
$79$ \( T^{3} - 13 T^{2} + \cdots + 723 \) Copy content Toggle raw display
$83$ \( T^{3} + 3 T^{2} + \cdots - 179 \) Copy content Toggle raw display
$89$ \( T^{3} + 10 T^{2} + \cdots - 72 \) Copy content Toggle raw display
$97$ \( T^{3} - 18 T^{2} + \cdots + 4478 \) Copy content Toggle raw display
show more
show less