gp: [N,k,chi] = [8954,2,Mod(1,8954)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8954.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8954, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [22,22,5,22,8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(2\)
\( -1 \)
\(11\)
\( +1 \)
\(37\)
\( +1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8954))\):
\( T_{3}^{22} - 5 T_{3}^{21} - 38 T_{3}^{20} + 216 T_{3}^{19} + 549 T_{3}^{18} - 3849 T_{3}^{17} + \cdots - 919 \)
T3^22 - 5*T3^21 - 38*T3^20 + 216*T3^19 + 549*T3^18 - 3849*T3^17 - 3498*T3^16 + 36793*T3^15 + 4855*T3^14 - 205540*T3^13 + 64117*T3^12 + 682517*T3^11 - 417045*T3^10 - 1291240*T3^9 + 1126062*T3^8 + 1185555*T3^7 - 1476219*T3^6 - 190706*T3^5 + 757542*T3^4 - 294126*T3^3 + 16133*T3^2 + 8604*T3 - 919
\( T_{5}^{22} - 8 T_{5}^{21} - 36 T_{5}^{20} + 422 T_{5}^{19} + 224 T_{5}^{18} - 8976 T_{5}^{17} + \cdots - 341 \)
T5^22 - 8*T5^21 - 36*T5^20 + 422*T5^19 + 224*T5^18 - 8976*T5^17 + 7153*T5^16 + 99343*T5^15 - 148087*T5^14 - 615195*T5^13 + 1219174*T5^12 + 2112716*T5^11 - 5257342*T5^10 - 3561920*T5^9 + 12107122*T5^8 + 1470432*T5^7 - 13320861*T5^6 + 2221513*T5^5 + 4737594*T5^4 - 758234*T5^3 - 146496*T5^2 + 24141*T5 - 341
\( T_{7}^{22} - 7 T_{7}^{21} - 81 T_{7}^{20} + 642 T_{7}^{19} + 2516 T_{7}^{18} - 24584 T_{7}^{17} + \cdots + 4381696 \)
T7^22 - 7*T7^21 - 81*T7^20 + 642*T7^19 + 2516*T7^18 - 24584*T7^17 - 33575*T7^16 + 506670*T7^15 + 42903*T7^14 - 6023869*T7^13 + 4162114*T7^12 + 40901626*T7^11 - 49986917*T7^10 - 145410138*T7^9 + 238914636*T7^8 + 214651968*T7^7 - 459806736*T7^6 - 63752192*T7^5 + 276427456*T7^4 + 7058816*T7^3 - 60530176*T7^2 - 317440*T7 + 4381696
\( T_{17}^{22} - 19 T_{17}^{21} - 31 T_{17}^{20} + 2432 T_{17}^{19} - 6481 T_{17}^{18} - 121346 T_{17}^{17} + \cdots - 564075520 \)
T17^22 - 19*T17^21 - 31*T17^20 + 2432*T17^19 - 6481*T17^18 - 121346*T17^17 + 516164*T17^16 + 2984604*T17^15 - 15803733*T17^14 - 37399952*T17^13 + 242979484*T17^12 + 207647103*T17^11 - 1982435629*T17^10 - 24045132*T17^9 + 8291973856*T17^8 - 4356109440*T17^7 - 15396744960*T17^6 + 14084725760*T17^5 + 8450710400*T17^4 - 12250889600*T17^3 + 1068999680*T17^2 + 2271298560*T17 - 564075520