gp: [N,k,chi] = [8954,2,Mod(1,8954)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8954.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8954, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [24,24,8,24,6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(2\)
\( -1 \)
\(11\)
\( -1 \)
\(37\)
\( -1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8954))\):
\( T_{3}^{24} - 8 T_{3}^{23} - 22 T_{3}^{22} + 325 T_{3}^{21} - 131 T_{3}^{20} - 5336 T_{3}^{19} + \cdots - 12421 \)
T3^24 - 8*T3^23 - 22*T3^22 + 325*T3^21 - 131*T3^20 - 5336*T3^19 + 8602*T3^18 + 44766*T3^17 - 111472*T3^16 - 195138*T3^15 + 714754*T3^14 + 345736*T3^13 - 2550985*T3^12 + 362004*T3^11 + 5118891*T3^10 - 2468777*T3^9 - 5633974*T3^8 + 3708594*T3^7 + 3391087*T3^6 - 2427390*T3^5 - 1121011*T3^4 + 706095*T3^3 + 194758*T3^2 - 68923*T3 - 12421
\( T_{5}^{24} - 6 T_{5}^{23} - 72 T_{5}^{22} + 460 T_{5}^{21} + 2174 T_{5}^{20} - 15046 T_{5}^{19} + \cdots - 103444 \)
T5^24 - 6*T5^23 - 72*T5^22 + 460*T5^21 + 2174*T5^20 - 15046*T5^19 - 35645*T5^18 + 274135*T5^17 + 342165*T5^16 - 3045505*T5^15 - 1916244*T5^14 + 21207568*T5^13 + 5736480*T5^12 - 91554702*T5^11 - 6674170*T5^10 + 233762934*T5^9 - 1719437*T5^8 - 323171705*T5^7 - 1767940*T5^6 + 215519058*T5^5 + 9273360*T5^4 - 58403351*T5^3 - 4662273*T5^2 + 3873296*T5 - 103444
\( T_{7}^{24} - 3 T_{7}^{23} - 111 T_{7}^{22} + 336 T_{7}^{21} + 5138 T_{7}^{20} - 15614 T_{7}^{19} + \cdots - 2330624 \)
T7^24 - 3*T7^23 - 111*T7^22 + 336*T7^21 + 5138*T7^20 - 15614*T7^19 - 129563*T7^18 + 392842*T7^17 + 1958313*T7^16 - 5875191*T7^15 - 18478300*T7^14 + 54143600*T7^13 + 110581461*T7^12 - 308867066*T7^11 - 422100576*T7^10 + 1068505208*T7^9 + 1035110688*T7^8 - 2133338176*T7^7 - 1633373568*T7^6 + 2202065280*T7^5 + 1556257024*T7^4 - 829410816*T7^3 - 678335488*T7^2 - 101113856*T7 - 2330624
\( T_{17}^{24} - 20 T_{17}^{23} - 59 T_{17}^{22} + 3562 T_{17}^{21} - 10640 T_{17}^{20} + \cdots - 2871247389696 \)
T17^24 - 20*T17^23 - 59*T17^22 + 3562*T17^21 - 10640*T17^20 - 249329*T17^19 + 1435941*T17^18 + 8418112*T17^17 - 74585509*T17^16 - 119100763*T17^15 + 2093463891*T17^14 - 661920009*T17^13 - 34308501650*T17^12 + 48969290406*T17^11 + 329077464727*T17^10 - 731126027876*T17^9 - 1754442947896*T17^8 + 5206371151040*T17^7 + 4644402814688*T17^6 - 18588151912128*T17^5 - 5421413718912*T17^4 + 31794355366784*T17^3 + 3243637317632*T17^2 - 20345566467072*T17 - 2871247389696