Properties

Label 8954.2.a.p.1.2
Level $8954$
Weight $2$
Character 8954.1
Self dual yes
Analytic conductor $71.498$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8954 = 2 \cdot 11^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8954.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(71.4980499699\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 74)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.30278\) of defining polynomial
Character \(\chi\) \(=\) 8954.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +3.30278 q^{3} +1.00000 q^{4} -2.30278 q^{5} +3.30278 q^{6} +2.60555 q^{7} +1.00000 q^{8} +7.90833 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +3.30278 q^{3} +1.00000 q^{4} -2.30278 q^{5} +3.30278 q^{6} +2.60555 q^{7} +1.00000 q^{8} +7.90833 q^{9} -2.30278 q^{10} +3.30278 q^{12} -1.30278 q^{13} +2.60555 q^{14} -7.60555 q^{15} +1.00000 q^{16} +6.00000 q^{17} +7.90833 q^{18} -2.00000 q^{19} -2.30278 q^{20} +8.60555 q^{21} +3.90833 q^{23} +3.30278 q^{24} +0.302776 q^{25} -1.30278 q^{26} +16.2111 q^{27} +2.60555 q^{28} +3.90833 q^{29} -7.60555 q^{30} -0.302776 q^{31} +1.00000 q^{32} +6.00000 q^{34} -6.00000 q^{35} +7.90833 q^{36} +1.00000 q^{37} -2.00000 q^{38} -4.30278 q^{39} -2.30278 q^{40} -9.90833 q^{41} +8.60555 q^{42} -0.605551 q^{43} -18.2111 q^{45} +3.90833 q^{46} +4.60555 q^{47} +3.30278 q^{48} -0.211103 q^{49} +0.302776 q^{50} +19.8167 q^{51} -1.30278 q^{52} -6.00000 q^{53} +16.2111 q^{54} +2.60555 q^{56} -6.60555 q^{57} +3.90833 q^{58} +10.6056 q^{59} -7.60555 q^{60} -7.51388 q^{61} -0.302776 q^{62} +20.6056 q^{63} +1.00000 q^{64} +3.00000 q^{65} -3.51388 q^{67} +6.00000 q^{68} +12.9083 q^{69} -6.00000 q^{70} +6.00000 q^{71} +7.90833 q^{72} +12.3028 q^{73} +1.00000 q^{74} +1.00000 q^{75} -2.00000 q^{76} -4.30278 q^{78} -9.11943 q^{79} -2.30278 q^{80} +29.8167 q^{81} -9.90833 q^{82} -2.78890 q^{83} +8.60555 q^{84} -13.8167 q^{85} -0.605551 q^{86} +12.9083 q^{87} -9.21110 q^{89} -18.2111 q^{90} -3.39445 q^{91} +3.90833 q^{92} -1.00000 q^{93} +4.60555 q^{94} +4.60555 q^{95} +3.30278 q^{96} -16.4222 q^{97} -0.211103 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 3 q^{3} + 2 q^{4} - q^{5} + 3 q^{6} - 2 q^{7} + 2 q^{8} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} + 3 q^{3} + 2 q^{4} - q^{5} + 3 q^{6} - 2 q^{7} + 2 q^{8} + 5 q^{9} - q^{10} + 3 q^{12} + q^{13} - 2 q^{14} - 8 q^{15} + 2 q^{16} + 12 q^{17} + 5 q^{18} - 4 q^{19} - q^{20} + 10 q^{21} - 3 q^{23} + 3 q^{24} - 3 q^{25} + q^{26} + 18 q^{27} - 2 q^{28} - 3 q^{29} - 8 q^{30} + 3 q^{31} + 2 q^{32} + 12 q^{34} - 12 q^{35} + 5 q^{36} + 2 q^{37} - 4 q^{38} - 5 q^{39} - q^{40} - 9 q^{41} + 10 q^{42} + 6 q^{43} - 22 q^{45} - 3 q^{46} + 2 q^{47} + 3 q^{48} + 14 q^{49} - 3 q^{50} + 18 q^{51} + q^{52} - 12 q^{53} + 18 q^{54} - 2 q^{56} - 6 q^{57} - 3 q^{58} + 14 q^{59} - 8 q^{60} + 3 q^{61} + 3 q^{62} + 34 q^{63} + 2 q^{64} + 6 q^{65} + 11 q^{67} + 12 q^{68} + 15 q^{69} - 12 q^{70} + 12 q^{71} + 5 q^{72} + 21 q^{73} + 2 q^{74} + 2 q^{75} - 4 q^{76} - 5 q^{78} + 7 q^{79} - q^{80} + 38 q^{81} - 9 q^{82} - 20 q^{83} + 10 q^{84} - 6 q^{85} + 6 q^{86} + 15 q^{87} - 4 q^{89} - 22 q^{90} - 14 q^{91} - 3 q^{92} - 2 q^{93} + 2 q^{94} + 2 q^{95} + 3 q^{96} - 4 q^{97} + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 3.30278 1.90686 0.953429 0.301617i \(-0.0975264\pi\)
0.953429 + 0.301617i \(0.0975264\pi\)
\(4\) 1.00000 0.500000
\(5\) −2.30278 −1.02983 −0.514916 0.857240i \(-0.672177\pi\)
−0.514916 + 0.857240i \(0.672177\pi\)
\(6\) 3.30278 1.34835
\(7\) 2.60555 0.984806 0.492403 0.870367i \(-0.336119\pi\)
0.492403 + 0.870367i \(0.336119\pi\)
\(8\) 1.00000 0.353553
\(9\) 7.90833 2.63611
\(10\) −2.30278 −0.728202
\(11\) 0 0
\(12\) 3.30278 0.953429
\(13\) −1.30278 −0.361325 −0.180662 0.983545i \(-0.557824\pi\)
−0.180662 + 0.983545i \(0.557824\pi\)
\(14\) 2.60555 0.696363
\(15\) −7.60555 −1.96374
\(16\) 1.00000 0.250000
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 7.90833 1.86401
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) −2.30278 −0.514916
\(21\) 8.60555 1.87789
\(22\) 0 0
\(23\) 3.90833 0.814942 0.407471 0.913218i \(-0.366411\pi\)
0.407471 + 0.913218i \(0.366411\pi\)
\(24\) 3.30278 0.674176
\(25\) 0.302776 0.0605551
\(26\) −1.30278 −0.255495
\(27\) 16.2111 3.11983
\(28\) 2.60555 0.492403
\(29\) 3.90833 0.725758 0.362879 0.931836i \(-0.381794\pi\)
0.362879 + 0.931836i \(0.381794\pi\)
\(30\) −7.60555 −1.38858
\(31\) −0.302776 −0.0543801 −0.0271901 0.999630i \(-0.508656\pi\)
−0.0271901 + 0.999630i \(0.508656\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 6.00000 1.02899
\(35\) −6.00000 −1.01419
\(36\) 7.90833 1.31805
\(37\) 1.00000 0.164399
\(38\) −2.00000 −0.324443
\(39\) −4.30278 −0.688996
\(40\) −2.30278 −0.364101
\(41\) −9.90833 −1.54742 −0.773710 0.633540i \(-0.781601\pi\)
−0.773710 + 0.633540i \(0.781601\pi\)
\(42\) 8.60555 1.32787
\(43\) −0.605551 −0.0923457 −0.0461729 0.998933i \(-0.514703\pi\)
−0.0461729 + 0.998933i \(0.514703\pi\)
\(44\) 0 0
\(45\) −18.2111 −2.71475
\(46\) 3.90833 0.576251
\(47\) 4.60555 0.671789 0.335894 0.941900i \(-0.390961\pi\)
0.335894 + 0.941900i \(0.390961\pi\)
\(48\) 3.30278 0.476715
\(49\) −0.211103 −0.0301575
\(50\) 0.302776 0.0428189
\(51\) 19.8167 2.77489
\(52\) −1.30278 −0.180662
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 16.2111 2.20605
\(55\) 0 0
\(56\) 2.60555 0.348181
\(57\) −6.60555 −0.874927
\(58\) 3.90833 0.513188
\(59\) 10.6056 1.38073 0.690363 0.723464i \(-0.257451\pi\)
0.690363 + 0.723464i \(0.257451\pi\)
\(60\) −7.60555 −0.981872
\(61\) −7.51388 −0.962054 −0.481027 0.876706i \(-0.659736\pi\)
−0.481027 + 0.876706i \(0.659736\pi\)
\(62\) −0.302776 −0.0384525
\(63\) 20.6056 2.59606
\(64\) 1.00000 0.125000
\(65\) 3.00000 0.372104
\(66\) 0 0
\(67\) −3.51388 −0.429289 −0.214644 0.976692i \(-0.568859\pi\)
−0.214644 + 0.976692i \(0.568859\pi\)
\(68\) 6.00000 0.727607
\(69\) 12.9083 1.55398
\(70\) −6.00000 −0.717137
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 7.90833 0.932005
\(73\) 12.3028 1.43993 0.719965 0.694010i \(-0.244158\pi\)
0.719965 + 0.694010i \(0.244158\pi\)
\(74\) 1.00000 0.116248
\(75\) 1.00000 0.115470
\(76\) −2.00000 −0.229416
\(77\) 0 0
\(78\) −4.30278 −0.487193
\(79\) −9.11943 −1.02602 −0.513008 0.858384i \(-0.671469\pi\)
−0.513008 + 0.858384i \(0.671469\pi\)
\(80\) −2.30278 −0.257458
\(81\) 29.8167 3.31296
\(82\) −9.90833 −1.09419
\(83\) −2.78890 −0.306121 −0.153061 0.988217i \(-0.548913\pi\)
−0.153061 + 0.988217i \(0.548913\pi\)
\(84\) 8.60555 0.938943
\(85\) −13.8167 −1.49863
\(86\) −0.605551 −0.0652983
\(87\) 12.9083 1.38392
\(88\) 0 0
\(89\) −9.21110 −0.976375 −0.488187 0.872739i \(-0.662342\pi\)
−0.488187 + 0.872739i \(0.662342\pi\)
\(90\) −18.2111 −1.91962
\(91\) −3.39445 −0.355835
\(92\) 3.90833 0.407471
\(93\) −1.00000 −0.103695
\(94\) 4.60555 0.475026
\(95\) 4.60555 0.472520
\(96\) 3.30278 0.337088
\(97\) −16.4222 −1.66742 −0.833711 0.552201i \(-0.813788\pi\)
−0.833711 + 0.552201i \(0.813788\pi\)
\(98\) −0.211103 −0.0213246
\(99\) 0 0
\(100\) 0.302776 0.0302776
\(101\) 12.4222 1.23606 0.618028 0.786156i \(-0.287932\pi\)
0.618028 + 0.786156i \(0.287932\pi\)
\(102\) 19.8167 1.96214
\(103\) −0.302776 −0.0298334 −0.0149167 0.999889i \(-0.504748\pi\)
−0.0149167 + 0.999889i \(0.504748\pi\)
\(104\) −1.30278 −0.127748
\(105\) −19.8167 −1.93391
\(106\) −6.00000 −0.582772
\(107\) −0.697224 −0.0674032 −0.0337016 0.999432i \(-0.510730\pi\)
−0.0337016 + 0.999432i \(0.510730\pi\)
\(108\) 16.2111 1.55991
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 3.30278 0.313486
\(112\) 2.60555 0.246201
\(113\) −3.21110 −0.302075 −0.151038 0.988528i \(-0.548261\pi\)
−0.151038 + 0.988528i \(0.548261\pi\)
\(114\) −6.60555 −0.618667
\(115\) −9.00000 −0.839254
\(116\) 3.90833 0.362879
\(117\) −10.3028 −0.952492
\(118\) 10.6056 0.976320
\(119\) 15.6333 1.43310
\(120\) −7.60555 −0.694289
\(121\) 0 0
\(122\) −7.51388 −0.680275
\(123\) −32.7250 −2.95071
\(124\) −0.302776 −0.0271901
\(125\) 10.8167 0.967471
\(126\) 20.6056 1.83569
\(127\) 19.2111 1.70471 0.852355 0.522964i \(-0.175174\pi\)
0.852355 + 0.522964i \(0.175174\pi\)
\(128\) 1.00000 0.0883883
\(129\) −2.00000 −0.176090
\(130\) 3.00000 0.263117
\(131\) −10.6056 −0.926611 −0.463306 0.886199i \(-0.653337\pi\)
−0.463306 + 0.886199i \(0.653337\pi\)
\(132\) 0 0
\(133\) −5.21110 −0.451860
\(134\) −3.51388 −0.303553
\(135\) −37.3305 −3.21290
\(136\) 6.00000 0.514496
\(137\) 0.908327 0.0776036 0.0388018 0.999247i \(-0.487646\pi\)
0.0388018 + 0.999247i \(0.487646\pi\)
\(138\) 12.9083 1.09883
\(139\) 1.90833 0.161862 0.0809311 0.996720i \(-0.474211\pi\)
0.0809311 + 0.996720i \(0.474211\pi\)
\(140\) −6.00000 −0.507093
\(141\) 15.2111 1.28101
\(142\) 6.00000 0.503509
\(143\) 0 0
\(144\) 7.90833 0.659027
\(145\) −9.00000 −0.747409
\(146\) 12.3028 1.01818
\(147\) −0.697224 −0.0575061
\(148\) 1.00000 0.0821995
\(149\) −19.8167 −1.62344 −0.811722 0.584044i \(-0.801469\pi\)
−0.811722 + 0.584044i \(0.801469\pi\)
\(150\) 1.00000 0.0816497
\(151\) 20.6056 1.67686 0.838428 0.545012i \(-0.183475\pi\)
0.838428 + 0.545012i \(0.183475\pi\)
\(152\) −2.00000 −0.162221
\(153\) 47.4500 3.83610
\(154\) 0 0
\(155\) 0.697224 0.0560024
\(156\) −4.30278 −0.344498
\(157\) −7.21110 −0.575509 −0.287754 0.957704i \(-0.592909\pi\)
−0.287754 + 0.957704i \(0.592909\pi\)
\(158\) −9.11943 −0.725503
\(159\) −19.8167 −1.57156
\(160\) −2.30278 −0.182050
\(161\) 10.1833 0.802560
\(162\) 29.8167 2.34262
\(163\) 8.42221 0.659678 0.329839 0.944037i \(-0.393006\pi\)
0.329839 + 0.944037i \(0.393006\pi\)
\(164\) −9.90833 −0.773710
\(165\) 0 0
\(166\) −2.78890 −0.216460
\(167\) 5.51388 0.426677 0.213338 0.976978i \(-0.431566\pi\)
0.213338 + 0.976978i \(0.431566\pi\)
\(168\) 8.60555 0.663933
\(169\) −11.3028 −0.869444
\(170\) −13.8167 −1.05969
\(171\) −15.8167 −1.20953
\(172\) −0.605551 −0.0461729
\(173\) 8.78890 0.668207 0.334104 0.942536i \(-0.391566\pi\)
0.334104 + 0.942536i \(0.391566\pi\)
\(174\) 12.9083 0.978578
\(175\) 0.788897 0.0596350
\(176\) 0 0
\(177\) 35.0278 2.63285
\(178\) −9.21110 −0.690401
\(179\) −13.8167 −1.03271 −0.516353 0.856376i \(-0.672711\pi\)
−0.516353 + 0.856376i \(0.672711\pi\)
\(180\) −18.2111 −1.35738
\(181\) 20.0000 1.48659 0.743294 0.668965i \(-0.233262\pi\)
0.743294 + 0.668965i \(0.233262\pi\)
\(182\) −3.39445 −0.251613
\(183\) −24.8167 −1.83450
\(184\) 3.90833 0.288126
\(185\) −2.30278 −0.169303
\(186\) −1.00000 −0.0733236
\(187\) 0 0
\(188\) 4.60555 0.335894
\(189\) 42.2389 3.07242
\(190\) 4.60555 0.334122
\(191\) −5.51388 −0.398970 −0.199485 0.979901i \(-0.563927\pi\)
−0.199485 + 0.979901i \(0.563927\pi\)
\(192\) 3.30278 0.238357
\(193\) 4.00000 0.287926 0.143963 0.989583i \(-0.454015\pi\)
0.143963 + 0.989583i \(0.454015\pi\)
\(194\) −16.4222 −1.17905
\(195\) 9.90833 0.709550
\(196\) −0.211103 −0.0150788
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) 26.4222 1.87302 0.936510 0.350640i \(-0.114036\pi\)
0.936510 + 0.350640i \(0.114036\pi\)
\(200\) 0.302776 0.0214095
\(201\) −11.6056 −0.818592
\(202\) 12.4222 0.874023
\(203\) 10.1833 0.714731
\(204\) 19.8167 1.38744
\(205\) 22.8167 1.59358
\(206\) −0.302776 −0.0210954
\(207\) 30.9083 2.14828
\(208\) −1.30278 −0.0903312
\(209\) 0 0
\(210\) −19.8167 −1.36748
\(211\) −10.3028 −0.709272 −0.354636 0.935004i \(-0.615395\pi\)
−0.354636 + 0.935004i \(0.615395\pi\)
\(212\) −6.00000 −0.412082
\(213\) 19.8167 1.35781
\(214\) −0.697224 −0.0476613
\(215\) 1.39445 0.0951006
\(216\) 16.2111 1.10303
\(217\) −0.788897 −0.0535538
\(218\) −2.00000 −0.135457
\(219\) 40.6333 2.74574
\(220\) 0 0
\(221\) −7.81665 −0.525805
\(222\) 3.30278 0.221668
\(223\) −5.81665 −0.389512 −0.194756 0.980852i \(-0.562391\pi\)
−0.194756 + 0.980852i \(0.562391\pi\)
\(224\) 2.60555 0.174091
\(225\) 2.39445 0.159630
\(226\) −3.21110 −0.213599
\(227\) −13.8167 −0.917044 −0.458522 0.888683i \(-0.651621\pi\)
−0.458522 + 0.888683i \(0.651621\pi\)
\(228\) −6.60555 −0.437463
\(229\) 24.6056 1.62598 0.812990 0.582277i \(-0.197838\pi\)
0.812990 + 0.582277i \(0.197838\pi\)
\(230\) −9.00000 −0.593442
\(231\) 0 0
\(232\) 3.90833 0.256594
\(233\) −8.51388 −0.557763 −0.278881 0.960326i \(-0.589964\pi\)
−0.278881 + 0.960326i \(0.589964\pi\)
\(234\) −10.3028 −0.673514
\(235\) −10.6056 −0.691830
\(236\) 10.6056 0.690363
\(237\) −30.1194 −1.95647
\(238\) 15.6333 1.01336
\(239\) 17.5139 1.13288 0.566439 0.824103i \(-0.308321\pi\)
0.566439 + 0.824103i \(0.308321\pi\)
\(240\) −7.60555 −0.490936
\(241\) −8.00000 −0.515325 −0.257663 0.966235i \(-0.582952\pi\)
−0.257663 + 0.966235i \(0.582952\pi\)
\(242\) 0 0
\(243\) 49.8444 3.19752
\(244\) −7.51388 −0.481027
\(245\) 0.486122 0.0310572
\(246\) −32.7250 −2.08647
\(247\) 2.60555 0.165787
\(248\) −0.302776 −0.0192263
\(249\) −9.21110 −0.583730
\(250\) 10.8167 0.684105
\(251\) −21.2111 −1.33883 −0.669416 0.742887i \(-0.733456\pi\)
−0.669416 + 0.742887i \(0.733456\pi\)
\(252\) 20.6056 1.29803
\(253\) 0 0
\(254\) 19.2111 1.20541
\(255\) −45.6333 −2.85767
\(256\) 1.00000 0.0625000
\(257\) 3.21110 0.200303 0.100152 0.994972i \(-0.468067\pi\)
0.100152 + 0.994972i \(0.468067\pi\)
\(258\) −2.00000 −0.124515
\(259\) 2.60555 0.161901
\(260\) 3.00000 0.186052
\(261\) 30.9083 1.91318
\(262\) −10.6056 −0.655213
\(263\) −13.8167 −0.851971 −0.425986 0.904730i \(-0.640073\pi\)
−0.425986 + 0.904730i \(0.640073\pi\)
\(264\) 0 0
\(265\) 13.8167 0.848750
\(266\) −5.21110 −0.319513
\(267\) −30.4222 −1.86181
\(268\) −3.51388 −0.214644
\(269\) −21.2111 −1.29326 −0.646632 0.762802i \(-0.723823\pi\)
−0.646632 + 0.762802i \(0.723823\pi\)
\(270\) −37.3305 −2.27186
\(271\) 22.4222 1.36205 0.681026 0.732259i \(-0.261534\pi\)
0.681026 + 0.732259i \(0.261534\pi\)
\(272\) 6.00000 0.363803
\(273\) −11.2111 −0.678527
\(274\) 0.908327 0.0548740
\(275\) 0 0
\(276\) 12.9083 0.776990
\(277\) −0.119429 −0.00717582 −0.00358791 0.999994i \(-0.501142\pi\)
−0.00358791 + 0.999994i \(0.501142\pi\)
\(278\) 1.90833 0.114454
\(279\) −2.39445 −0.143352
\(280\) −6.00000 −0.358569
\(281\) 12.0000 0.715860 0.357930 0.933748i \(-0.383483\pi\)
0.357930 + 0.933748i \(0.383483\pi\)
\(282\) 15.2111 0.905808
\(283\) −24.6056 −1.46265 −0.731324 0.682030i \(-0.761097\pi\)
−0.731324 + 0.682030i \(0.761097\pi\)
\(284\) 6.00000 0.356034
\(285\) 15.2111 0.901028
\(286\) 0 0
\(287\) −25.8167 −1.52391
\(288\) 7.90833 0.466003
\(289\) 19.0000 1.11765
\(290\) −9.00000 −0.528498
\(291\) −54.2389 −3.17954
\(292\) 12.3028 0.719965
\(293\) −11.0278 −0.644248 −0.322124 0.946697i \(-0.604397\pi\)
−0.322124 + 0.946697i \(0.604397\pi\)
\(294\) −0.697224 −0.0406630
\(295\) −24.4222 −1.42192
\(296\) 1.00000 0.0581238
\(297\) 0 0
\(298\) −19.8167 −1.14795
\(299\) −5.09167 −0.294459
\(300\) 1.00000 0.0577350
\(301\) −1.57779 −0.0909426
\(302\) 20.6056 1.18572
\(303\) 41.0278 2.35698
\(304\) −2.00000 −0.114708
\(305\) 17.3028 0.990754
\(306\) 47.4500 2.71253
\(307\) −17.9083 −1.02208 −0.511041 0.859556i \(-0.670740\pi\)
−0.511041 + 0.859556i \(0.670740\pi\)
\(308\) 0 0
\(309\) −1.00000 −0.0568880
\(310\) 0.697224 0.0395997
\(311\) 15.9083 0.902078 0.451039 0.892504i \(-0.351053\pi\)
0.451039 + 0.892504i \(0.351053\pi\)
\(312\) −4.30278 −0.243597
\(313\) −9.02776 −0.510279 −0.255139 0.966904i \(-0.582121\pi\)
−0.255139 + 0.966904i \(0.582121\pi\)
\(314\) −7.21110 −0.406946
\(315\) −47.4500 −2.67350
\(316\) −9.11943 −0.513008
\(317\) 9.21110 0.517347 0.258674 0.965965i \(-0.416715\pi\)
0.258674 + 0.965965i \(0.416715\pi\)
\(318\) −19.8167 −1.11126
\(319\) 0 0
\(320\) −2.30278 −0.128729
\(321\) −2.30278 −0.128528
\(322\) 10.1833 0.567496
\(323\) −12.0000 −0.667698
\(324\) 29.8167 1.65648
\(325\) −0.394449 −0.0218801
\(326\) 8.42221 0.466463
\(327\) −6.60555 −0.365288
\(328\) −9.90833 −0.547096
\(329\) 12.0000 0.661581
\(330\) 0 0
\(331\) −13.2111 −0.726148 −0.363074 0.931760i \(-0.618273\pi\)
−0.363074 + 0.931760i \(0.618273\pi\)
\(332\) −2.78890 −0.153061
\(333\) 7.90833 0.433374
\(334\) 5.51388 0.301706
\(335\) 8.09167 0.442095
\(336\) 8.60555 0.469471
\(337\) −6.11943 −0.333347 −0.166673 0.986012i \(-0.553303\pi\)
−0.166673 + 0.986012i \(0.553303\pi\)
\(338\) −11.3028 −0.614790
\(339\) −10.6056 −0.576014
\(340\) −13.8167 −0.749313
\(341\) 0 0
\(342\) −15.8167 −0.855267
\(343\) −18.7889 −1.01451
\(344\) −0.605551 −0.0326491
\(345\) −29.7250 −1.60034
\(346\) 8.78890 0.472494
\(347\) −10.1833 −0.546671 −0.273335 0.961919i \(-0.588127\pi\)
−0.273335 + 0.961919i \(0.588127\pi\)
\(348\) 12.9083 0.691959
\(349\) −28.2389 −1.51159 −0.755796 0.654807i \(-0.772750\pi\)
−0.755796 + 0.654807i \(0.772750\pi\)
\(350\) 0.788897 0.0421683
\(351\) −21.1194 −1.12727
\(352\) 0 0
\(353\) 10.1833 0.542005 0.271002 0.962579i \(-0.412645\pi\)
0.271002 + 0.962579i \(0.412645\pi\)
\(354\) 35.0278 1.86170
\(355\) −13.8167 −0.733312
\(356\) −9.21110 −0.488187
\(357\) 51.6333 2.73272
\(358\) −13.8167 −0.730233
\(359\) −3.21110 −0.169476 −0.0847378 0.996403i \(-0.527005\pi\)
−0.0847378 + 0.996403i \(0.527005\pi\)
\(360\) −18.2111 −0.959809
\(361\) −15.0000 −0.789474
\(362\) 20.0000 1.05118
\(363\) 0 0
\(364\) −3.39445 −0.177917
\(365\) −28.3305 −1.48289
\(366\) −24.8167 −1.29719
\(367\) 3.81665 0.199228 0.0996139 0.995026i \(-0.468239\pi\)
0.0996139 + 0.995026i \(0.468239\pi\)
\(368\) 3.90833 0.203736
\(369\) −78.3583 −4.07917
\(370\) −2.30278 −0.119716
\(371\) −15.6333 −0.811641
\(372\) −1.00000 −0.0518476
\(373\) 17.8167 0.922511 0.461256 0.887267i \(-0.347399\pi\)
0.461256 + 0.887267i \(0.347399\pi\)
\(374\) 0 0
\(375\) 35.7250 1.84483
\(376\) 4.60555 0.237513
\(377\) −5.09167 −0.262235
\(378\) 42.2389 2.17253
\(379\) 24.3305 1.24978 0.624888 0.780715i \(-0.285145\pi\)
0.624888 + 0.780715i \(0.285145\pi\)
\(380\) 4.60555 0.236260
\(381\) 63.4500 3.25064
\(382\) −5.51388 −0.282115
\(383\) −36.8444 −1.88266 −0.941331 0.337486i \(-0.890424\pi\)
−0.941331 + 0.337486i \(0.890424\pi\)
\(384\) 3.30278 0.168544
\(385\) 0 0
\(386\) 4.00000 0.203595
\(387\) −4.78890 −0.243433
\(388\) −16.4222 −0.833711
\(389\) −37.1194 −1.88203 −0.941015 0.338365i \(-0.890126\pi\)
−0.941015 + 0.338365i \(0.890126\pi\)
\(390\) 9.90833 0.501728
\(391\) 23.4500 1.18592
\(392\) −0.211103 −0.0106623
\(393\) −35.0278 −1.76692
\(394\) 6.00000 0.302276
\(395\) 21.0000 1.05662
\(396\) 0 0
\(397\) 6.18335 0.310333 0.155167 0.987888i \(-0.450409\pi\)
0.155167 + 0.987888i \(0.450409\pi\)
\(398\) 26.4222 1.32443
\(399\) −17.2111 −0.861633
\(400\) 0.302776 0.0151388
\(401\) −7.81665 −0.390345 −0.195173 0.980769i \(-0.562527\pi\)
−0.195173 + 0.980769i \(0.562527\pi\)
\(402\) −11.6056 −0.578832
\(403\) 0.394449 0.0196489
\(404\) 12.4222 0.618028
\(405\) −68.6611 −3.41180
\(406\) 10.1833 0.505391
\(407\) 0 0
\(408\) 19.8167 0.981071
\(409\) −31.0278 −1.53422 −0.767112 0.641513i \(-0.778307\pi\)
−0.767112 + 0.641513i \(0.778307\pi\)
\(410\) 22.8167 1.12683
\(411\) 3.00000 0.147979
\(412\) −0.302776 −0.0149167
\(413\) 27.6333 1.35975
\(414\) 30.9083 1.51906
\(415\) 6.42221 0.315254
\(416\) −1.30278 −0.0638738
\(417\) 6.30278 0.308648
\(418\) 0 0
\(419\) 36.1472 1.76591 0.882953 0.469462i \(-0.155552\pi\)
0.882953 + 0.469462i \(0.155552\pi\)
\(420\) −19.8167 −0.966954
\(421\) −3.72498 −0.181544 −0.0907722 0.995872i \(-0.528934\pi\)
−0.0907722 + 0.995872i \(0.528934\pi\)
\(422\) −10.3028 −0.501531
\(423\) 36.4222 1.77091
\(424\) −6.00000 −0.291386
\(425\) 1.81665 0.0881207
\(426\) 19.8167 0.960120
\(427\) −19.5778 −0.947436
\(428\) −0.697224 −0.0337016
\(429\) 0 0
\(430\) 1.39445 0.0672463
\(431\) −9.21110 −0.443683 −0.221842 0.975083i \(-0.571207\pi\)
−0.221842 + 0.975083i \(0.571207\pi\)
\(432\) 16.2111 0.779957
\(433\) 34.9361 1.67892 0.839461 0.543421i \(-0.182871\pi\)
0.839461 + 0.543421i \(0.182871\pi\)
\(434\) −0.788897 −0.0378683
\(435\) −29.7250 −1.42520
\(436\) −2.00000 −0.0957826
\(437\) −7.81665 −0.373921
\(438\) 40.6333 1.94153
\(439\) −30.3305 −1.44760 −0.723799 0.690011i \(-0.757606\pi\)
−0.723799 + 0.690011i \(0.757606\pi\)
\(440\) 0 0
\(441\) −1.66947 −0.0794985
\(442\) −7.81665 −0.371800
\(443\) 32.7250 1.55481 0.777405 0.629000i \(-0.216535\pi\)
0.777405 + 0.629000i \(0.216535\pi\)
\(444\) 3.30278 0.156743
\(445\) 21.2111 1.00550
\(446\) −5.81665 −0.275427
\(447\) −65.4500 −3.09568
\(448\) 2.60555 0.123101
\(449\) −15.2111 −0.717856 −0.358928 0.933365i \(-0.616858\pi\)
−0.358928 + 0.933365i \(0.616858\pi\)
\(450\) 2.39445 0.112875
\(451\) 0 0
\(452\) −3.21110 −0.151038
\(453\) 68.0555 3.19753
\(454\) −13.8167 −0.648448
\(455\) 7.81665 0.366450
\(456\) −6.60555 −0.309333
\(457\) 2.60555 0.121883 0.0609413 0.998141i \(-0.480590\pi\)
0.0609413 + 0.998141i \(0.480590\pi\)
\(458\) 24.6056 1.14974
\(459\) 97.2666 4.54002
\(460\) −9.00000 −0.419627
\(461\) −12.4222 −0.578560 −0.289280 0.957245i \(-0.593416\pi\)
−0.289280 + 0.957245i \(0.593416\pi\)
\(462\) 0 0
\(463\) 26.6972 1.24073 0.620363 0.784315i \(-0.286985\pi\)
0.620363 + 0.784315i \(0.286985\pi\)
\(464\) 3.90833 0.181440
\(465\) 2.30278 0.106789
\(466\) −8.51388 −0.394398
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) −10.3028 −0.476246
\(469\) −9.15559 −0.422766
\(470\) −10.6056 −0.489198
\(471\) −23.8167 −1.09741
\(472\) 10.6056 0.488160
\(473\) 0 0
\(474\) −30.1194 −1.38343
\(475\) −0.605551 −0.0277846
\(476\) 15.6333 0.716551
\(477\) −47.4500 −2.17258
\(478\) 17.5139 0.801066
\(479\) 13.1194 0.599442 0.299721 0.954027i \(-0.403106\pi\)
0.299721 + 0.954027i \(0.403106\pi\)
\(480\) −7.60555 −0.347144
\(481\) −1.30278 −0.0594015
\(482\) −8.00000 −0.364390
\(483\) 33.6333 1.53037
\(484\) 0 0
\(485\) 37.8167 1.71717
\(486\) 49.8444 2.26099
\(487\) −37.2111 −1.68620 −0.843098 0.537760i \(-0.819271\pi\)
−0.843098 + 0.537760i \(0.819271\pi\)
\(488\) −7.51388 −0.340137
\(489\) 27.8167 1.25791
\(490\) 0.486122 0.0219607
\(491\) −17.7250 −0.799917 −0.399959 0.916533i \(-0.630975\pi\)
−0.399959 + 0.916533i \(0.630975\pi\)
\(492\) −32.7250 −1.47536
\(493\) 23.4500 1.05613
\(494\) 2.60555 0.117229
\(495\) 0 0
\(496\) −0.302776 −0.0135950
\(497\) 15.6333 0.701250
\(498\) −9.21110 −0.412759
\(499\) −42.2389 −1.89087 −0.945436 0.325809i \(-0.894363\pi\)
−0.945436 + 0.325809i \(0.894363\pi\)
\(500\) 10.8167 0.483735
\(501\) 18.2111 0.813612
\(502\) −21.2111 −0.946698
\(503\) 6.48612 0.289202 0.144601 0.989490i \(-0.453810\pi\)
0.144601 + 0.989490i \(0.453810\pi\)
\(504\) 20.6056 0.917844
\(505\) −28.6056 −1.27293
\(506\) 0 0
\(507\) −37.3305 −1.65791
\(508\) 19.2111 0.852355
\(509\) −4.18335 −0.185424 −0.0927118 0.995693i \(-0.529554\pi\)
−0.0927118 + 0.995693i \(0.529554\pi\)
\(510\) −45.6333 −2.02068
\(511\) 32.0555 1.41805
\(512\) 1.00000 0.0441942
\(513\) −32.4222 −1.43148
\(514\) 3.21110 0.141636
\(515\) 0.697224 0.0307234
\(516\) −2.00000 −0.0880451
\(517\) 0 0
\(518\) 2.60555 0.114481
\(519\) 29.0278 1.27418
\(520\) 3.00000 0.131559
\(521\) 33.6333 1.47350 0.736751 0.676164i \(-0.236359\pi\)
0.736751 + 0.676164i \(0.236359\pi\)
\(522\) 30.9083 1.35282
\(523\) 18.2389 0.797530 0.398765 0.917053i \(-0.369439\pi\)
0.398765 + 0.917053i \(0.369439\pi\)
\(524\) −10.6056 −0.463306
\(525\) 2.60555 0.113716
\(526\) −13.8167 −0.602435
\(527\) −1.81665 −0.0791347
\(528\) 0 0
\(529\) −7.72498 −0.335869
\(530\) 13.8167 0.600157
\(531\) 83.8722 3.63974
\(532\) −5.21110 −0.225930
\(533\) 12.9083 0.559122
\(534\) −30.4222 −1.31650
\(535\) 1.60555 0.0694140
\(536\) −3.51388 −0.151776
\(537\) −45.6333 −1.96922
\(538\) −21.2111 −0.914476
\(539\) 0 0
\(540\) −37.3305 −1.60645
\(541\) −25.9361 −1.11508 −0.557540 0.830150i \(-0.688255\pi\)
−0.557540 + 0.830150i \(0.688255\pi\)
\(542\) 22.4222 0.963116
\(543\) 66.0555 2.83471
\(544\) 6.00000 0.257248
\(545\) 4.60555 0.197280
\(546\) −11.2111 −0.479791
\(547\) 20.6056 0.881030 0.440515 0.897745i \(-0.354796\pi\)
0.440515 + 0.897745i \(0.354796\pi\)
\(548\) 0.908327 0.0388018
\(549\) −59.4222 −2.53608
\(550\) 0 0
\(551\) −7.81665 −0.333001
\(552\) 12.9083 0.549415
\(553\) −23.7611 −1.01043
\(554\) −0.119429 −0.00507407
\(555\) −7.60555 −0.322838
\(556\) 1.90833 0.0809311
\(557\) −11.5139 −0.487859 −0.243929 0.969793i \(-0.578436\pi\)
−0.243929 + 0.969793i \(0.578436\pi\)
\(558\) −2.39445 −0.101365
\(559\) 0.788897 0.0333668
\(560\) −6.00000 −0.253546
\(561\) 0 0
\(562\) 12.0000 0.506189
\(563\) 28.0555 1.18240 0.591199 0.806525i \(-0.298655\pi\)
0.591199 + 0.806525i \(0.298655\pi\)
\(564\) 15.2111 0.640503
\(565\) 7.39445 0.311087
\(566\) −24.6056 −1.03425
\(567\) 77.6888 3.26262
\(568\) 6.00000 0.251754
\(569\) −18.4222 −0.772299 −0.386150 0.922436i \(-0.626195\pi\)
−0.386150 + 0.922436i \(0.626195\pi\)
\(570\) 15.2111 0.637123
\(571\) 16.6972 0.698757 0.349379 0.936982i \(-0.386393\pi\)
0.349379 + 0.936982i \(0.386393\pi\)
\(572\) 0 0
\(573\) −18.2111 −0.760780
\(574\) −25.8167 −1.07757
\(575\) 1.18335 0.0493489
\(576\) 7.90833 0.329514
\(577\) 22.2389 0.925816 0.462908 0.886406i \(-0.346806\pi\)
0.462908 + 0.886406i \(0.346806\pi\)
\(578\) 19.0000 0.790296
\(579\) 13.2111 0.549035
\(580\) −9.00000 −0.373705
\(581\) −7.26662 −0.301470
\(582\) −54.2389 −2.24827
\(583\) 0 0
\(584\) 12.3028 0.509092
\(585\) 23.7250 0.980907
\(586\) −11.0278 −0.455552
\(587\) −45.6333 −1.88349 −0.941744 0.336330i \(-0.890814\pi\)
−0.941744 + 0.336330i \(0.890814\pi\)
\(588\) −0.697224 −0.0287530
\(589\) 0.605551 0.0249513
\(590\) −24.4222 −1.00545
\(591\) 19.8167 0.815148
\(592\) 1.00000 0.0410997
\(593\) −18.4861 −0.759134 −0.379567 0.925164i \(-0.623927\pi\)
−0.379567 + 0.925164i \(0.623927\pi\)
\(594\) 0 0
\(595\) −36.0000 −1.47586
\(596\) −19.8167 −0.811722
\(597\) 87.2666 3.57158
\(598\) −5.09167 −0.208214
\(599\) −20.7889 −0.849411 −0.424706 0.905331i \(-0.639622\pi\)
−0.424706 + 0.905331i \(0.639622\pi\)
\(600\) 1.00000 0.0408248
\(601\) 24.3028 0.991331 0.495665 0.868514i \(-0.334924\pi\)
0.495665 + 0.868514i \(0.334924\pi\)
\(602\) −1.57779 −0.0643061
\(603\) −27.7889 −1.13165
\(604\) 20.6056 0.838428
\(605\) 0 0
\(606\) 41.0278 1.66664
\(607\) 13.4861 0.547385 0.273692 0.961817i \(-0.411755\pi\)
0.273692 + 0.961817i \(0.411755\pi\)
\(608\) −2.00000 −0.0811107
\(609\) 33.6333 1.36289
\(610\) 17.3028 0.700569
\(611\) −6.00000 −0.242734
\(612\) 47.4500 1.91805
\(613\) 29.8167 1.20428 0.602142 0.798389i \(-0.294314\pi\)
0.602142 + 0.798389i \(0.294314\pi\)
\(614\) −17.9083 −0.722721
\(615\) 75.3583 3.03874
\(616\) 0 0
\(617\) −42.5694 −1.71378 −0.856890 0.515500i \(-0.827606\pi\)
−0.856890 + 0.515500i \(0.827606\pi\)
\(618\) −1.00000 −0.0402259
\(619\) −6.30278 −0.253330 −0.126665 0.991946i \(-0.540427\pi\)
−0.126665 + 0.991946i \(0.540427\pi\)
\(620\) 0.697224 0.0280012
\(621\) 63.3583 2.54248
\(622\) 15.9083 0.637866
\(623\) −24.0000 −0.961540
\(624\) −4.30278 −0.172249
\(625\) −26.4222 −1.05689
\(626\) −9.02776 −0.360822
\(627\) 0 0
\(628\) −7.21110 −0.287754
\(629\) 6.00000 0.239236
\(630\) −47.4500 −1.89045
\(631\) 14.6972 0.585087 0.292544 0.956252i \(-0.405498\pi\)
0.292544 + 0.956252i \(0.405498\pi\)
\(632\) −9.11943 −0.362751
\(633\) −34.0278 −1.35248
\(634\) 9.21110 0.365820
\(635\) −44.2389 −1.75557
\(636\) −19.8167 −0.785781
\(637\) 0.275019 0.0108967
\(638\) 0 0
\(639\) 47.4500 1.87709
\(640\) −2.30278 −0.0910252
\(641\) −20.5139 −0.810249 −0.405125 0.914261i \(-0.632772\pi\)
−0.405125 + 0.914261i \(0.632772\pi\)
\(642\) −2.30278 −0.0908833
\(643\) −8.18335 −0.322720 −0.161360 0.986896i \(-0.551588\pi\)
−0.161360 + 0.986896i \(0.551588\pi\)
\(644\) 10.1833 0.401280
\(645\) 4.60555 0.181343
\(646\) −12.0000 −0.472134
\(647\) 20.9361 0.823082 0.411541 0.911391i \(-0.364991\pi\)
0.411541 + 0.911391i \(0.364991\pi\)
\(648\) 29.8167 1.17131
\(649\) 0 0
\(650\) −0.394449 −0.0154716
\(651\) −2.60555 −0.102120
\(652\) 8.42221 0.329839
\(653\) −3.90833 −0.152945 −0.0764723 0.997072i \(-0.524366\pi\)
−0.0764723 + 0.997072i \(0.524366\pi\)
\(654\) −6.60555 −0.258297
\(655\) 24.4222 0.954255
\(656\) −9.90833 −0.386855
\(657\) 97.2944 3.79581
\(658\) 12.0000 0.467809
\(659\) 16.8806 0.657574 0.328787 0.944404i \(-0.393360\pi\)
0.328787 + 0.944404i \(0.393360\pi\)
\(660\) 0 0
\(661\) −30.5139 −1.18685 −0.593426 0.804888i \(-0.702225\pi\)
−0.593426 + 0.804888i \(0.702225\pi\)
\(662\) −13.2111 −0.513464
\(663\) −25.8167 −1.00264
\(664\) −2.78890 −0.108230
\(665\) 12.0000 0.465340
\(666\) 7.90833 0.306441
\(667\) 15.2750 0.591451
\(668\) 5.51388 0.213338
\(669\) −19.2111 −0.742744
\(670\) 8.09167 0.312609
\(671\) 0 0
\(672\) 8.60555 0.331966
\(673\) −20.6972 −0.797819 −0.398910 0.916990i \(-0.630611\pi\)
−0.398910 + 0.916990i \(0.630611\pi\)
\(674\) −6.11943 −0.235712
\(675\) 4.90833 0.188922
\(676\) −11.3028 −0.434722
\(677\) −14.2389 −0.547244 −0.273622 0.961837i \(-0.588222\pi\)
−0.273622 + 0.961837i \(0.588222\pi\)
\(678\) −10.6056 −0.407304
\(679\) −42.7889 −1.64209
\(680\) −13.8167 −0.529844
\(681\) −45.6333 −1.74867
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) −15.8167 −0.604765
\(685\) −2.09167 −0.0799187
\(686\) −18.7889 −0.717363
\(687\) 81.2666 3.10051
\(688\) −0.605551 −0.0230864
\(689\) 7.81665 0.297791
\(690\) −29.7250 −1.13161
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) 8.78890 0.334104
\(693\) 0 0
\(694\) −10.1833 −0.386555
\(695\) −4.39445 −0.166691
\(696\) 12.9083 0.489289
\(697\) −59.4500 −2.25183
\(698\) −28.2389 −1.06886
\(699\) −28.1194 −1.06357
\(700\) 0.788897 0.0298175
\(701\) −40.1194 −1.51529 −0.757645 0.652667i \(-0.773650\pi\)
−0.757645 + 0.652667i \(0.773650\pi\)
\(702\) −21.1194 −0.797101
\(703\) −2.00000 −0.0754314
\(704\) 0 0
\(705\) −35.0278 −1.31922
\(706\) 10.1833 0.383255
\(707\) 32.3667 1.21727
\(708\) 35.0278 1.31642
\(709\) −41.3305 −1.55220 −0.776100 0.630609i \(-0.782805\pi\)
−0.776100 + 0.630609i \(0.782805\pi\)
\(710\) −13.8167 −0.518530
\(711\) −72.1194 −2.70469
\(712\) −9.21110 −0.345201
\(713\) −1.18335 −0.0443167
\(714\) 51.6333 1.93233
\(715\) 0 0
\(716\) −13.8167 −0.516353
\(717\) 57.8444 2.16024
\(718\) −3.21110 −0.119837
\(719\) −51.6333 −1.92560 −0.962799 0.270220i \(-0.912904\pi\)
−0.962799 + 0.270220i \(0.912904\pi\)
\(720\) −18.2111 −0.678688
\(721\) −0.788897 −0.0293801
\(722\) −15.0000 −0.558242
\(723\) −26.4222 −0.982652
\(724\) 20.0000 0.743294
\(725\) 1.18335 0.0439484
\(726\) 0 0
\(727\) 19.0917 0.708071 0.354035 0.935232i \(-0.384809\pi\)
0.354035 + 0.935232i \(0.384809\pi\)
\(728\) −3.39445 −0.125807
\(729\) 75.1749 2.78426
\(730\) −28.3305 −1.04856
\(731\) −3.63331 −0.134383
\(732\) −24.8167 −0.917250
\(733\) 13.6333 0.503558 0.251779 0.967785i \(-0.418984\pi\)
0.251779 + 0.967785i \(0.418984\pi\)
\(734\) 3.81665 0.140875
\(735\) 1.60555 0.0592217
\(736\) 3.90833 0.144063
\(737\) 0 0
\(738\) −78.3583 −2.88441
\(739\) 2.66947 0.0981980 0.0490990 0.998794i \(-0.484365\pi\)
0.0490990 + 0.998794i \(0.484365\pi\)
\(740\) −2.30278 −0.0846517
\(741\) 8.60555 0.316133
\(742\) −15.6333 −0.573917
\(743\) 29.4500 1.08041 0.540207 0.841532i \(-0.318346\pi\)
0.540207 + 0.841532i \(0.318346\pi\)
\(744\) −1.00000 −0.0366618
\(745\) 45.6333 1.67188
\(746\) 17.8167 0.652314
\(747\) −22.0555 −0.806969
\(748\) 0 0
\(749\) −1.81665 −0.0663791
\(750\) 35.7250 1.30449
\(751\) 14.0000 0.510867 0.255434 0.966827i \(-0.417782\pi\)
0.255434 + 0.966827i \(0.417782\pi\)
\(752\) 4.60555 0.167947
\(753\) −70.0555 −2.55296
\(754\) −5.09167 −0.185428
\(755\) −47.4500 −1.72688
\(756\) 42.2389 1.53621
\(757\) 5.69722 0.207069 0.103535 0.994626i \(-0.466985\pi\)
0.103535 + 0.994626i \(0.466985\pi\)
\(758\) 24.3305 0.883725
\(759\) 0 0
\(760\) 4.60555 0.167061
\(761\) −16.8806 −0.611920 −0.305960 0.952044i \(-0.598977\pi\)
−0.305960 + 0.952044i \(0.598977\pi\)
\(762\) 63.4500 2.29855
\(763\) −5.21110 −0.188655
\(764\) −5.51388 −0.199485
\(765\) −109.267 −3.95054
\(766\) −36.8444 −1.33124
\(767\) −13.8167 −0.498890
\(768\) 3.30278 0.119179
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) 10.6056 0.381950
\(772\) 4.00000 0.143963
\(773\) 22.0555 0.793282 0.396641 0.917974i \(-0.370176\pi\)
0.396641 + 0.917974i \(0.370176\pi\)
\(774\) −4.78890 −0.172133
\(775\) −0.0916731 −0.00329299
\(776\) −16.4222 −0.589523
\(777\) 8.60555 0.308722
\(778\) −37.1194 −1.33080
\(779\) 19.8167 0.710005
\(780\) 9.90833 0.354775
\(781\) 0 0
\(782\) 23.4500 0.838569
\(783\) 63.3583 2.26424
\(784\) −0.211103 −0.00753938
\(785\) 16.6056 0.592678
\(786\) −35.0278 −1.24940
\(787\) −10.7889 −0.384583 −0.192291 0.981338i \(-0.561592\pi\)
−0.192291 + 0.981338i \(0.561592\pi\)
\(788\) 6.00000 0.213741
\(789\) −45.6333 −1.62459
\(790\) 21.0000 0.747146
\(791\) −8.36669 −0.297485
\(792\) 0 0
\(793\) 9.78890 0.347614
\(794\) 6.18335 0.219439
\(795\) 45.6333 1.61845
\(796\) 26.4222 0.936510
\(797\) 22.3305 0.790988 0.395494 0.918469i \(-0.370573\pi\)
0.395494 + 0.918469i \(0.370573\pi\)
\(798\) −17.2111 −0.609266
\(799\) 27.6333 0.977596
\(800\) 0.302776 0.0107047
\(801\) −72.8444 −2.57383
\(802\) −7.81665 −0.276016
\(803\) 0 0
\(804\) −11.6056 −0.409296
\(805\) −23.4500 −0.826503
\(806\) 0.394449 0.0138939
\(807\) −70.0555 −2.46607
\(808\) 12.4222 0.437012
\(809\) 35.4500 1.24635 0.623177 0.782081i \(-0.285842\pi\)
0.623177 + 0.782081i \(0.285842\pi\)
\(810\) −68.6611 −2.41250
\(811\) 7.14719 0.250972 0.125486 0.992095i \(-0.459951\pi\)
0.125486 + 0.992095i \(0.459951\pi\)
\(812\) 10.1833 0.357365
\(813\) 74.0555 2.59724
\(814\) 0 0
\(815\) −19.3944 −0.679358
\(816\) 19.8167 0.693722
\(817\) 1.21110 0.0423711
\(818\) −31.0278 −1.08486
\(819\) −26.8444 −0.938020
\(820\) 22.8167 0.796792
\(821\) 3.21110 0.112068 0.0560341 0.998429i \(-0.482154\pi\)
0.0560341 + 0.998429i \(0.482154\pi\)
\(822\) 3.00000 0.104637
\(823\) 44.8444 1.56318 0.781589 0.623794i \(-0.214410\pi\)
0.781589 + 0.623794i \(0.214410\pi\)
\(824\) −0.302776 −0.0105477
\(825\) 0 0
\(826\) 27.6333 0.961486
\(827\) −34.6056 −1.20335 −0.601676 0.798740i \(-0.705500\pi\)
−0.601676 + 0.798740i \(0.705500\pi\)
\(828\) 30.9083 1.07414
\(829\) −27.7250 −0.962928 −0.481464 0.876466i \(-0.659895\pi\)
−0.481464 + 0.876466i \(0.659895\pi\)
\(830\) 6.42221 0.222918
\(831\) −0.394449 −0.0136833
\(832\) −1.30278 −0.0451656
\(833\) −1.26662 −0.0438856
\(834\) 6.30278 0.218247
\(835\) −12.6972 −0.439406
\(836\) 0 0
\(837\) −4.90833 −0.169657
\(838\) 36.1472 1.24868
\(839\) −12.9722 −0.447852 −0.223926 0.974606i \(-0.571887\pi\)
−0.223926 + 0.974606i \(0.571887\pi\)
\(840\) −19.8167 −0.683740
\(841\) −13.7250 −0.473275
\(842\) −3.72498 −0.128371
\(843\) 39.6333 1.36504
\(844\) −10.3028 −0.354636
\(845\) 26.0278 0.895382
\(846\) 36.4222 1.25222
\(847\) 0 0
\(848\) −6.00000 −0.206041
\(849\) −81.2666 −2.78906
\(850\) 1.81665 0.0623107
\(851\) 3.90833 0.133976
\(852\) 19.8167 0.678907
\(853\) −42.5416 −1.45660 −0.728299 0.685260i \(-0.759689\pi\)
−0.728299 + 0.685260i \(0.759689\pi\)
\(854\) −19.5778 −0.669938
\(855\) 36.4222 1.24561
\(856\) −0.697224 −0.0238306
\(857\) −42.8444 −1.46354 −0.731769 0.681553i \(-0.761305\pi\)
−0.731769 + 0.681553i \(0.761305\pi\)
\(858\) 0 0
\(859\) 48.0555 1.63963 0.819816 0.572626i \(-0.194075\pi\)
0.819816 + 0.572626i \(0.194075\pi\)
\(860\) 1.39445 0.0475503
\(861\) −85.2666 −2.90588
\(862\) −9.21110 −0.313731
\(863\) 12.0000 0.408485 0.204242 0.978920i \(-0.434527\pi\)
0.204242 + 0.978920i \(0.434527\pi\)
\(864\) 16.2111 0.551513
\(865\) −20.2389 −0.688142
\(866\) 34.9361 1.18718
\(867\) 62.7527 2.13119
\(868\) −0.788897 −0.0267769
\(869\) 0 0
\(870\) −29.7250 −1.00777
\(871\) 4.57779 0.155113
\(872\) −2.00000 −0.0677285
\(873\) −129.872 −4.39551
\(874\) −7.81665 −0.264402
\(875\) 28.1833 0.952771
\(876\) 40.6333 1.37287
\(877\) 7.21110 0.243502 0.121751 0.992561i \(-0.461149\pi\)
0.121751 + 0.992561i \(0.461149\pi\)
\(878\) −30.3305 −1.02361
\(879\) −36.4222 −1.22849
\(880\) 0 0
\(881\) −28.5416 −0.961592 −0.480796 0.876832i \(-0.659652\pi\)
−0.480796 + 0.876832i \(0.659652\pi\)
\(882\) −1.66947 −0.0562139
\(883\) 26.4222 0.889178 0.444589 0.895735i \(-0.353350\pi\)
0.444589 + 0.895735i \(0.353350\pi\)
\(884\) −7.81665 −0.262903
\(885\) −80.6611 −2.71139
\(886\) 32.7250 1.09942
\(887\) 0.422205 0.0141763 0.00708813 0.999975i \(-0.497744\pi\)
0.00708813 + 0.999975i \(0.497744\pi\)
\(888\) 3.30278 0.110834
\(889\) 50.0555 1.67881
\(890\) 21.2111 0.710998
\(891\) 0 0
\(892\) −5.81665 −0.194756
\(893\) −9.21110 −0.308238
\(894\) −65.4500 −2.18897
\(895\) 31.8167 1.06351
\(896\) 2.60555 0.0870454
\(897\) −16.8167 −0.561492
\(898\) −15.2111 −0.507601
\(899\) −1.18335 −0.0394668
\(900\) 2.39445 0.0798150
\(901\) −36.0000 −1.19933
\(902\) 0 0
\(903\) −5.21110 −0.173415
\(904\) −3.21110 −0.106800
\(905\) −46.0555 −1.53094
\(906\) 68.0555 2.26099
\(907\) 26.0000 0.863316 0.431658 0.902037i \(-0.357929\pi\)
0.431658 + 0.902037i \(0.357929\pi\)
\(908\) −13.8167 −0.458522
\(909\) 98.2389 3.25838
\(910\) 7.81665 0.259120
\(911\) −17.5778 −0.582378 −0.291189 0.956665i \(-0.594051\pi\)
−0.291189 + 0.956665i \(0.594051\pi\)
\(912\) −6.60555 −0.218732
\(913\) 0 0
\(914\) 2.60555 0.0861840
\(915\) 57.1472 1.88923
\(916\) 24.6056 0.812990
\(917\) −27.6333 −0.912532
\(918\) 97.2666 3.21028
\(919\) 9.57779 0.315942 0.157971 0.987444i \(-0.449505\pi\)
0.157971 + 0.987444i \(0.449505\pi\)
\(920\) −9.00000 −0.296721
\(921\) −59.1472 −1.94897
\(922\) −12.4222 −0.409104
\(923\) −7.81665 −0.257288
\(924\) 0 0
\(925\) 0.302776 0.00995520
\(926\) 26.6972 0.877325
\(927\) −2.39445 −0.0786440
\(928\) 3.90833 0.128297
\(929\) −18.4861 −0.606510 −0.303255 0.952909i \(-0.598073\pi\)
−0.303255 + 0.952909i \(0.598073\pi\)
\(930\) 2.30278 0.0755110
\(931\) 0.422205 0.0138372
\(932\) −8.51388 −0.278881
\(933\) 52.5416 1.72014
\(934\) 0 0
\(935\) 0 0
\(936\) −10.3028 −0.336757
\(937\) 18.0917 0.591029 0.295515 0.955338i \(-0.404509\pi\)
0.295515 + 0.955338i \(0.404509\pi\)
\(938\) −9.15559 −0.298941
\(939\) −29.8167 −0.973030
\(940\) −10.6056 −0.345915
\(941\) −13.8167 −0.450410 −0.225205 0.974311i \(-0.572305\pi\)
−0.225205 + 0.974311i \(0.572305\pi\)
\(942\) −23.8167 −0.775989
\(943\) −38.7250 −1.26106
\(944\) 10.6056 0.345181
\(945\) −97.2666 −3.16408
\(946\) 0 0
\(947\) −3.63331 −0.118067 −0.0590333 0.998256i \(-0.518802\pi\)
−0.0590333 + 0.998256i \(0.518802\pi\)
\(948\) −30.1194 −0.978234
\(949\) −16.0278 −0.520283
\(950\) −0.605551 −0.0196467
\(951\) 30.4222 0.986508
\(952\) 15.6333 0.506678
\(953\) −49.7527 −1.61165 −0.805825 0.592154i \(-0.798278\pi\)
−0.805825 + 0.592154i \(0.798278\pi\)
\(954\) −47.4500 −1.53625
\(955\) 12.6972 0.410873
\(956\) 17.5139 0.566439
\(957\) 0 0
\(958\) 13.1194 0.423870
\(959\) 2.36669 0.0764245
\(960\) −7.60555 −0.245468
\(961\) −30.9083 −0.997043
\(962\) −1.30278 −0.0420032
\(963\) −5.51388 −0.177682
\(964\) −8.00000 −0.257663
\(965\) −9.21110 −0.296516
\(966\) 33.6333 1.08213
\(967\) 6.72498 0.216261 0.108130 0.994137i \(-0.465514\pi\)
0.108130 + 0.994137i \(0.465514\pi\)
\(968\) 0 0
\(969\) −39.6333 −1.27321
\(970\) 37.8167 1.21422
\(971\) −22.5416 −0.723395 −0.361698 0.932295i \(-0.617803\pi\)
−0.361698 + 0.932295i \(0.617803\pi\)
\(972\) 49.8444 1.59876
\(973\) 4.97224 0.159403
\(974\) −37.2111 −1.19232
\(975\) −1.30278 −0.0417222
\(976\) −7.51388 −0.240513
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 27.8167 0.889479
\(979\) 0 0
\(980\) 0.486122 0.0155286
\(981\) −15.8167 −0.504987
\(982\) −17.7250 −0.565627
\(983\) −12.0000 −0.382741 −0.191370 0.981518i \(-0.561293\pi\)
−0.191370 + 0.981518i \(0.561293\pi\)
\(984\) −32.7250 −1.04323
\(985\) −13.8167 −0.440235
\(986\) 23.4500 0.746799
\(987\) 39.6333 1.26154
\(988\) 2.60555 0.0828936
\(989\) −2.36669 −0.0752564
\(990\) 0 0
\(991\) 50.6972 1.61045 0.805225 0.592969i \(-0.202044\pi\)
0.805225 + 0.592969i \(0.202044\pi\)
\(992\) −0.302776 −0.00961314
\(993\) −43.6333 −1.38466
\(994\) 15.6333 0.495858
\(995\) −60.8444 −1.92890
\(996\) −9.21110 −0.291865
\(997\) 52.4222 1.66023 0.830114 0.557594i \(-0.188275\pi\)
0.830114 + 0.557594i \(0.188275\pi\)
\(998\) −42.2389 −1.33705
\(999\) 16.2111 0.512897
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8954.2.a.p.1.2 2
11.10 odd 2 74.2.a.a.1.2 2
33.32 even 2 666.2.a.j.1.2 2
44.43 even 2 592.2.a.f.1.1 2
55.32 even 4 1850.2.b.i.149.1 4
55.43 even 4 1850.2.b.i.149.4 4
55.54 odd 2 1850.2.a.u.1.1 2
77.76 even 2 3626.2.a.a.1.1 2
88.21 odd 2 2368.2.a.s.1.1 2
88.43 even 2 2368.2.a.ba.1.2 2
132.131 odd 2 5328.2.a.bf.1.2 2
407.406 odd 2 2738.2.a.l.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.2.a.a.1.2 2 11.10 odd 2
592.2.a.f.1.1 2 44.43 even 2
666.2.a.j.1.2 2 33.32 even 2
1850.2.a.u.1.1 2 55.54 odd 2
1850.2.b.i.149.1 4 55.32 even 4
1850.2.b.i.149.4 4 55.43 even 4
2368.2.a.s.1.1 2 88.21 odd 2
2368.2.a.ba.1.2 2 88.43 even 2
2738.2.a.l.1.2 2 407.406 odd 2
3626.2.a.a.1.1 2 77.76 even 2
5328.2.a.bf.1.2 2 132.131 odd 2
8954.2.a.p.1.2 2 1.1 even 1 trivial