Properties

Label 8954.2.a.bi
Level $8954$
Weight $2$
Character orbit 8954.a
Self dual yes
Analytic conductor $71.498$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8954,2,Mod(1,8954)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8954.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8954, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8954 = 2 \cdot 11^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8954.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,7,-1,7,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.4980499699\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 11x^{5} + 10x^{4} + 37x^{3} - 30x^{2} - 37x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - \beta_1 q^{3} + q^{4} + \beta_{6} q^{5} - \beta_1 q^{6} + ( - \beta_{6} - \beta_{5} - \beta_{4} + \cdots - 1) q^{7} + q^{8} + \beta_{2} q^{9} + \beta_{6} q^{10} - \beta_1 q^{12} + ( - \beta_{5} + \beta_{4} - 1) q^{13}+ \cdots + (\beta_{6} + \beta_{5} + 2 \beta_{4} + \cdots + 2) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} - q^{3} + 7 q^{4} - 3 q^{5} - q^{6} - 3 q^{7} + 7 q^{8} + 2 q^{9} - 3 q^{10} - q^{12} - 10 q^{13} - 3 q^{14} - 5 q^{15} + 7 q^{16} - 3 q^{17} + 2 q^{18} - 10 q^{19} - 3 q^{20} + 8 q^{21}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - x^{6} - 11x^{5} + 10x^{4} + 37x^{3} - 30x^{2} - 37x + 27 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} + 2\nu^{5} - 9\nu^{4} - 13\nu^{3} + 22\nu^{2} + 16\nu - 17 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} + 2\nu^{5} + 9\nu^{4} - 15\nu^{3} - 22\nu^{2} + 24\nu + 9 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{6} - 9\nu^{4} - \nu^{3} + 22\nu^{2} + 4\nu - 13 ) / 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{6} - 2\nu^{5} + 13\nu^{4} + 17\nu^{3} - 50\nu^{2} - 32\nu + 49 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} - \beta_{4} + \beta_{3} + 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{6} + \beta_{5} + \beta_{4} + 7\beta_{2} + 13 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -7\beta_{5} - 6\beta_{4} + 8\beta_{3} + 18\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 9\beta_{6} + 10\beta_{5} + 8\beta_{4} + \beta_{3} + 41\beta_{2} + 64 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.39288
2.05670
1.38741
0.684252
−1.33735
−1.85738
−2.32651
1.00000 −2.39288 1.00000 0.159905 −2.39288 −4.43030 1.00000 2.72586 0.159905
1.2 1.00000 −2.05670 1.00000 0.725757 −2.05670 1.48708 1.00000 1.23001 0.725757
1.3 1.00000 −1.38741 1.00000 −3.87174 −1.38741 1.84420 1.00000 −1.07508 −3.87174
1.4 1.00000 −0.684252 1.00000 2.89682 −0.684252 −3.41001 1.00000 −2.53180 2.89682
1.5 1.00000 1.33735 1.00000 1.53172 1.33735 1.53228 1.00000 −1.21150 1.53172
1.6 1.00000 1.85738 1.00000 −3.77878 1.85738 2.79762 1.00000 0.449865 −3.77878
1.7 1.00000 2.32651 1.00000 −0.663682 2.32651 −2.82086 1.00000 2.41265 −0.663682
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( -1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8954.2.a.bi yes 7
11.b odd 2 1 8954.2.a.bg 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8954.2.a.bg 7 11.b odd 2 1
8954.2.a.bi yes 7 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8954))\):

\( T_{3}^{7} + T_{3}^{6} - 11T_{3}^{5} - 10T_{3}^{4} + 37T_{3}^{3} + 30T_{3}^{2} - 37T_{3} - 27 \) Copy content Toggle raw display
\( T_{5}^{7} + 3T_{5}^{6} - 16T_{5}^{5} - 29T_{5}^{4} + 79T_{5}^{3} - T_{5}^{2} - 33T_{5} + 5 \) Copy content Toggle raw display
\( T_{7}^{7} + 3T_{7}^{6} - 23T_{7}^{5} - 40T_{7}^{4} + 205T_{7}^{3} + 66T_{7}^{2} - 677T_{7} + 501 \) Copy content Toggle raw display
\( T_{17}^{7} + 3T_{17}^{6} - 46T_{17}^{5} - 97T_{17}^{4} + 494T_{17}^{3} + 887T_{17}^{2} - 745T_{17} - 437 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{7} \) Copy content Toggle raw display
$3$ \( T^{7} + T^{6} + \cdots - 27 \) Copy content Toggle raw display
$5$ \( T^{7} + 3 T^{6} + \cdots + 5 \) Copy content Toggle raw display
$7$ \( T^{7} + 3 T^{6} + \cdots + 501 \) Copy content Toggle raw display
$11$ \( T^{7} \) Copy content Toggle raw display
$13$ \( T^{7} + 10 T^{6} + \cdots - 575 \) Copy content Toggle raw display
$17$ \( T^{7} + 3 T^{6} + \cdots - 437 \) Copy content Toggle raw display
$19$ \( T^{7} + 10 T^{6} + \cdots - 2945 \) Copy content Toggle raw display
$23$ \( T^{7} + 6 T^{6} + \cdots - 1356 \) Copy content Toggle raw display
$29$ \( T^{7} + 2 T^{6} + \cdots + 30385 \) Copy content Toggle raw display
$31$ \( T^{7} - T^{6} + \cdots + 800549 \) Copy content Toggle raw display
$37$ \( (T + 1)^{7} \) Copy content Toggle raw display
$41$ \( T^{7} - 6 T^{6} + \cdots + 162675 \) Copy content Toggle raw display
$43$ \( T^{7} - T^{6} + \cdots + 81 \) Copy content Toggle raw display
$47$ \( T^{7} + 10 T^{6} + \cdots + 101295 \) Copy content Toggle raw display
$53$ \( T^{7} - 7 T^{6} + \cdots - 211985 \) Copy content Toggle raw display
$59$ \( T^{7} + 19 T^{6} + \cdots + 79 \) Copy content Toggle raw display
$61$ \( T^{7} + 19 T^{6} + \cdots - 11344 \) Copy content Toggle raw display
$67$ \( T^{7} - T^{6} + \cdots - 469439 \) Copy content Toggle raw display
$71$ \( T^{7} - 9 T^{6} + \cdots - 33804 \) Copy content Toggle raw display
$73$ \( T^{7} + 16 T^{6} + \cdots + 1052417 \) Copy content Toggle raw display
$79$ \( T^{7} + 47 T^{6} + \cdots - 203076 \) Copy content Toggle raw display
$83$ \( T^{7} - 13 T^{6} + \cdots + 720877 \) Copy content Toggle raw display
$89$ \( T^{7} - 3 T^{6} + \cdots + 79380 \) Copy content Toggle raw display
$97$ \( T^{7} - T^{6} + \cdots - 291133 \) Copy content Toggle raw display
show more
show less