Properties

Label 8954.2.a.bt.1.10
Level $8954$
Weight $2$
Character 8954.1
Self dual yes
Analytic conductor $71.498$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8954,2,Mod(1,8954)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8954.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8954, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8954 = 2 \cdot 11^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8954.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,22,5,22,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.4980499699\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: no (minimal twist has level 814)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 8954.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.123112 q^{3} +1.00000 q^{4} -3.89599 q^{5} +0.123112 q^{6} +1.02869 q^{7} +1.00000 q^{8} -2.98484 q^{9} -3.89599 q^{10} +0.123112 q^{12} -0.0128920 q^{13} +1.02869 q^{14} -0.479643 q^{15} +1.00000 q^{16} -6.03448 q^{17} -2.98484 q^{18} +4.80831 q^{19} -3.89599 q^{20} +0.126644 q^{21} +1.10089 q^{23} +0.123112 q^{24} +10.1787 q^{25} -0.0128920 q^{26} -0.736806 q^{27} +1.02869 q^{28} +2.66171 q^{29} -0.479643 q^{30} -9.54125 q^{31} +1.00000 q^{32} -6.03448 q^{34} -4.00776 q^{35} -2.98484 q^{36} -1.00000 q^{37} +4.80831 q^{38} -0.00158717 q^{39} -3.89599 q^{40} +1.78744 q^{41} +0.126644 q^{42} +0.161529 q^{43} +11.6289 q^{45} +1.10089 q^{46} -5.43218 q^{47} +0.123112 q^{48} -5.94180 q^{49} +10.1787 q^{50} -0.742917 q^{51} -0.0128920 q^{52} -8.50735 q^{53} -0.736806 q^{54} +1.02869 q^{56} +0.591961 q^{57} +2.66171 q^{58} +8.09590 q^{59} -0.479643 q^{60} +5.07782 q^{61} -9.54125 q^{62} -3.07048 q^{63} +1.00000 q^{64} +0.0502272 q^{65} +5.89099 q^{67} -6.03448 q^{68} +0.135533 q^{69} -4.00776 q^{70} -11.7721 q^{71} -2.98484 q^{72} +0.543581 q^{73} -1.00000 q^{74} +1.25312 q^{75} +4.80831 q^{76} -0.00158717 q^{78} +14.2093 q^{79} -3.89599 q^{80} +8.86382 q^{81} +1.78744 q^{82} +1.59761 q^{83} +0.126644 q^{84} +23.5103 q^{85} +0.161529 q^{86} +0.327688 q^{87} -18.5606 q^{89} +11.6289 q^{90} -0.0132619 q^{91} +1.10089 q^{92} -1.17464 q^{93} -5.43218 q^{94} -18.7331 q^{95} +0.123112 q^{96} +12.2796 q^{97} -5.94180 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + 22 q^{2} + 5 q^{3} + 22 q^{4} + 8 q^{5} + 5 q^{6} + 7 q^{7} + 22 q^{8} + 35 q^{9} + 8 q^{10} + 5 q^{12} + 9 q^{13} + 7 q^{14} + 16 q^{15} + 22 q^{16} + 19 q^{17} + 35 q^{18} + 8 q^{20} + 15 q^{21}+ \cdots + 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.123112 0.0710788 0.0355394 0.999368i \(-0.488685\pi\)
0.0355394 + 0.999368i \(0.488685\pi\)
\(4\) 1.00000 0.500000
\(5\) −3.89599 −1.74234 −0.871169 0.490983i \(-0.836638\pi\)
−0.871169 + 0.490983i \(0.836638\pi\)
\(6\) 0.123112 0.0502603
\(7\) 1.02869 0.388808 0.194404 0.980922i \(-0.437723\pi\)
0.194404 + 0.980922i \(0.437723\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.98484 −0.994948
\(10\) −3.89599 −1.23202
\(11\) 0 0
\(12\) 0.123112 0.0355394
\(13\) −0.0128920 −0.00357561 −0.00178780 0.999998i \(-0.500569\pi\)
−0.00178780 + 0.999998i \(0.500569\pi\)
\(14\) 1.02869 0.274929
\(15\) −0.479643 −0.123843
\(16\) 1.00000 0.250000
\(17\) −6.03448 −1.46358 −0.731788 0.681532i \(-0.761314\pi\)
−0.731788 + 0.681532i \(0.761314\pi\)
\(18\) −2.98484 −0.703534
\(19\) 4.80831 1.10310 0.551551 0.834141i \(-0.314036\pi\)
0.551551 + 0.834141i \(0.314036\pi\)
\(20\) −3.89599 −0.871169
\(21\) 0.126644 0.0276360
\(22\) 0 0
\(23\) 1.10089 0.229552 0.114776 0.993391i \(-0.463385\pi\)
0.114776 + 0.993391i \(0.463385\pi\)
\(24\) 0.123112 0.0251301
\(25\) 10.1787 2.03574
\(26\) −0.0128920 −0.00252834
\(27\) −0.736806 −0.141798
\(28\) 1.02869 0.194404
\(29\) 2.66171 0.494267 0.247133 0.968981i \(-0.420511\pi\)
0.247133 + 0.968981i \(0.420511\pi\)
\(30\) −0.479643 −0.0875704
\(31\) −9.54125 −1.71366 −0.856830 0.515599i \(-0.827569\pi\)
−0.856830 + 0.515599i \(0.827569\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −6.03448 −1.03491
\(35\) −4.00776 −0.677435
\(36\) −2.98484 −0.497474
\(37\) −1.00000 −0.164399
\(38\) 4.80831 0.780011
\(39\) −0.00158717 −0.000254150 0
\(40\) −3.89599 −0.616010
\(41\) 1.78744 0.279152 0.139576 0.990211i \(-0.455426\pi\)
0.139576 + 0.990211i \(0.455426\pi\)
\(42\) 0.126644 0.0195416
\(43\) 0.161529 0.0246329 0.0123165 0.999924i \(-0.496079\pi\)
0.0123165 + 0.999924i \(0.496079\pi\)
\(44\) 0 0
\(45\) 11.6289 1.73354
\(46\) 1.10089 0.162318
\(47\) −5.43218 −0.792365 −0.396182 0.918172i \(-0.629665\pi\)
−0.396182 + 0.918172i \(0.629665\pi\)
\(48\) 0.123112 0.0177697
\(49\) −5.94180 −0.848828
\(50\) 10.1787 1.43949
\(51\) −0.742917 −0.104029
\(52\) −0.0128920 −0.00178780
\(53\) −8.50735 −1.16857 −0.584287 0.811547i \(-0.698626\pi\)
−0.584287 + 0.811547i \(0.698626\pi\)
\(54\) −0.736806 −0.100267
\(55\) 0 0
\(56\) 1.02869 0.137464
\(57\) 0.591961 0.0784071
\(58\) 2.66171 0.349499
\(59\) 8.09590 1.05400 0.526998 0.849866i \(-0.323317\pi\)
0.526998 + 0.849866i \(0.323317\pi\)
\(60\) −0.479643 −0.0619216
\(61\) 5.07782 0.650149 0.325074 0.945688i \(-0.394611\pi\)
0.325074 + 0.945688i \(0.394611\pi\)
\(62\) −9.54125 −1.21174
\(63\) −3.07048 −0.386844
\(64\) 1.00000 0.125000
\(65\) 0.0502272 0.00622992
\(66\) 0 0
\(67\) 5.89099 0.719699 0.359849 0.933010i \(-0.382828\pi\)
0.359849 + 0.933010i \(0.382828\pi\)
\(68\) −6.03448 −0.731788
\(69\) 0.135533 0.0163163
\(70\) −4.00776 −0.479019
\(71\) −11.7721 −1.39710 −0.698548 0.715563i \(-0.746170\pi\)
−0.698548 + 0.715563i \(0.746170\pi\)
\(72\) −2.98484 −0.351767
\(73\) 0.543581 0.0636213 0.0318107 0.999494i \(-0.489873\pi\)
0.0318107 + 0.999494i \(0.489873\pi\)
\(74\) −1.00000 −0.116248
\(75\) 1.25312 0.144698
\(76\) 4.80831 0.551551
\(77\) 0 0
\(78\) −0.00158717 −0.000179711 0
\(79\) 14.2093 1.59868 0.799338 0.600882i \(-0.205184\pi\)
0.799338 + 0.600882i \(0.205184\pi\)
\(80\) −3.89599 −0.435585
\(81\) 8.86382 0.984869
\(82\) 1.78744 0.197390
\(83\) 1.59761 0.175360 0.0876802 0.996149i \(-0.472055\pi\)
0.0876802 + 0.996149i \(0.472055\pi\)
\(84\) 0.126644 0.0138180
\(85\) 23.5103 2.55005
\(86\) 0.161529 0.0174181
\(87\) 0.327688 0.0351319
\(88\) 0 0
\(89\) −18.5606 −1.96742 −0.983710 0.179761i \(-0.942467\pi\)
−0.983710 + 0.179761i \(0.942467\pi\)
\(90\) 11.6289 1.22579
\(91\) −0.0132619 −0.00139023
\(92\) 1.10089 0.114776
\(93\) −1.17464 −0.121805
\(94\) −5.43218 −0.560286
\(95\) −18.7331 −1.92198
\(96\) 0.123112 0.0125651
\(97\) 12.2796 1.24680 0.623401 0.781903i \(-0.285751\pi\)
0.623401 + 0.781903i \(0.285751\pi\)
\(98\) −5.94180 −0.600212
\(99\) 0 0
\(100\) 10.1787 1.01787
\(101\) 11.3530 1.12967 0.564833 0.825205i \(-0.308941\pi\)
0.564833 + 0.825205i \(0.308941\pi\)
\(102\) −0.742917 −0.0735598
\(103\) 14.0153 1.38097 0.690486 0.723346i \(-0.257397\pi\)
0.690486 + 0.723346i \(0.257397\pi\)
\(104\) −0.0128920 −0.00126417
\(105\) −0.493404 −0.0481513
\(106\) −8.50735 −0.826307
\(107\) −11.7759 −1.13842 −0.569210 0.822192i \(-0.692751\pi\)
−0.569210 + 0.822192i \(0.692751\pi\)
\(108\) −0.736806 −0.0708992
\(109\) 3.66858 0.351386 0.175693 0.984445i \(-0.443783\pi\)
0.175693 + 0.984445i \(0.443783\pi\)
\(110\) 0 0
\(111\) −0.123112 −0.0116853
\(112\) 1.02869 0.0972020
\(113\) −13.4128 −1.26177 −0.630887 0.775875i \(-0.717309\pi\)
−0.630887 + 0.775875i \(0.717309\pi\)
\(114\) 0.591961 0.0554422
\(115\) −4.28907 −0.399958
\(116\) 2.66171 0.247133
\(117\) 0.0384807 0.00355754
\(118\) 8.09590 0.745288
\(119\) −6.20761 −0.569051
\(120\) −0.479643 −0.0437852
\(121\) 0 0
\(122\) 5.07782 0.459725
\(123\) 0.220056 0.0198418
\(124\) −9.54125 −0.856830
\(125\) −20.1762 −1.80462
\(126\) −3.07048 −0.273540
\(127\) 15.9977 1.41956 0.709782 0.704422i \(-0.248793\pi\)
0.709782 + 0.704422i \(0.248793\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0.0198861 0.00175088
\(130\) 0.0502272 0.00440522
\(131\) 13.2172 1.15479 0.577395 0.816465i \(-0.304069\pi\)
0.577395 + 0.816465i \(0.304069\pi\)
\(132\) 0 0
\(133\) 4.94626 0.428895
\(134\) 5.89099 0.508904
\(135\) 2.87059 0.247061
\(136\) −6.03448 −0.517453
\(137\) 4.05441 0.346391 0.173196 0.984887i \(-0.444591\pi\)
0.173196 + 0.984887i \(0.444591\pi\)
\(138\) 0.135533 0.0115374
\(139\) 13.0764 1.10913 0.554565 0.832140i \(-0.312885\pi\)
0.554565 + 0.832140i \(0.312885\pi\)
\(140\) −4.00776 −0.338718
\(141\) −0.668766 −0.0563203
\(142\) −11.7721 −0.987896
\(143\) 0 0
\(144\) −2.98484 −0.248737
\(145\) −10.3700 −0.861180
\(146\) 0.543581 0.0449871
\(147\) −0.731507 −0.0603337
\(148\) −1.00000 −0.0821995
\(149\) 6.83732 0.560135 0.280068 0.959980i \(-0.409643\pi\)
0.280068 + 0.959980i \(0.409643\pi\)
\(150\) 1.25312 0.102317
\(151\) −14.8152 −1.20565 −0.602823 0.797875i \(-0.705958\pi\)
−0.602823 + 0.797875i \(0.705958\pi\)
\(152\) 4.80831 0.390005
\(153\) 18.0120 1.45618
\(154\) 0 0
\(155\) 37.1726 2.98578
\(156\) −0.00158717 −0.000127075 0
\(157\) 14.8856 1.18800 0.594001 0.804464i \(-0.297547\pi\)
0.594001 + 0.804464i \(0.297547\pi\)
\(158\) 14.2093 1.13043
\(159\) −1.04736 −0.0830608
\(160\) −3.89599 −0.308005
\(161\) 1.13248 0.0892518
\(162\) 8.86382 0.696408
\(163\) 4.46611 0.349813 0.174907 0.984585i \(-0.444038\pi\)
0.174907 + 0.984585i \(0.444038\pi\)
\(164\) 1.78744 0.139576
\(165\) 0 0
\(166\) 1.59761 0.123998
\(167\) 18.2113 1.40924 0.704618 0.709587i \(-0.251118\pi\)
0.704618 + 0.709587i \(0.251118\pi\)
\(168\) 0.126644 0.00977080
\(169\) −12.9998 −0.999987
\(170\) 23.5103 1.80316
\(171\) −14.3520 −1.09753
\(172\) 0.161529 0.0123165
\(173\) 24.8247 1.88739 0.943694 0.330819i \(-0.107325\pi\)
0.943694 + 0.330819i \(0.107325\pi\)
\(174\) 0.327688 0.0248420
\(175\) 10.4707 0.791514
\(176\) 0 0
\(177\) 0.996703 0.0749168
\(178\) −18.5606 −1.39118
\(179\) 8.68595 0.649219 0.324609 0.945848i \(-0.394767\pi\)
0.324609 + 0.945848i \(0.394767\pi\)
\(180\) 11.6289 0.866768
\(181\) −4.56819 −0.339551 −0.169776 0.985483i \(-0.554304\pi\)
−0.169776 + 0.985483i \(0.554304\pi\)
\(182\) −0.0132619 −0.000983038 0
\(183\) 0.625141 0.0462118
\(184\) 1.10089 0.0811590
\(185\) 3.89599 0.286439
\(186\) −1.17464 −0.0861290
\(187\) 0 0
\(188\) −5.43218 −0.396182
\(189\) −0.757945 −0.0551324
\(190\) −18.7331 −1.35904
\(191\) 0.187966 0.0136007 0.00680037 0.999977i \(-0.497835\pi\)
0.00680037 + 0.999977i \(0.497835\pi\)
\(192\) 0.123112 0.00888484
\(193\) −19.2052 −1.38242 −0.691211 0.722653i \(-0.742923\pi\)
−0.691211 + 0.722653i \(0.742923\pi\)
\(194\) 12.2796 0.881622
\(195\) 0.00618358 0.000442815 0
\(196\) −5.94180 −0.424414
\(197\) −0.922455 −0.0657222 −0.0328611 0.999460i \(-0.510462\pi\)
−0.0328611 + 0.999460i \(0.510462\pi\)
\(198\) 0 0
\(199\) 13.2663 0.940421 0.470210 0.882554i \(-0.344178\pi\)
0.470210 + 0.882554i \(0.344178\pi\)
\(200\) 10.1787 0.719744
\(201\) 0.725252 0.0511553
\(202\) 11.3530 0.798794
\(203\) 2.73807 0.192175
\(204\) −0.742917 −0.0520146
\(205\) −6.96386 −0.486377
\(206\) 14.0153 0.976495
\(207\) −3.28600 −0.228392
\(208\) −0.0128920 −0.000893902 0
\(209\) 0 0
\(210\) −0.493404 −0.0340481
\(211\) 16.3303 1.12423 0.562113 0.827060i \(-0.309989\pi\)
0.562113 + 0.827060i \(0.309989\pi\)
\(212\) −8.50735 −0.584287
\(213\) −1.44929 −0.0993039
\(214\) −11.7759 −0.804985
\(215\) −0.629314 −0.0429189
\(216\) −0.736806 −0.0501333
\(217\) −9.81499 −0.666285
\(218\) 3.66858 0.248467
\(219\) 0.0669213 0.00452213
\(220\) 0 0
\(221\) 0.0777968 0.00523318
\(222\) −0.123112 −0.00826274
\(223\) 19.6721 1.31734 0.658670 0.752432i \(-0.271119\pi\)
0.658670 + 0.752432i \(0.271119\pi\)
\(224\) 1.02869 0.0687322
\(225\) −30.3819 −2.02546
\(226\) −13.4128 −0.892209
\(227\) 7.56019 0.501788 0.250894 0.968015i \(-0.419275\pi\)
0.250894 + 0.968015i \(0.419275\pi\)
\(228\) 0.591961 0.0392035
\(229\) −5.60675 −0.370505 −0.185252 0.982691i \(-0.559310\pi\)
−0.185252 + 0.982691i \(0.559310\pi\)
\(230\) −4.28907 −0.282813
\(231\) 0 0
\(232\) 2.66171 0.174750
\(233\) 7.60058 0.497931 0.248965 0.968512i \(-0.419909\pi\)
0.248965 + 0.968512i \(0.419909\pi\)
\(234\) 0.0384807 0.00251556
\(235\) 21.1637 1.38057
\(236\) 8.09590 0.526998
\(237\) 1.74934 0.113632
\(238\) −6.20761 −0.402380
\(239\) −5.55612 −0.359395 −0.179698 0.983722i \(-0.557512\pi\)
−0.179698 + 0.983722i \(0.557512\pi\)
\(240\) −0.479643 −0.0309608
\(241\) −10.5708 −0.680924 −0.340462 0.940258i \(-0.610583\pi\)
−0.340462 + 0.940258i \(0.610583\pi\)
\(242\) 0 0
\(243\) 3.30166 0.211802
\(244\) 5.07782 0.325074
\(245\) 23.1492 1.47895
\(246\) 0.220056 0.0140302
\(247\) −0.0619889 −0.00394426
\(248\) −9.54125 −0.605870
\(249\) 0.196685 0.0124644
\(250\) −20.1762 −1.27606
\(251\) 30.5390 1.92761 0.963803 0.266615i \(-0.0859051\pi\)
0.963803 + 0.266615i \(0.0859051\pi\)
\(252\) −3.07048 −0.193422
\(253\) 0 0
\(254\) 15.9977 1.00378
\(255\) 2.89440 0.181254
\(256\) 1.00000 0.0625000
\(257\) 6.04702 0.377203 0.188601 0.982054i \(-0.439605\pi\)
0.188601 + 0.982054i \(0.439605\pi\)
\(258\) 0.0198861 0.00123806
\(259\) −1.02869 −0.0639197
\(260\) 0.0502272 0.00311496
\(261\) −7.94478 −0.491770
\(262\) 13.2172 0.816560
\(263\) 10.9524 0.675352 0.337676 0.941262i \(-0.390359\pi\)
0.337676 + 0.941262i \(0.390359\pi\)
\(264\) 0 0
\(265\) 33.1445 2.03605
\(266\) 4.94626 0.303274
\(267\) −2.28503 −0.139842
\(268\) 5.89099 0.359849
\(269\) 21.8630 1.33301 0.666505 0.745501i \(-0.267790\pi\)
0.666505 + 0.745501i \(0.267790\pi\)
\(270\) 2.87059 0.174698
\(271\) 25.4829 1.54798 0.773989 0.633199i \(-0.218259\pi\)
0.773989 + 0.633199i \(0.218259\pi\)
\(272\) −6.03448 −0.365894
\(273\) −0.00163270 −9.88155e−5 0
\(274\) 4.05441 0.244936
\(275\) 0 0
\(276\) 0.135533 0.00815814
\(277\) −21.2290 −1.27553 −0.637763 0.770232i \(-0.720140\pi\)
−0.637763 + 0.770232i \(0.720140\pi\)
\(278\) 13.0764 0.784273
\(279\) 28.4791 1.70500
\(280\) −4.00776 −0.239510
\(281\) 14.8608 0.886521 0.443260 0.896393i \(-0.353822\pi\)
0.443260 + 0.896393i \(0.353822\pi\)
\(282\) −0.668766 −0.0398245
\(283\) −21.5823 −1.28294 −0.641468 0.767149i \(-0.721674\pi\)
−0.641468 + 0.767149i \(0.721674\pi\)
\(284\) −11.7721 −0.698548
\(285\) −2.30627 −0.136612
\(286\) 0 0
\(287\) 1.83872 0.108536
\(288\) −2.98484 −0.175884
\(289\) 19.4150 1.14206
\(290\) −10.3700 −0.608946
\(291\) 1.51176 0.0886211
\(292\) 0.543581 0.0318107
\(293\) −13.2003 −0.771170 −0.385585 0.922672i \(-0.626000\pi\)
−0.385585 + 0.922672i \(0.626000\pi\)
\(294\) −0.731507 −0.0426623
\(295\) −31.5415 −1.83642
\(296\) −1.00000 −0.0581238
\(297\) 0 0
\(298\) 6.83732 0.396075
\(299\) −0.0141928 −0.000820789 0
\(300\) 1.25312 0.0723491
\(301\) 0.166163 0.00957747
\(302\) −14.8152 −0.852521
\(303\) 1.39769 0.0802952
\(304\) 4.80831 0.275775
\(305\) −19.7831 −1.13278
\(306\) 18.0120 1.02968
\(307\) 5.20755 0.297210 0.148605 0.988897i \(-0.452522\pi\)
0.148605 + 0.988897i \(0.452522\pi\)
\(308\) 0 0
\(309\) 1.72546 0.0981578
\(310\) 37.1726 2.11126
\(311\) 5.62942 0.319215 0.159608 0.987181i \(-0.448977\pi\)
0.159608 + 0.987181i \(0.448977\pi\)
\(312\) −0.00158717 −8.98555e−5 0
\(313\) 24.9056 1.40775 0.703875 0.710324i \(-0.251452\pi\)
0.703875 + 0.710324i \(0.251452\pi\)
\(314\) 14.8856 0.840045
\(315\) 11.9625 0.674013
\(316\) 14.2093 0.799338
\(317\) −26.3658 −1.48085 −0.740427 0.672137i \(-0.765377\pi\)
−0.740427 + 0.672137i \(0.765377\pi\)
\(318\) −1.04736 −0.0587329
\(319\) 0 0
\(320\) −3.89599 −0.217792
\(321\) −1.44976 −0.0809175
\(322\) 1.13248 0.0631105
\(323\) −29.0157 −1.61447
\(324\) 8.86382 0.492434
\(325\) −0.131224 −0.00727902
\(326\) 4.46611 0.247355
\(327\) 0.451646 0.0249761
\(328\) 1.78744 0.0986951
\(329\) −5.58803 −0.308078
\(330\) 0 0
\(331\) −21.3680 −1.17449 −0.587247 0.809408i \(-0.699788\pi\)
−0.587247 + 0.809408i \(0.699788\pi\)
\(332\) 1.59761 0.0876802
\(333\) 2.98484 0.163568
\(334\) 18.2113 0.996481
\(335\) −22.9512 −1.25396
\(336\) 0.126644 0.00690900
\(337\) −11.5744 −0.630496 −0.315248 0.949009i \(-0.602088\pi\)
−0.315248 + 0.949009i \(0.602088\pi\)
\(338\) −12.9998 −0.707098
\(339\) −1.65128 −0.0896853
\(340\) 23.5103 1.27502
\(341\) 0 0
\(342\) −14.3520 −0.776070
\(343\) −13.3131 −0.718840
\(344\) 0.161529 0.00870905
\(345\) −0.528036 −0.0284285
\(346\) 24.8247 1.33459
\(347\) −3.77347 −0.202570 −0.101285 0.994857i \(-0.532295\pi\)
−0.101285 + 0.994857i \(0.532295\pi\)
\(348\) 0.327688 0.0175659
\(349\) −31.7179 −1.69782 −0.848911 0.528536i \(-0.822741\pi\)
−0.848911 + 0.528536i \(0.822741\pi\)
\(350\) 10.4707 0.559685
\(351\) 0.00949894 0.000507016 0
\(352\) 0 0
\(353\) −31.6492 −1.68452 −0.842258 0.539074i \(-0.818774\pi\)
−0.842258 + 0.539074i \(0.818774\pi\)
\(354\) 0.996703 0.0529742
\(355\) 45.8641 2.43422
\(356\) −18.5606 −0.983710
\(357\) −0.764231 −0.0404474
\(358\) 8.68595 0.459067
\(359\) 8.28551 0.437292 0.218646 0.975804i \(-0.429836\pi\)
0.218646 + 0.975804i \(0.429836\pi\)
\(360\) 11.6289 0.612897
\(361\) 4.11983 0.216833
\(362\) −4.56819 −0.240099
\(363\) 0 0
\(364\) −0.0132619 −0.000695113 0
\(365\) −2.11778 −0.110850
\(366\) 0.625141 0.0326767
\(367\) 14.0906 0.735524 0.367762 0.929920i \(-0.380124\pi\)
0.367762 + 0.929920i \(0.380124\pi\)
\(368\) 1.10089 0.0573881
\(369\) −5.33524 −0.277741
\(370\) 3.89599 0.202543
\(371\) −8.75143 −0.454351
\(372\) −1.17464 −0.0609024
\(373\) 6.02010 0.311709 0.155855 0.987780i \(-0.450187\pi\)
0.155855 + 0.987780i \(0.450187\pi\)
\(374\) 0 0
\(375\) −2.48393 −0.128270
\(376\) −5.43218 −0.280143
\(377\) −0.0343148 −0.00176730
\(378\) −0.757945 −0.0389845
\(379\) 23.5390 1.20912 0.604558 0.796561i \(-0.293350\pi\)
0.604558 + 0.796561i \(0.293350\pi\)
\(380\) −18.7331 −0.960988
\(381\) 1.96951 0.100901
\(382\) 0.187966 0.00961718
\(383\) −1.12110 −0.0572854 −0.0286427 0.999590i \(-0.509119\pi\)
−0.0286427 + 0.999590i \(0.509119\pi\)
\(384\) 0.123112 0.00628253
\(385\) 0 0
\(386\) −19.2052 −0.977520
\(387\) −0.482138 −0.0245085
\(388\) 12.2796 0.623401
\(389\) −11.4668 −0.581391 −0.290696 0.956816i \(-0.593887\pi\)
−0.290696 + 0.956816i \(0.593887\pi\)
\(390\) 0.00618358 0.000313118 0
\(391\) −6.64332 −0.335967
\(392\) −5.94180 −0.300106
\(393\) 1.62719 0.0820810
\(394\) −0.922455 −0.0464726
\(395\) −55.3594 −2.78543
\(396\) 0 0
\(397\) 14.2583 0.715601 0.357801 0.933798i \(-0.383527\pi\)
0.357801 + 0.933798i \(0.383527\pi\)
\(398\) 13.2663 0.664978
\(399\) 0.608944 0.0304853
\(400\) 10.1787 0.508936
\(401\) −15.0727 −0.752697 −0.376349 0.926478i \(-0.622820\pi\)
−0.376349 + 0.926478i \(0.622820\pi\)
\(402\) 0.725252 0.0361723
\(403\) 0.123006 0.00612738
\(404\) 11.3530 0.564833
\(405\) −34.5333 −1.71598
\(406\) 2.73807 0.135888
\(407\) 0 0
\(408\) −0.742917 −0.0367799
\(409\) 15.1981 0.751496 0.375748 0.926722i \(-0.377386\pi\)
0.375748 + 0.926722i \(0.377386\pi\)
\(410\) −6.96386 −0.343920
\(411\) 0.499146 0.0246211
\(412\) 14.0153 0.690486
\(413\) 8.32817 0.409803
\(414\) −3.28600 −0.161498
\(415\) −6.22426 −0.305537
\(416\) −0.0128920 −0.000632084 0
\(417\) 1.60987 0.0788356
\(418\) 0 0
\(419\) 24.8206 1.21257 0.606283 0.795249i \(-0.292660\pi\)
0.606283 + 0.795249i \(0.292660\pi\)
\(420\) −0.493404 −0.0240756
\(421\) −0.0939937 −0.00458097 −0.00229049 0.999997i \(-0.500729\pi\)
−0.00229049 + 0.999997i \(0.500729\pi\)
\(422\) 16.3303 0.794948
\(423\) 16.2142 0.788361
\(424\) −8.50735 −0.413154
\(425\) −61.4233 −2.97947
\(426\) −1.44929 −0.0702185
\(427\) 5.22351 0.252783
\(428\) −11.7759 −0.569210
\(429\) 0 0
\(430\) −0.629314 −0.0303482
\(431\) −15.0602 −0.725423 −0.362712 0.931901i \(-0.618149\pi\)
−0.362712 + 0.931901i \(0.618149\pi\)
\(432\) −0.736806 −0.0354496
\(433\) −22.6080 −1.08647 −0.543235 0.839581i \(-0.682801\pi\)
−0.543235 + 0.839581i \(0.682801\pi\)
\(434\) −9.81499 −0.471135
\(435\) −1.27667 −0.0612116
\(436\) 3.66858 0.175693
\(437\) 5.29344 0.253219
\(438\) 0.0669213 0.00319763
\(439\) 15.2327 0.727019 0.363510 0.931590i \(-0.381578\pi\)
0.363510 + 0.931590i \(0.381578\pi\)
\(440\) 0 0
\(441\) 17.7353 0.844540
\(442\) 0.0777968 0.00370042
\(443\) −4.85321 −0.230583 −0.115291 0.993332i \(-0.536780\pi\)
−0.115291 + 0.993332i \(0.536780\pi\)
\(444\) −0.123112 −0.00584264
\(445\) 72.3119 3.42791
\(446\) 19.6721 0.931501
\(447\) 0.841756 0.0398137
\(448\) 1.02869 0.0486010
\(449\) 28.9173 1.36469 0.682347 0.731029i \(-0.260960\pi\)
0.682347 + 0.731029i \(0.260960\pi\)
\(450\) −30.3819 −1.43222
\(451\) 0 0
\(452\) −13.4128 −0.630887
\(453\) −1.82393 −0.0856959
\(454\) 7.56019 0.354818
\(455\) 0.0516682 0.00242224
\(456\) 0.591961 0.0277211
\(457\) −41.8706 −1.95862 −0.979311 0.202359i \(-0.935139\pi\)
−0.979311 + 0.202359i \(0.935139\pi\)
\(458\) −5.60675 −0.261986
\(459\) 4.44624 0.207533
\(460\) −4.28907 −0.199979
\(461\) −17.2212 −0.802073 −0.401036 0.916062i \(-0.631350\pi\)
−0.401036 + 0.916062i \(0.631350\pi\)
\(462\) 0 0
\(463\) 14.3437 0.666610 0.333305 0.942819i \(-0.391836\pi\)
0.333305 + 0.942819i \(0.391836\pi\)
\(464\) 2.66171 0.123567
\(465\) 4.57639 0.212225
\(466\) 7.60058 0.352090
\(467\) 0.888200 0.0411010 0.0205505 0.999789i \(-0.493458\pi\)
0.0205505 + 0.999789i \(0.493458\pi\)
\(468\) 0.0384807 0.00177877
\(469\) 6.06000 0.279825
\(470\) 21.1637 0.976209
\(471\) 1.83260 0.0844417
\(472\) 8.09590 0.372644
\(473\) 0 0
\(474\) 1.74934 0.0803499
\(475\) 48.9424 2.24563
\(476\) −6.20761 −0.284525
\(477\) 25.3931 1.16267
\(478\) −5.55612 −0.254131
\(479\) 16.7008 0.763080 0.381540 0.924352i \(-0.375394\pi\)
0.381540 + 0.924352i \(0.375394\pi\)
\(480\) −0.479643 −0.0218926
\(481\) 0.0128920 0.000587826 0
\(482\) −10.5708 −0.481486
\(483\) 0.139422 0.00634391
\(484\) 0 0
\(485\) −47.8410 −2.17235
\(486\) 3.30166 0.149766
\(487\) 0.597149 0.0270594 0.0135297 0.999908i \(-0.495693\pi\)
0.0135297 + 0.999908i \(0.495693\pi\)
\(488\) 5.07782 0.229862
\(489\) 0.549832 0.0248643
\(490\) 23.1492 1.04577
\(491\) 2.37658 0.107254 0.0536268 0.998561i \(-0.482922\pi\)
0.0536268 + 0.998561i \(0.482922\pi\)
\(492\) 0.220056 0.00992088
\(493\) −16.0620 −0.723397
\(494\) −0.0619889 −0.00278901
\(495\) 0 0
\(496\) −9.54125 −0.428415
\(497\) −12.1099 −0.543203
\(498\) 0.196685 0.00881366
\(499\) 10.5737 0.473345 0.236672 0.971590i \(-0.423943\pi\)
0.236672 + 0.971590i \(0.423943\pi\)
\(500\) −20.1762 −0.902308
\(501\) 2.24204 0.100167
\(502\) 30.5390 1.36302
\(503\) 9.37897 0.418187 0.209094 0.977896i \(-0.432949\pi\)
0.209094 + 0.977896i \(0.432949\pi\)
\(504\) −3.07048 −0.136770
\(505\) −44.2311 −1.96826
\(506\) 0 0
\(507\) −1.60044 −0.0710778
\(508\) 15.9977 0.709782
\(509\) 21.7630 0.964629 0.482314 0.875998i \(-0.339796\pi\)
0.482314 + 0.875998i \(0.339796\pi\)
\(510\) 2.89440 0.128166
\(511\) 0.559176 0.0247365
\(512\) 1.00000 0.0441942
\(513\) −3.54279 −0.156418
\(514\) 6.04702 0.266723
\(515\) −54.6036 −2.40612
\(516\) 0.0198861 0.000875438 0
\(517\) 0 0
\(518\) −1.02869 −0.0451980
\(519\) 3.05622 0.134153
\(520\) 0.0502272 0.00220261
\(521\) 31.2495 1.36907 0.684534 0.728981i \(-0.260006\pi\)
0.684534 + 0.728981i \(0.260006\pi\)
\(522\) −7.94478 −0.347734
\(523\) −28.0377 −1.22601 −0.613003 0.790081i \(-0.710038\pi\)
−0.613003 + 0.790081i \(0.710038\pi\)
\(524\) 13.2172 0.577395
\(525\) 1.28907 0.0562598
\(526\) 10.9524 0.477546
\(527\) 57.5765 2.50807
\(528\) 0 0
\(529\) −21.7880 −0.947306
\(530\) 33.1445 1.43971
\(531\) −24.1650 −1.04867
\(532\) 4.94626 0.214447
\(533\) −0.0230438 −0.000998137 0
\(534\) −2.28503 −0.0988831
\(535\) 45.8788 1.98351
\(536\) 5.89099 0.254452
\(537\) 1.06935 0.0461457
\(538\) 21.8630 0.942580
\(539\) 0 0
\(540\) 2.87059 0.123530
\(541\) 18.2076 0.782805 0.391402 0.920220i \(-0.371990\pi\)
0.391402 + 0.920220i \(0.371990\pi\)
\(542\) 25.4829 1.09459
\(543\) −0.562399 −0.0241349
\(544\) −6.03448 −0.258726
\(545\) −14.2927 −0.612233
\(546\) −0.00163270 −6.98731e−5 0
\(547\) 4.96008 0.212078 0.106039 0.994362i \(-0.466183\pi\)
0.106039 + 0.994362i \(0.466183\pi\)
\(548\) 4.05441 0.173196
\(549\) −15.1565 −0.646864
\(550\) 0 0
\(551\) 12.7983 0.545226
\(552\) 0.135533 0.00576868
\(553\) 14.6170 0.621578
\(554\) −21.2290 −0.901934
\(555\) 0.479643 0.0203597
\(556\) 13.0764 0.554565
\(557\) −38.0632 −1.61279 −0.806394 0.591378i \(-0.798584\pi\)
−0.806394 + 0.591378i \(0.798584\pi\)
\(558\) 28.4791 1.20562
\(559\) −0.00208244 −8.80776e−5 0
\(560\) −4.00776 −0.169359
\(561\) 0 0
\(562\) 14.8608 0.626865
\(563\) 11.5246 0.485705 0.242853 0.970063i \(-0.421917\pi\)
0.242853 + 0.970063i \(0.421917\pi\)
\(564\) −0.668766 −0.0281601
\(565\) 52.2563 2.19844
\(566\) −21.5823 −0.907173
\(567\) 9.11812 0.382925
\(568\) −11.7721 −0.493948
\(569\) 10.4605 0.438527 0.219263 0.975666i \(-0.429635\pi\)
0.219263 + 0.975666i \(0.429635\pi\)
\(570\) −2.30627 −0.0965991
\(571\) 20.2874 0.849003 0.424501 0.905427i \(-0.360449\pi\)
0.424501 + 0.905427i \(0.360449\pi\)
\(572\) 0 0
\(573\) 0.0231409 0.000966724 0
\(574\) 1.83872 0.0767469
\(575\) 11.2057 0.467309
\(576\) −2.98484 −0.124368
\(577\) 2.52024 0.104919 0.0524594 0.998623i \(-0.483294\pi\)
0.0524594 + 0.998623i \(0.483294\pi\)
\(578\) 19.4150 0.807556
\(579\) −2.36439 −0.0982609
\(580\) −10.3700 −0.430590
\(581\) 1.64344 0.0681815
\(582\) 1.51176 0.0626646
\(583\) 0 0
\(584\) 0.543581 0.0224935
\(585\) −0.149920 −0.00619845
\(586\) −13.2003 −0.545299
\(587\) −35.6393 −1.47099 −0.735496 0.677529i \(-0.763051\pi\)
−0.735496 + 0.677529i \(0.763051\pi\)
\(588\) −0.731507 −0.0301668
\(589\) −45.8773 −1.89034
\(590\) −31.5415 −1.29854
\(591\) −0.113565 −0.00467145
\(592\) −1.00000 −0.0410997
\(593\) 33.5776 1.37887 0.689433 0.724350i \(-0.257860\pi\)
0.689433 + 0.724350i \(0.257860\pi\)
\(594\) 0 0
\(595\) 24.1848 0.991479
\(596\) 6.83732 0.280068
\(597\) 1.63324 0.0668439
\(598\) −0.0141928 −0.000580385 0
\(599\) −8.75927 −0.357894 −0.178947 0.983859i \(-0.557269\pi\)
−0.178947 + 0.983859i \(0.557269\pi\)
\(600\) 1.25312 0.0511585
\(601\) −39.8702 −1.62634 −0.813170 0.582027i \(-0.802260\pi\)
−0.813170 + 0.582027i \(0.802260\pi\)
\(602\) 0.166163 0.00677230
\(603\) −17.5837 −0.716063
\(604\) −14.8152 −0.602823
\(605\) 0 0
\(606\) 1.39769 0.0567773
\(607\) 18.6487 0.756928 0.378464 0.925616i \(-0.376452\pi\)
0.378464 + 0.925616i \(0.376452\pi\)
\(608\) 4.80831 0.195003
\(609\) 0.337090 0.0136596
\(610\) −19.7831 −0.800996
\(611\) 0.0700319 0.00283319
\(612\) 18.0120 0.728091
\(613\) 15.5862 0.629521 0.314760 0.949171i \(-0.398076\pi\)
0.314760 + 0.949171i \(0.398076\pi\)
\(614\) 5.20755 0.210160
\(615\) −0.857335 −0.0345711
\(616\) 0 0
\(617\) −17.2046 −0.692630 −0.346315 0.938118i \(-0.612567\pi\)
−0.346315 + 0.938118i \(0.612567\pi\)
\(618\) 1.72546 0.0694080
\(619\) 19.6523 0.789893 0.394947 0.918704i \(-0.370763\pi\)
0.394947 + 0.918704i \(0.370763\pi\)
\(620\) 37.1726 1.49289
\(621\) −0.811145 −0.0325501
\(622\) 5.62942 0.225719
\(623\) −19.0931 −0.764949
\(624\) −0.00158717 −6.35375e−5 0
\(625\) 27.7127 1.10851
\(626\) 24.9056 0.995430
\(627\) 0 0
\(628\) 14.8856 0.594001
\(629\) 6.03448 0.240611
\(630\) 11.9625 0.476599
\(631\) 16.5308 0.658081 0.329040 0.944316i \(-0.393275\pi\)
0.329040 + 0.944316i \(0.393275\pi\)
\(632\) 14.2093 0.565217
\(633\) 2.01046 0.0799086
\(634\) −26.3658 −1.04712
\(635\) −62.3267 −2.47336
\(636\) −1.04736 −0.0415304
\(637\) 0.0766019 0.00303508
\(638\) 0 0
\(639\) 35.1380 1.39004
\(640\) −3.89599 −0.154002
\(641\) 11.4960 0.454063 0.227032 0.973887i \(-0.427098\pi\)
0.227032 + 0.973887i \(0.427098\pi\)
\(642\) −1.44976 −0.0572173
\(643\) 20.7610 0.818733 0.409366 0.912370i \(-0.365750\pi\)
0.409366 + 0.912370i \(0.365750\pi\)
\(644\) 1.13248 0.0446259
\(645\) −0.0774761 −0.00305062
\(646\) −29.0157 −1.14161
\(647\) 24.2672 0.954042 0.477021 0.878892i \(-0.341717\pi\)
0.477021 + 0.878892i \(0.341717\pi\)
\(648\) 8.86382 0.348204
\(649\) 0 0
\(650\) −0.131224 −0.00514705
\(651\) −1.20834 −0.0473587
\(652\) 4.46611 0.174907
\(653\) 1.19574 0.0467929 0.0233965 0.999726i \(-0.492552\pi\)
0.0233965 + 0.999726i \(0.492552\pi\)
\(654\) 0.451646 0.0176607
\(655\) −51.4939 −2.01203
\(656\) 1.78744 0.0697879
\(657\) −1.62250 −0.0632999
\(658\) −5.58803 −0.217844
\(659\) −12.4217 −0.483881 −0.241940 0.970291i \(-0.577784\pi\)
−0.241940 + 0.970291i \(0.577784\pi\)
\(660\) 0 0
\(661\) −30.0096 −1.16724 −0.583620 0.812027i \(-0.698364\pi\)
−0.583620 + 0.812027i \(0.698364\pi\)
\(662\) −21.3680 −0.830493
\(663\) 0.00957772 0.000371968 0
\(664\) 1.59761 0.0619992
\(665\) −19.2706 −0.747280
\(666\) 2.98484 0.115660
\(667\) 2.93026 0.113460
\(668\) 18.2113 0.704618
\(669\) 2.42187 0.0936349
\(670\) −22.9512 −0.886683
\(671\) 0 0
\(672\) 0.126644 0.00488540
\(673\) −22.7736 −0.877858 −0.438929 0.898522i \(-0.644642\pi\)
−0.438929 + 0.898522i \(0.644642\pi\)
\(674\) −11.5744 −0.445828
\(675\) −7.49974 −0.288665
\(676\) −12.9998 −0.499994
\(677\) −39.1057 −1.50295 −0.751476 0.659760i \(-0.770658\pi\)
−0.751476 + 0.659760i \(0.770658\pi\)
\(678\) −1.65128 −0.0634171
\(679\) 12.6319 0.484767
\(680\) 23.5103 0.901578
\(681\) 0.930751 0.0356664
\(682\) 0 0
\(683\) −10.5213 −0.402587 −0.201293 0.979531i \(-0.564514\pi\)
−0.201293 + 0.979531i \(0.564514\pi\)
\(684\) −14.3520 −0.548764
\(685\) −15.7959 −0.603531
\(686\) −13.3131 −0.508296
\(687\) −0.690259 −0.0263350
\(688\) 0.161529 0.00615823
\(689\) 0.109677 0.00417837
\(690\) −0.528036 −0.0201020
\(691\) −21.3537 −0.812332 −0.406166 0.913799i \(-0.633135\pi\)
−0.406166 + 0.913799i \(0.633135\pi\)
\(692\) 24.8247 0.943694
\(693\) 0 0
\(694\) −3.77347 −0.143239
\(695\) −50.9457 −1.93248
\(696\) 0.327688 0.0124210
\(697\) −10.7863 −0.408560
\(698\) −31.7179 −1.20054
\(699\) 0.935723 0.0353923
\(700\) 10.4707 0.395757
\(701\) −14.1746 −0.535366 −0.267683 0.963507i \(-0.586258\pi\)
−0.267683 + 0.963507i \(0.586258\pi\)
\(702\) 0.00949894 0.000358514 0
\(703\) −4.80831 −0.181349
\(704\) 0 0
\(705\) 2.60551 0.0981290
\(706\) −31.6492 −1.19113
\(707\) 11.6787 0.439223
\(708\) 0.996703 0.0374584
\(709\) −16.8864 −0.634184 −0.317092 0.948395i \(-0.602706\pi\)
−0.317092 + 0.948395i \(0.602706\pi\)
\(710\) 45.8641 1.72125
\(711\) −42.4127 −1.59060
\(712\) −18.5606 −0.695588
\(713\) −10.5039 −0.393374
\(714\) −0.764231 −0.0286006
\(715\) 0 0
\(716\) 8.68595 0.324609
\(717\) −0.684025 −0.0255454
\(718\) 8.28551 0.309212
\(719\) −41.9579 −1.56477 −0.782383 0.622797i \(-0.785996\pi\)
−0.782383 + 0.622797i \(0.785996\pi\)
\(720\) 11.6289 0.433384
\(721\) 14.4174 0.536933
\(722\) 4.11983 0.153324
\(723\) −1.30139 −0.0483992
\(724\) −4.56819 −0.169776
\(725\) 27.0928 1.00620
\(726\) 0 0
\(727\) 27.4101 1.01658 0.508291 0.861185i \(-0.330277\pi\)
0.508291 + 0.861185i \(0.330277\pi\)
\(728\) −0.0132619 −0.000491519 0
\(729\) −26.1850 −0.969814
\(730\) −2.11778 −0.0783827
\(731\) −0.974742 −0.0360522
\(732\) 0.625141 0.0231059
\(733\) 36.4545 1.34648 0.673239 0.739425i \(-0.264903\pi\)
0.673239 + 0.739425i \(0.264903\pi\)
\(734\) 14.0906 0.520094
\(735\) 2.84994 0.105122
\(736\) 1.10089 0.0405795
\(737\) 0 0
\(738\) −5.33524 −0.196393
\(739\) 3.37053 0.123987 0.0619935 0.998077i \(-0.480254\pi\)
0.0619935 + 0.998077i \(0.480254\pi\)
\(740\) 3.89599 0.143219
\(741\) −0.00763158 −0.000280353 0
\(742\) −8.75143 −0.321275
\(743\) 51.3484 1.88379 0.941896 0.335906i \(-0.109042\pi\)
0.941896 + 0.335906i \(0.109042\pi\)
\(744\) −1.17464 −0.0430645
\(745\) −26.6381 −0.975945
\(746\) 6.02010 0.220412
\(747\) −4.76861 −0.174474
\(748\) 0 0
\(749\) −12.1138 −0.442627
\(750\) −2.48393 −0.0907005
\(751\) 6.76819 0.246975 0.123487 0.992346i \(-0.460592\pi\)
0.123487 + 0.992346i \(0.460592\pi\)
\(752\) −5.43218 −0.198091
\(753\) 3.75972 0.137012
\(754\) −0.0343148 −0.00124967
\(755\) 57.7200 2.10064
\(756\) −0.757945 −0.0275662
\(757\) 22.2851 0.809965 0.404983 0.914324i \(-0.367278\pi\)
0.404983 + 0.914324i \(0.367278\pi\)
\(758\) 23.5390 0.854974
\(759\) 0 0
\(760\) −18.7331 −0.679521
\(761\) 46.2761 1.67751 0.838753 0.544512i \(-0.183285\pi\)
0.838753 + 0.544512i \(0.183285\pi\)
\(762\) 1.96951 0.0713477
\(763\) 3.77383 0.136622
\(764\) 0.187966 0.00680037
\(765\) −70.1745 −2.53716
\(766\) −1.12110 −0.0405069
\(767\) −0.104373 −0.00376868
\(768\) 0.123112 0.00444242
\(769\) 43.1253 1.55514 0.777569 0.628798i \(-0.216453\pi\)
0.777569 + 0.628798i \(0.216453\pi\)
\(770\) 0 0
\(771\) 0.744461 0.0268111
\(772\) −19.2052 −0.691211
\(773\) 16.4915 0.593158 0.296579 0.955008i \(-0.404154\pi\)
0.296579 + 0.955008i \(0.404154\pi\)
\(774\) −0.482138 −0.0173301
\(775\) −97.1177 −3.48857
\(776\) 12.2796 0.440811
\(777\) −0.126644 −0.00454333
\(778\) −11.4668 −0.411106
\(779\) 8.59458 0.307933
\(780\) 0.00618358 0.000221408 0
\(781\) 0 0
\(782\) −6.64332 −0.237565
\(783\) −1.96116 −0.0700862
\(784\) −5.94180 −0.212207
\(785\) −57.9942 −2.06990
\(786\) 1.62719 0.0580400
\(787\) 14.5598 0.519002 0.259501 0.965743i \(-0.416442\pi\)
0.259501 + 0.965743i \(0.416442\pi\)
\(788\) −0.922455 −0.0328611
\(789\) 1.34837 0.0480032
\(790\) −55.3594 −1.96960
\(791\) −13.7977 −0.490588
\(792\) 0 0
\(793\) −0.0654635 −0.00232468
\(794\) 14.2583 0.506006
\(795\) 4.08049 0.144720
\(796\) 13.2663 0.470210
\(797\) −8.77648 −0.310879 −0.155439 0.987845i \(-0.549679\pi\)
−0.155439 + 0.987845i \(0.549679\pi\)
\(798\) 0.608944 0.0215564
\(799\) 32.7804 1.15969
\(800\) 10.1787 0.359872
\(801\) 55.4005 1.95748
\(802\) −15.0727 −0.532237
\(803\) 0 0
\(804\) 0.725252 0.0255776
\(805\) −4.41212 −0.155507
\(806\) 0.123006 0.00433271
\(807\) 2.69160 0.0947486
\(808\) 11.3530 0.399397
\(809\) 11.6288 0.408847 0.204424 0.978882i \(-0.434468\pi\)
0.204424 + 0.978882i \(0.434468\pi\)
\(810\) −34.5333 −1.21338
\(811\) −12.5463 −0.440560 −0.220280 0.975437i \(-0.570697\pi\)
−0.220280 + 0.975437i \(0.570697\pi\)
\(812\) 2.73807 0.0960875
\(813\) 3.13725 0.110028
\(814\) 0 0
\(815\) −17.3999 −0.609493
\(816\) −0.742917 −0.0260073
\(817\) 0.776680 0.0271726
\(818\) 15.1981 0.531388
\(819\) 0.0395847 0.00138320
\(820\) −6.96386 −0.243188
\(821\) −31.5530 −1.10121 −0.550603 0.834767i \(-0.685602\pi\)
−0.550603 + 0.834767i \(0.685602\pi\)
\(822\) 0.499146 0.0174097
\(823\) 15.6391 0.545146 0.272573 0.962135i \(-0.412125\pi\)
0.272573 + 0.962135i \(0.412125\pi\)
\(824\) 14.0153 0.488247
\(825\) 0 0
\(826\) 8.32817 0.289774
\(827\) 6.79187 0.236177 0.118088 0.993003i \(-0.462323\pi\)
0.118088 + 0.993003i \(0.462323\pi\)
\(828\) −3.28600 −0.114196
\(829\) −36.8175 −1.27873 −0.639363 0.768905i \(-0.720802\pi\)
−0.639363 + 0.768905i \(0.720802\pi\)
\(830\) −6.22426 −0.216047
\(831\) −2.61354 −0.0906629
\(832\) −0.0128920 −0.000446951 0
\(833\) 35.8557 1.24233
\(834\) 1.60987 0.0557452
\(835\) −70.9512 −2.45537
\(836\) 0 0
\(837\) 7.03005 0.242994
\(838\) 24.8206 0.857413
\(839\) −37.4300 −1.29223 −0.646113 0.763242i \(-0.723607\pi\)
−0.646113 + 0.763242i \(0.723607\pi\)
\(840\) −0.493404 −0.0170240
\(841\) −21.9153 −0.755700
\(842\) −0.0939937 −0.00323924
\(843\) 1.82954 0.0630128
\(844\) 16.3303 0.562113
\(845\) 50.6472 1.74232
\(846\) 16.2142 0.557456
\(847\) 0 0
\(848\) −8.50735 −0.292144
\(849\) −2.65705 −0.0911896
\(850\) −61.4233 −2.10680
\(851\) −1.10089 −0.0377382
\(852\) −1.44929 −0.0496519
\(853\) −36.3121 −1.24330 −0.621651 0.783295i \(-0.713538\pi\)
−0.621651 + 0.783295i \(0.713538\pi\)
\(854\) 5.22351 0.178745
\(855\) 55.9154 1.91227
\(856\) −11.7759 −0.402492
\(857\) 1.90793 0.0651737 0.0325869 0.999469i \(-0.489625\pi\)
0.0325869 + 0.999469i \(0.489625\pi\)
\(858\) 0 0
\(859\) 3.72968 0.127255 0.0636275 0.997974i \(-0.479733\pi\)
0.0636275 + 0.997974i \(0.479733\pi\)
\(860\) −0.629314 −0.0214594
\(861\) 0.226369 0.00771464
\(862\) −15.0602 −0.512952
\(863\) −35.0188 −1.19205 −0.596026 0.802965i \(-0.703255\pi\)
−0.596026 + 0.802965i \(0.703255\pi\)
\(864\) −0.736806 −0.0250667
\(865\) −96.7168 −3.28847
\(866\) −22.6080 −0.768250
\(867\) 2.39022 0.0811760
\(868\) −9.81499 −0.333142
\(869\) 0 0
\(870\) −1.27667 −0.0432831
\(871\) −0.0759469 −0.00257336
\(872\) 3.66858 0.124234
\(873\) −36.6526 −1.24050
\(874\) 5.29344 0.179053
\(875\) −20.7551 −0.701649
\(876\) 0.0669213 0.00226106
\(877\) 18.6775 0.630693 0.315346 0.948977i \(-0.397879\pi\)
0.315346 + 0.948977i \(0.397879\pi\)
\(878\) 15.2327 0.514080
\(879\) −1.62512 −0.0548138
\(880\) 0 0
\(881\) 11.2289 0.378310 0.189155 0.981947i \(-0.439425\pi\)
0.189155 + 0.981947i \(0.439425\pi\)
\(882\) 17.7353 0.597180
\(883\) −8.98744 −0.302451 −0.151226 0.988499i \(-0.548322\pi\)
−0.151226 + 0.988499i \(0.548322\pi\)
\(884\) 0.0777968 0.00261659
\(885\) −3.88314 −0.130530
\(886\) −4.85321 −0.163047
\(887\) −33.5316 −1.12588 −0.562941 0.826497i \(-0.690330\pi\)
−0.562941 + 0.826497i \(0.690330\pi\)
\(888\) −0.123112 −0.00413137
\(889\) 16.4566 0.551938
\(890\) 72.3119 2.42390
\(891\) 0 0
\(892\) 19.6721 0.658670
\(893\) −26.1196 −0.874059
\(894\) 0.841756 0.0281525
\(895\) −33.8404 −1.13116
\(896\) 1.02869 0.0343661
\(897\) −0.00174730 −5.83407e−5 0
\(898\) 28.9173 0.964984
\(899\) −25.3960 −0.847005
\(900\) −30.3819 −1.01273
\(901\) 51.3375 1.71030
\(902\) 0 0
\(903\) 0.0204567 0.000680755 0
\(904\) −13.4128 −0.446104
\(905\) 17.7976 0.591613
\(906\) −1.82393 −0.0605961
\(907\) 29.3372 0.974124 0.487062 0.873367i \(-0.338068\pi\)
0.487062 + 0.873367i \(0.338068\pi\)
\(908\) 7.56019 0.250894
\(909\) −33.8869 −1.12396
\(910\) 0.0516682 0.00171279
\(911\) 10.9950 0.364279 0.182140 0.983273i \(-0.441698\pi\)
0.182140 + 0.983273i \(0.441698\pi\)
\(912\) 0.591961 0.0196018
\(913\) 0 0
\(914\) −41.8706 −1.38496
\(915\) −2.43554 −0.0805165
\(916\) −5.60675 −0.185252
\(917\) 13.5964 0.448992
\(918\) 4.44624 0.146748
\(919\) 15.6338 0.515711 0.257856 0.966183i \(-0.416984\pi\)
0.257856 + 0.966183i \(0.416984\pi\)
\(920\) −4.28907 −0.141406
\(921\) 0.641112 0.0211253
\(922\) −17.2212 −0.567151
\(923\) 0.151767 0.00499547
\(924\) 0 0
\(925\) −10.1787 −0.334674
\(926\) 14.3437 0.471364
\(927\) −41.8336 −1.37399
\(928\) 2.66171 0.0873748
\(929\) 31.9938 1.04968 0.524841 0.851200i \(-0.324125\pi\)
0.524841 + 0.851200i \(0.324125\pi\)
\(930\) 4.57639 0.150066
\(931\) −28.5700 −0.936344
\(932\) 7.60058 0.248965
\(933\) 0.693050 0.0226894
\(934\) 0.888200 0.0290628
\(935\) 0 0
\(936\) 0.0384807 0.00125778
\(937\) −19.6334 −0.641394 −0.320697 0.947182i \(-0.603917\pi\)
−0.320697 + 0.947182i \(0.603917\pi\)
\(938\) 6.06000 0.197866
\(939\) 3.06618 0.100061
\(940\) 21.1637 0.690284
\(941\) −49.0692 −1.59961 −0.799806 0.600259i \(-0.795064\pi\)
−0.799806 + 0.600259i \(0.795064\pi\)
\(942\) 1.83260 0.0597093
\(943\) 1.96779 0.0640799
\(944\) 8.09590 0.263499
\(945\) 2.95294 0.0960593
\(946\) 0 0
\(947\) 57.7198 1.87564 0.937821 0.347120i \(-0.112840\pi\)
0.937821 + 0.347120i \(0.112840\pi\)
\(948\) 1.74934 0.0568159
\(949\) −0.00700787 −0.000227485 0
\(950\) 48.9424 1.58790
\(951\) −3.24595 −0.105257
\(952\) −6.20761 −0.201190
\(953\) 1.32966 0.0430719 0.0215359 0.999768i \(-0.493144\pi\)
0.0215359 + 0.999768i \(0.493144\pi\)
\(954\) 25.3931 0.822133
\(955\) −0.732313 −0.0236971
\(956\) −5.55612 −0.179698
\(957\) 0 0
\(958\) 16.7008 0.539579
\(959\) 4.17073 0.134680
\(960\) −0.479643 −0.0154804
\(961\) 60.0355 1.93663
\(962\) 0.0128920 0.000415656 0
\(963\) 35.1492 1.13267
\(964\) −10.5708 −0.340462
\(965\) 74.8233 2.40865
\(966\) 0.139422 0.00448582
\(967\) 45.3576 1.45860 0.729301 0.684193i \(-0.239846\pi\)
0.729301 + 0.684193i \(0.239846\pi\)
\(968\) 0 0
\(969\) −3.57218 −0.114755
\(970\) −47.8410 −1.53608
\(971\) −16.5996 −0.532706 −0.266353 0.963876i \(-0.585819\pi\)
−0.266353 + 0.963876i \(0.585819\pi\)
\(972\) 3.30166 0.105901
\(973\) 13.4516 0.431239
\(974\) 0.597149 0.0191339
\(975\) −0.0161553 −0.000517384 0
\(976\) 5.07782 0.162537
\(977\) −36.5324 −1.16878 −0.584388 0.811475i \(-0.698665\pi\)
−0.584388 + 0.811475i \(0.698665\pi\)
\(978\) 0.549832 0.0175817
\(979\) 0 0
\(980\) 23.1492 0.739473
\(981\) −10.9501 −0.349611
\(982\) 2.37658 0.0758398
\(983\) 23.7195 0.756536 0.378268 0.925696i \(-0.376520\pi\)
0.378268 + 0.925696i \(0.376520\pi\)
\(984\) 0.220056 0.00701512
\(985\) 3.59387 0.114510
\(986\) −16.0620 −0.511519
\(987\) −0.687953 −0.0218978
\(988\) −0.0619889 −0.00197213
\(989\) 0.177826 0.00565454
\(990\) 0 0
\(991\) 3.64787 0.115878 0.0579392 0.998320i \(-0.481547\pi\)
0.0579392 + 0.998320i \(0.481547\pi\)
\(992\) −9.54125 −0.302935
\(993\) −2.63066 −0.0834816
\(994\) −12.1099 −0.384102
\(995\) −51.6852 −1.63853
\(996\) 0.196685 0.00623220
\(997\) 15.7670 0.499346 0.249673 0.968330i \(-0.419677\pi\)
0.249673 + 0.968330i \(0.419677\pi\)
\(998\) 10.5737 0.334705
\(999\) 0.736806 0.0233115
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8954.2.a.bt.1.10 22
11.3 even 5 814.2.h.c.75.7 44
11.4 even 5 814.2.h.c.445.7 yes 44
11.10 odd 2 8954.2.a.bs.1.10 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
814.2.h.c.75.7 44 11.3 even 5
814.2.h.c.445.7 yes 44 11.4 even 5
8954.2.a.bs.1.10 22 11.10 odd 2
8954.2.a.bt.1.10 22 1.1 even 1 trivial